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INTENDED AUDIENCE

Statistics for Business and Economics, 8th edition, was written to meet the need for an in-
troductory text that provides a strong introduction to business statistics, develops un-
derstanding of concepts, and emphasizes problem solving using realistic examples that 
emphasize real data sets and computer based analysis. These examples emphasize busi-
ness and economics examples for the following:

• MBA or undergraduate business programs that teach business statistics
• Graduate and undergraduate economics programs
• Executive MBA programs
• Graduate courses for business statistics

SUBSTANCE

This book was written to provide a strong introductory understanding of applied statisti-
cal procedures so that individuals can do solid statistical analysis in many business and 
economic situations. We have emphasized an understanding of the assumptions that are 
necessary for professional analysis. In particular we have greatly expanded the number of 
applications that utilize data from applied policy and research settings. Data and problem 
scenarios have been obtained from business analysts, major research organizations, and 
selected extractions from publicly available data sources. With modern computers it is 
easy to compute, from data, the output needed for many statistical procedures. Thus, it is 
tempting to merely apply simple “rules” using these outputs—an approach used in many 
textbooks. Our approach is to combine understanding with many examples and student 
exercises that show how understanding of methods and their assumptions lead to useful 
understanding of business and economic problems.

NEW TO THIS EDITION

The eighth edition of this book has been revised and updated to provide students with im-
proved problem contexts for learning how statistical methods can improve their analysis 
and understanding of business and economics.

The objective of this revision is to provide a strong core textbook with new features 
and modifications that will provide an improved learning environment for students en-
tering a rapidly changing technical work environment. This edition has been carefully 
revised to improve the clarity and completeness of explanations. This revision recognizes 
the globalization of statistical study and in particular the global market for this book.

 1. Improvement in clarity and relevance of discussions of the core topics included in the 
book.

 2. Addition of a number of large databases developed by public research agencies, busi-
nesses, and databases from the authors’ own works.

PREFACE
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 3. Inclusion of a number of new exercises that introduce students to specific statistical 
questions that are part of research projects.

 4. Addition of a number of case studies, with both large and small sample sizes. Stu-
dents are provided the opportunity to extend their statistical understanding to the 
context of research and analysis conducted by professionals. These studies include 
data files obtained from on-going research studies, which reduce for the student, the 
extensive work load of data collection and refinement, thus providing an emphasis 
on question formulation, analysis, and reporting of results.

 5. Careful revision of text and symbolic language to ensure consistent terms and defini-
tions and to remove errors that accumulated from previous revisions and production 
problems.

 6. Major revision of the discussion of Time Series both in terms of describing historical 
patterns and in the focus on identifying the underlying structure and introductory 
forecasting methods.

 7. Integration of the text material, data sets, and exercises into new on-line applications 
including MyMathLab Global.

 8. Expansion of descriptive statistics to include percentiles, z-scores, and alternative for-
mulae to compute the sample variance and sample standard deviation.

 9. Addition of a significant number of new examples based on real world data.
 10. Greater emphasis on the assumptions being made when conducting various statisti-

cal procedures.
 11. Reorganization of sampling concepts.
 12. More detailed business-oriented examples and exercises incorporated in the analysis 

of statistics.
 13. Improved chapter introductions that include business examples discussed in the 

chapter.
14. Good range of difficulty in the section ending exercises that permit the professor to 

tailor the difficulty level to his or her course.
15. Improved suitability for both introductory and advanced statistics courses and by 

both undergraduate and graduate students.
16. Decision Theory, which is covered in other business classes such as operations man-

agement or strategic management, has been moved to an online location for access by 
those who are interested (www.pearsonglobaleditions.com/newbold).

