Nonlinear Programming Supplementary Notes

Graphics of parent functions

This is just to recall some basic graphs, used to quick test some points.

y=ax+b

image-20221225102352085

y=ax^2+bx+c

image-20221225102803598

y=kx

image-20221225103756804

y=ax

image-20221225104208690

y=logax

image-20221225104744821

y=xa

image-20221225110146557

image-20221225110553328

image-20221225110732798

Introduction to NLP

Example 1. Profit Maximization

2022-12-24 at 21.01.01

image-20221224210304968

Example 2. Product Maximization

image-20221224210339894

image-20221224213206816

image-20221224213216689

image-20221224213256559

 

Example 3.

image-20221224214012163

image-20221224214027477

Example 4.

2022-12-24 at 22.16.13

 

image-20221224222059073

Convex and Concave Functions

2022-12-24 at 22.26.02

image-20221224222837061

Example 5. Check cvx or ccv of x2

image-20221224223216179

Example 6. check cvx ex

image-20221224223353089

E7. check cvx x12 , x0

image-20221224224306789

E8. f(x)=x2+ex

Easy way: sum of convex is convex, so f(x) is convex.

image-20221224224433733

Therorem 1

For maximization problem, if function is concave, local max = global max = optimal solution

For minimization problem, if function is convex, local min = global min = optimal solution

E9. check convexity of f(x)=ax+b

image-20221224224938699

E10. Hessian of of f(x1,x2)=x13+2x1x2+x22

image-20221224225447798

Definition 1 [Hessian, PM, LPM]

2022-12-24 at 22.55.402022-12-24 at 22.55.502022-12-24 at 22.56.15

Theorem 2 [convex by PM, concave by PM]

2022-12-24 at 22.57.42

2022-12-24 at 22.57.53

E11. CVX or CCV f(x1,x2)=x12+2x1x2+x22

image-20221224230218213

E12. CVX or CCV f(x1,x2)=x122x1x22x22

image-20221224230503935

E13. CVX or CCV f(x1,x2)=x123x1x2+2x22

image-20221224230758794

E14. CVX or CCV f(x1,x2,x3)=x12+x22+2x32x1x2x2x3x1x3

image-20221224232118434

image-20221224232136836

E15. CVX/CCV f(x)=x3,S=[0,]

image-20221225095028197

E16.f(x)=x3,SR

image-20221225095251832

E17.f(x)=1x,S(0,)

image-20221225100831020

E18. f(x)=xa(0 a 1);S (0,)

image-20221225112535230

E19. f(x) =lnx ;S (0,)

image-20221225112727149

E20. f(x1,x2) =x13 +3x1x2 +x22;S R2

image-20221225113011727

E21. f(x1,x2)= x12+ x22;S =R2

image-20221225113310157

E22. CVX / CCV

image-20221225114149724

E23. CVX / CCV

image-20221225115107300

Solving NLPs with One Variable

image-20221225115433431

image-20221225115348083

Theorem 3

2022-12-25 at 11.55.30

2022-12-25 at 11.56.09

What happens if f(x)=0,f(x)=0 ?

image-20221225115812289

2022-12-25 at 13.53.37

Both side neibours must lower or higher

2022-12-25 at 12.09.09

E.24 Profit Maximization by Monopolist

2022-12-25 at 12.04.22

image-20221225121528702

image-20221225121541418

E25. Product Pricing

2022-12-25 at 13.23.33

image-20221225132410495

image-20221225132424790

image-20221225132633646

E26. Monopolist Pricing

2022-12-25 at 13.27.37

image-20221225133239724

image-20221225133423938

E27. find the opt to max x3,where x[1,1]

image-20221225134344966

E28. Find the optimal solution

image-20221225140205914

image-20221225140216757

Unconstrained NLPs with multiple variables

Theorem 4

2022-12-25 at 14.07.01

This means, if we want to find a local maximum or local minimum, we must first find all points where the f=0

Definition 2

2022-12-25 at 14.10.39

All the points we find by doing f=0 are stationary points.

In the single variable case, if we do not has any constraints, we also did this:

  1. first we calculated f then we find several points, let’s say x_1, x_2.
  2. then we calculated f if f(x¯)>0 x¯ is local minimum. (if f(x¯)<0, local max)
  3. if f(x¯)=0&f(x¯)=0 then it is a saddle point.

Theorem 5

2022-12-25 at 15.36.33

2022-12-25 at 15.36.45

2022-12-25 at 14.26.11

2022-12-25 at 14.27.46

2022-12-25 at 15.37.38