This edition devotes considerable effort to providing an understanding of statistical 
methods and their applications. We have avoided merely providing rules and canned 
computer routines for analyzing and solving statistical problems. This edition contains 
a complete discussion of methods and assumptions, including computational details ex-
pressed in clear and complete formulas. Through examples and extended chapter appli-
cations, we provide guidelines for interpreting results and explain how to determine if 
additional analysis is required. The development of the many procedures included under 
statistical inference and regression analysis are built on a strong development of probabil-
ity and random variables, which are a foundation for the applications presented in this 
book. The foundation also includes a clear and complete discussion of descriptive statis-
tics and graphical approaches. These provide important tools for exploring and describ-
ing data that represent a process being studied. 

Probability and random variables are presented with a number of important applica-
tions, which are invaluable in management decision making. These include conditional 
probability and Bayesian applications that clarify decisions and show counterintuitive 
results in a number of decision situations. Linear combinations of random variables are 
developed in detail, with a number of applications of importance, including portfolio 
applications in finance. 

The authors strongly believe that students learn best when they work with chal-
lenging and relevant applications that apply the concepts presented by dedicated 
teachers and the textbook. Thus the textbook has always included a number of data 
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sets obtained from various applications in the public and private sectors. In the eighth 
edition we have added a number of large data sets obtained from major research proj-
ects and other sources. These data sets are used in chapter examples, exercises, and 
case studies located at the end of analysis chapters. A number of exercises consider 
individual analyses that are typically part of larger research projects. With this struc-
ture, students can deal with important detailed questions and can also work with case 
studies that require them to identify the detailed questions that are logically part of a 
larger research project. These large data sets can also be used by the teacher to develop 
additional research and case study projects that are custom designed for local course 
environments. The opportunity to custom design new research questions for students 
is a unique part of this textbook. 

One of the large data sets is the HEI Cost Data Variable Subset. This data file was 
obtained from a major nutrition-research project conducted at the Economic Research 
Service (ERS) of the U.S. Department of Agriculture. These research projects provide the 
basis for developing government policy and informing citizens and food producers about 
ways to improve national nutrition and health. The original data were gathered in the Na-
tional Health and Nutrition Examination Survey, which included in-depth interview mea-
surements of diet, health, behavior, and economic status for a large probability sample of 
the U.S. population. Included in the data is the Healthy Eating Index (HEI), a measure of 
diet quality developed by ERS and computed for each individual in the survey. A number 
of other major data sets containing nutrition measures by country, automobile fuel con-
sumption, health data, and more are described in detail at the end of the chapters where 
they are used in exercises and case studies. A complete list of the data files and where they 
are used is located at the end of this preface. Data files are also shown by chapter at the 
end of each chapter. 

The book provides a complete and in-depth presentation of major applied topics. 
An initial read of the discussion and application examples enables a student to begin 
working on simple exercises, followed by challenging exercises that provide the op-
portunity to learn by doing relevant analysis applications. Chapters also include sum-
mary sections, which clearly present the key components of application tools. Many 
analysts and teachers have used this book as a reference for reviewing specific appli-
cations. Once you have used this book to help learn statistical applications, you will 
also find it to be a useful resource as you use statistical analysis procedures in your 
future career. 

A number of special applications of major procedures are included in various sec-
tions. Clearly there are more than can be used in a single course. But careful selection of 
topics from the various chapters enables the teacher to design a course that provides for 
the specific needs of students in the local academic program. Special examples that can 
be left out or included provide a breadth of opportunities. The initial probability chapter, 
Chapter 3, provides topics such as decision trees, overinvolvement ratios, and expanded 
coverage of Bayesian applications, any of which might provide important material for 
local courses. Confidence interval and hypothesis tests include procedures for variances 
and for categorical and ordinal data. Random-variable chapters include linear combina-
tion of correlated random variables with applications to financial portfolios. Regression 
applications include estimation of beta ratios in finance, dummy variables in experimen-
tal design, nonlinear regression, and many more. 

As indicated here, the book has the capability of being used in a variety of courses 
that provide applications for a variety of academic programs. The other benefit to the stu-
dent is that this textbook can be an ideal resource for the student’s future professional 
career. The design of the book makes it possible for a student to come back to topics after 
several years and quickly renew his or her understanding. With all the additional special 
topics, that may not have been included in a first course, the book is a reference for learn-
ing important new applications. And the presentation of those new applications follows 
a presentation style and uses understandings that are familiar. This reduces the time re-
quired to master new application topics. 
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SUPPLEMENT PACKAGE

Student Resources
Online Resources—These resources, which can be downloaded at no cost from 
www.pearsonglobaleditions.com/newbold, include the following:

• Data files—Excel data files that are used throughout the chapters.
• PHStat2—The latest version of PHStat2, the Pearson statistical add-in for 

Windows-based Excel 2003, 2007, and 2010. This version eliminates the use of the  
Excel Analysis ToolPak add-ins, thereby simplifying installation and setup.

• Answers to Selected Even-Numbered Exercises

MyMathLab Global provides students with direct access to the online resources as well as 
the following exclusive online features and tools:

• Interactive tutorial exercises—These are a comprehensive set of exercises writ-
ten especially for use with this book that are algorithmically generated for un-
limited practice and mastery. Most exercises are free-response exercises and 
provide guided solutions, sample problems, and learning aids for extra help at 
point of use.

• Personalized study plan—This plan indicates which topics have been mastered 
and creates direct links to tutorial exercises for topics that have not been mastered.  
MyMathLab Global manages the study plan, updating its content based on the 
 results of future online assessments.

• Integration with Pearson eTexts—A resource for iPad users, who can download 
a free app at www.apple.com/ipad/apps-for-ipad/ and then sign in using their 
 MyMathLab Global account to access a bookshelf of all their Pearson eTexts. The 
iPad app also allows access to the Do Homework, Take a Test, and Study Plan 
pages of their MyMathLab Global course.

Instructor Resources
Instructor’s Resource Center—Reached through a link at www.pearsonglobaleditions
.com/newbold, the Instructor’s Resource Center contains the electronic files for the complete 
Instructor’s Solutions Manual, the Test Item File, and PowerPoint lecture presentations:

• Register, Redeem, Log In—At www.pearsonglobaleditions.com/newbold, instruc-
tors can access a variety of print, media, and presentation resources that are available 
with this book in downloadable digital format.

• Need Help?—Pearson Education’s dedicated technical support team is ready to 
assist instructors with questions about the media supplements that accompany this 
text. Visit http://247pearsoned.com for answers to frequently asked questions and 
toll-free user-support phone numbers. The supplements are available to adopting  
instructors. Detailed descriptions are provided at the Instructor’s Resource Center.

Instructor Solutions Manual—This manual includes worked-out solutions for end-of-
section and end-of-chapter exercises and applications. Electronic solutions are provided at 
the Instructor’s Resource Center in Word format.

PowerPoint Lecture Slides—A set of chapter-by-chapter PowerPoint slides provides an 
instructor with individual lecture outlines to accompany the text. The slides include many 
of the figures and tables from the text. Instructors can use these lecture notes as is or can 
easily modify the notes to reflect specific presentation needs.

Test-Item File—The test-item file contains true/false, multiple-choice, and short-answer 
questions based on concepts and ideas developed in each chapter of the text.

TestGen Software—Pearson Education’s test-generating software is PC compatible and 
preloaded with all the Test-Item File questions. You can manually or randomly view test 
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questions and drag and drop them to create a test. You can add or modify test-bank ques-
tions as needed.

MyMathLab Global is a powerful online homework, tutorial, and  assessment system that 
accompanies Pearson Education statistics textbooks. With  MyMathLab Global, instructors 
can create, edit, and assign online homework and tests using algorithmically generated 
exercises correlated at the objective level to the textbook. They can also create and assign 
their own online exercises and import TestGen tests for added flexibility. All student work 
is tracked in the online grade book. Students can take chapter tests and receive personal-
ized study plans based on their test results. Each study plan diagnoses weaknesses and 
links the student directly to tutorial exercises for the objectives he or she needs to study 
and retest. Students can also access supplemental animations and video clips directly 
from selected exercises. MyMathLab Global is available to qualified adopters. For more 
information, visit www.mymathlab.com/global or contact your sales representative.

MyMathLab Global is a text-specific, easily customizable online course that integrates in-
teractive multimedia instruction with textbook content. MyMathLab Global gives you the 
tools you need to deliver all or a portion of your course online, whether your students 
are in a lab setting or working from home. The latest version of MyMathLab Global of-
fers a new, intuitive design that features more direct access to MyMathLab Global pages 
(Gradebook, Homework & Test Manager, Home Page Manager, etc.) and provides en-
hanced functionality for communicating with students and customizing courses. Other 
key features include the following:

• Assessment Manager An easy-to-use assessment manager lets instructors create 
online homework, quizzes, and tests that are automatically graded and correlated 
directly to your textbook. Assignments can be created using a mix of questions 
from the exercise bank, instructor-created custom exercises, and/or TestGen test 
items.

• Grade Book Designed specifically for mathematics and statistics, the grade book au-
tomatically tracks students’ results and gives you control over how to calculate final 
grades. You can also add offline (paper-and-pencil) grades to the grade book.

• Exercise Builder You can use the Exercise Builder to create static and algorithmic 
exercises for your online assignments. A library of sample exercises provides an easy 
starting point for creating questions, and you can also create questions from scratch.

• eText Full Integration Students who have the appropriate mobile devices can use 
your eText annotations and highlights for each course, and iPad users can download 
a free app that allows them access to the Do Homework, Take a Test, and Study Plan 
pages of their course.

• “Ask the Publisher” Link in “Ask My Instructor” E-mail You can easily notify the 
content team of any irregularities with specific questions by using the “Ask the Pub-
lisher” functionality in the “Ask My Instructor” e-mails you receive from students.

• Tracking Time Spent on Media Because the latest version of MyMathLab Global 
 requires students to explicitly click a “Submit” button after viewing the media for 
their assignments, you will be able to track how long students are spending on each 
media file.
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Introduction

What are the projected sales of a new product? Will the cost of Google shares 
continue to increase? Who will win the next presidential election? How sat-
isfied were you with your last purchase at Starbucks, Best Buy, or Sports 
Authority? If you were hired by the National Nutrition Council of the United 
States, how would you determine if the Council’s guidelines on consumption 
of fruit, vegetables, snack foods, and soft drinks are being met? Do people 
who are physically active have healthier diets than people who are not physi-
cally active? What factors (perhaps disposable income or federal funds) are 
significant in forecasting the aggregate consumption of durable goods? What 
effect will a 2% increase in interest rates have on residential investment? Do 
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credit scores, current balance, or outstanding maintenance balance con-
tribute to an increase in the percentage of a mortgage company’s delin-
quent accounts increasing? Answers to questions such as these come 
from an understanding of statistics, fluctuations in the market, consumer 
preferences, trends, and so on.

Statistics are used to predict or forecast sales of a new product, con-
struction costs, customer-satisfaction levels, the weather, election results, 
university enrollment figures, grade point averages, interest rates, currency-
exchange rates, and many other variables that affect our daily lives. We 
need to absorb and interpret substantial amounts of data. Governments, 
businesses, and scientific researchers spend billions of dollars collecting 
data. But once data are collected, what do we do with them? How do data 
impact decision making?

In our study of statistics we learn many tools to help us process, sum-
marize, analyze, and interpret data for the purpose of making better deci-
sions in an uncertain environment. Basically, an understanding of statistics 
will permit us to make sense of all the data.

In this chapter we introduce tables and graphs that help us gain a bet-
ter understanding of data and that provide visual support for improved de-
cision making. Reports are enhanced by the inclusion of appropriate tables 
and graphs, such as frequency distributions, bar charts, pie charts, Pa-
reto diagrams, line charts, histograms, stem-and-leaf displays, or ogives. 
 Visualization of data is important. We should always ask the following 
questions: What does the graph suggest about the data? What is it that 
we see?

1.1 DECISION MAKING IN AN UNCERTAIN ENVIRONMENT

Decisions are often made based on limited information. Accountants may need to select 
a portion of records for auditing purposes. Financial investors need to understand the 
market’s fluctuations, and they need to choose between various portfolio investments. 
Managers may use surveys to find out if customers are satisfied with their company’s 
products or services. Perhaps a marketing executive wants information concerning 
customers’ taste preferences, their shopping habits, or the demographics of Internet 
shoppers. An investor does not know with certainty whether financial markets will be 
buoyant, steady, or depressed. Nevertheless, the investor must decide how to balance 
a portfolio among stocks, bonds, and money market instruments while future market 
movements are unknown.

For each of these situations, we must carefully define the problem, determine what 
data are needed, collect the data, and use statistics to summarize the data and make infer-
ences and decisions based on the data obtained. Statistical thinking is essential from initial 
problem definition to final decision, which may lead to reduced costs, increased profits, 
improved processes, and increased customer satisfaction.

Random and Systematic Sampling

Before bringing a new product to market, a manufacturer wants to arrive at some assess-
ment of the likely level of demand and may undertake a market research survey. The 
manufacturer is, in fact, interested in all potential buyers (the population). However, 
populations are often so large that they are unwieldy to analyze; collecting complete in-
formation for a population could be impossible or prohibitively expensive. Even in cir-
cumstances where sufficient resources seem to be available, time constraints make the 
examination of a subset (sample) necessary.
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Examples of populations include the following:

• All potential buyers of a new product
• All stocks traded on the NYSE Euronext
• All registered voters in a particular city or country
• All accounts receivable for a corporation

Our eventual aim is to make statements based on sample data that have some valid-
ity about the population at large. We need a sample, then, that is representative of the 
population. How can we achieve that? One important principle that we must follow in the 
sample selection process is randomness.

Population and Sample
A population is the complete set of all items that interest an investigator. 
Population size, N, can be very large or even infinite. A sample is an observed 
subset (or portion) of a population with sample size given by n.

Random Sampling
Simple random sampling is a procedure used to select a sample of n objects 
from a population in such a way that each member of the population is chosen 
strictly by chance, the selection of one member does not influence the selec-
tion of any other member, each member of the population is equally likely to 
be chosen, and every possible sample of a given size, n, has the same chance 
of selection. This method is so common that the adjective simple is generally 
dropped, and the resulting sample is called a random sample.

Another sampling procedure is systematic sampling (stratified sampling and cluster 
sampling are discussed in Chapter 17).

Systematic Sampling
Suppose that the population list is arranged in some fashion unconnected 
with the subject of interest. Systematic sampling involves the selection of 
 every j th item in the population, where j is the ratio of the population size N 
to the desired sample size, n; that is, j = N>n. Randomly select a  number from 
1 to j to obtain the first item to be included in your systematic sample.

Suppose that a sample size of 100 is desired and that the population consists of 5,000 
names in alphabetical order. Then j = 50. Randomly select a number from 1 to 50. If your 
number is 20, select it and every 50th number, giving the systematic sample of elements 
numbered 20, 70, 120, 170, and so forth, until all 100 items are selected. A systematic 
sample is analyzed in the same fashion as a simple random sample on the grounds that, 
relative to the subject of inquiry, the population listing is already in random order. The 
danger is that there could be some subtle, unsuspected link between the ordering of the 
population and the subject under study. If this were so, bias would be induced if system-
atic sampling was employed. Systematic samples provide a good representation of the 
population if there is no cyclical variation in the population.
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Sampling and Nonsampling Errors

Suppose that we want to know the average age of registered voters in the United States. 
Clearly, the population size is so large that we might take only a random sample, perhaps 
500 registered voters, and calculate their average age. Because this average is based on 
sample data, it is called a statistic. If we were able to calculate the average age of the entire 
population, then the resulting average would be called a parameter.

Parameter and Statistic
A parameter is a numerical measure that describes a specific characteristic 
of a population. A statistic is a numerical measure that describes a specific 
characteristic of a sample.

Throughout this book we will study ways to make decisions about a population pa-
rameter, based on a sample statistic. We must realize that some element of uncertainty will 
always remain, as we do not know the exact value of the parameter. That is, when a sample 
is taken from a population, the value of any population parameter will not be able to be 
known precisely. One source of error, called sampling error, results from the fact that infor-
mation is available on only a subset of all the population members. In Chapters 6, 7, and 8 
we develop statistical theory that allows us to characterize the nature of the sampling error 
and to make certain statements about population parameters.

In practical analyses there is the possibility of an error unconnected with the kind of 
sampling procedure used. Indeed, such errors could just as well arise if a complete census 
of the population were taken. These are referred to as nonsampling errors. Examples of 
nonsampling errors include the following:

 1. The population actually sampled is not the relevant one. A celebrated instance of 
this sort occurred in 1936, when Literary Digest magazine confidently predicted that 
Alfred Landon would win the presidential election over Franklin Roosevelt. How-
ever, Roosevelt won by a very comfortable margin. This erroneous forecast resulted 
from the fact that the members of the Digest’s sample had been taken from telephone 
directories and other listings, such as magazine subscription lists and automobile 
registrations. These sources considerably underrepresented the poor, who were pre-
dominantly Democrats. To make an inference about a population (in this case the 
U.S. electorate), it is important to sample that population and not some subgroup of 
it, however convenient the latter course might appear to be.

 2. Survey subjects may give inaccurate or dishonest answers. This could happen be-
cause questions are phrased in a manner that is difficult to understand or in a way 
that appears to make a particular answer seem more palatable or more desirable. 
Also, many questions that one might want to ask are so sensitive that it would be 
foolhardy to expect uniformly honest responses. Suppose, for example, that a plant 
manager wants to assess the annual losses to the company caused by employee 
thefts. In principle, a random sample of employees could be selected and sample 
members asked, What have you stolen from this plant in the past 12 months? This is 
clearly not the most reliable means of obtaining the required information!

 3. There may be no response to survey questions. Survey subjects may not respond 
at all, or they may not respond to certain questions. If this is substantial, it can 
induce additional sampling and nonsampling errors. The sampling error arises 
because the achieved sample size will be smaller than that intended. Nonsampling 
error possibly occurs because, in effect, the population being sampled is not the 
population of interest. The results obtained can be regarded as a random sample 
from the population that is willing to respond. These people may differ in impor-
tant ways from the larger population. If this is so, a bias will be induced in the 
 resulting estimates.
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There is no general procedure for identifying and analyzing nonsampling errors. But 
nonsampling errors could be important. The investigator must take care in such matters 
as identifying the relevant population, designing the questionnaire, and dealing with non-
response in order to minimize the significance of nonsampling errors. In the remainder of 
this book it is assumed that such care has been taken, and our discussion centers on the 
treatment of sampling errors.

To think statistically begins with problem definition: (1) What information is re-
quired? (2) What is the relevant population? (3) How should sample members be selected? 
(4) How should information be obtained from the sample members? Next we will want to 
know how to use sample information to make decisions about our population of interest. 
Finally, we will want to know what conclusions can be drawn about the population.

After we identify and define a problem, we collect data produced by various pro-
cesses according to a design, and then we analyze that data using one or more statistical 
procedures. From this analysis, we obtain information. Information is, in turn, converted 
into knowledge, using understanding based on specific experience, theory, literature, 
and additional statistical procedures. Both descriptive and inferential statistics are used 
to change data into knowledge that leads to better decision making. To do this, we use 
 descriptive statistics and inferential statistics.

Descriptive and Inferential Statistics
Descriptive statistics focus on graphical and numerical procedures that are 
used to summarize and process data. Inferential statistics focus on using the 
data to make predictions, forecasts, and estimates to make better decisions.

1.2 CLASSIFICATION OF VARIABLES

A variable is a specific characteristic (such as age or weight) of an individual or object. 
Variables can be classified in several ways. One method of classification refers to the type 
and amount of information contained in the data. Data are either categorical or numerical. 
Another method, introduced in 1946 by American psychologist Stanley Smith Stevens is 
to classify data by levels of measurement, giving either qualitative or quantitative vari-
ables. Correctly classifying data is an important first step to selecting the correct statistical 
procedures needed to analyze and interpret data.

Categorical and Numerical Variables

Categorical variables produce responses that belong to groups or categories. For exam-
ple, responses to yes>no questions are categorical. Are you a business major? and Do you 
own a car? are limited to yes or no answers. A health care insurance company may clas-
sify incorrect claims according to the type of errors, such as procedural and diagnostic 
errors, patient information errors, and contractual errors. Other examples of categorical 
variables include questions on gender or marital status. Sometimes categorical variables 
include a range of choices, such as “strongly disagree” to “strongly agree.” For example, 
consider a faculty-evaluation form where students are to respond to statements such as 
the following: The instructor in this course was an effective teacher (1: strongly disagree; 
2: slightly disagree; 3: neither agree nor disagree; 4: slightly agree; 5: strongly agree).

Numerical variables include both discrete and continuous variables. A discrete nu-
merical variable may (but does not necessarily) have a finite number of values. However, 
the most common type of discrete numerical variable produces a response that comes 
from a counting process. Examples of discrete numerical variables include the number of 
students enrolled in a class, the number of university credits earned by a student at the 
end of a particular semester, and the number of Microsoft stocks in an investor’s portfolio.
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A continuous numerical variable may take on any value within a given range of 
real numbers and usually arises from a measurement (not a counting) process. Someone 
might say that he is 6 feet (or 72 inches) tall, but his height could actually be 72.1 inches, 
71.8 inches, or some other similar number, depending on the accuracy of the instrument 
used to measure height. Other examples of continuous numerical variables include the 
weight of a cereal box, the time to run a race, the distance between two cities, or the tem-
perature. In each case the value could deviate within a certain amount, depending on the 
precision of the measurement instrument used. We tend to truncate continuous variables 
in daily conversation and treat them as though they were the same as discrete variables 
without even giving it a second thought.

Measurement Levels

We can also describe data as either qualitative or quantitative. With qualitative data there is 
no measurable meaning to the “difference” in numbers. For example, one basketball player 
is assigned the number 20 and another player has the number 10. We cannot conclude that 
the first player plays twice as well as the second player. However, with quantitative data 
there is a measurable meaning to the difference in numbers. When one student scores 90 on 
an exam and another student scores 45, the difference is measurable and meaningful.

Qualitative data include nominal and ordinal levels of measurement. Quantitative 
data include interval and ratio levels of measurement.

Nominal and ordinal levels of measurement refer to data obtained from categorical 
questions. Responses to questions on gender, country of citizenship, political affiliation, 
and ownership of a mobile phone are nominal. Nominal data are considered the lowest or 
weakest type of data, since numerical identification is chosen strictly for convenience and 
does not imply ranking of responses.

The values of nominal variables are words that describe the categories or classes of 
 responses. The values of the gender variable are male and female; the values of Do you 
own a car? are yes and no. We arbitrarily assign a code or number to each response. How-
ever, this number has no meaning other than for categorizing. For example, we could 
code gender responses or yes>no responses as follows:

1 = Male; 2 = Female
1 = Yes; 2 = No

Ordinal data indicate the rank ordering of items, and similar to nominal data the val-
ues are words that describe responses. Some examples of ordinal data and possible codes 
are as follows:

 1. Product quality rating (1: poor; 2: average; 3: good)
 2. Satisfaction rating with your current Internet provider (1: very dissatisfied; 2: moder-

ately dissatisfied; 3: no opinion; 4: moderately satisfied; 5: very satisfied)
 3. Consumer preference among three different types of soft drink (1: most preferred; 

2: second choice; 3: third choice)

In these examples the responses are ordinal, or put into a rank order, but there is 
no measurable meaning to the “difference” between responses. That is, the difference be-
tween your first and second choices may not be the same as the difference between your 
second and third choices.

Interval and ratio levels of measurement refer to data obtained from numerical vari-
ables, and meaning is given to the difference between measurements. An interval scale in-
dicates rank and distance from an arbitrary zero measured in unit intervals. That is, data 
are provided relative to an arbitrarily determined benchmark. Temperature is a classic 
example of this level of measurement, with arbitrarily determined benchmarks generally 
based on either Fahrenheit or Celsius degrees. Suppose that it is 80°F in Orlando, Florida, 
and only 20°F in St. Paul, Minnesota. We can conclude that the difference in temperature 
is 60°, but we cannot say that it is four times as warm in Orlando as it is in St. Paul. The 
year is another example of an interval level of measurement, with benchmarks based most 
commonly on the Gregorian calendar.
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Ratio data indicate both rank and distance from a natural zero, with ratios of two 
measures having meaning. A person who weighs 200 pounds is twice the weight of a 
person who weighs 100 pounds; a person who is 40 years old is twice the age of someone 
who is 20 years old.

After collecting data, we first need to classify responses as categorical or numerical or by 
measurement scale. Next, we assign an arbitrary ID or code number to each response. Some 
graphs are appropriate for categorical variables, and others are used for numerical variables.

Note that data files usually contain “missing values.” For example, respondents to a 
questionnaire may choose not to answer certain questions about gender, age, income, or 
some other sensitive topic. Missing values require a special code in the data entry stage. 
Unless missing values are properly handled, it is possible to obtain erroneous output. 
Statistical software packages handle missing values in different ways.

EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal 
editions.com/newbold to access the data files.

Basic Exercises
 1.1 A mortgage company randomly samples accounts of 

their time-share customers. State whether each of the 
following variables is categorical or numerical. If cat-
egorical, give the level of measurement. If numerical, 
is it discrete or continuous?
a. The original purchase price of a customer’s  

time-share unit
b. The state (or country) of residence of a time-share 

owner
c. A time-share owner’s satisfaction level with  

the maintenance of the unit purchased (1: very  
dissatisfied to 5: very satisfied)

d. The number of times a customer’s payment was late

 1.2 Visitors to a supermarket in Singapore were asked to 
complete a customer service survey. Are the answers to 
the following survey questions categorical or numerical? 
If an answer is categorical, give the level of measurement. 
If an answer is numerical, is it discrete or continuous?

a. Have you visited this store before?
b. How would you rate the level of customer service 

you received today on a scale from 1 (very poor) to 
5 (very good)?

c. How much money did you spend in the store today?

 1.3 A questionnaire was distributed at a large university to 
find out the level of student satisfaction with various ac-
tivities and services. For example, concerning parking 
availability, students were asked to indicate their level of 
satisfaction on a scale from 1 (very dissatisfied) to 5 (very 
satisfied). Is a student’s response to this question numer-
ical or categorical? If numerical, is it discrete or continu-
ous? If categorical, give the level of measurement.

 1.4 Faculty at one university were asked a series of questions 
in a recent survey. State the type of data for each question.

a. Indicate your level of satisfaction with your teach-
ing load (very satisfied, moderately satisfied, neu-
tral, moderately dissatisfied, or very dissatisfied).

b. How many of your research articles were pub-
lished in refereed journals during the last 5 years?

c. Did you attend the last university faculty meeting?
d. Do you think that the teaching evaluation process 

needs to be revised?

 1.5 A number of questions were posed to a random sam-
ple of visitors to a London tourist information center. 
For each question below, describe the type of data 
obtained.

a. Are you staying overnight in London?
b. How many times have you visited London 

previously?
c. Which of the following attractions have you visited?

Tower of London
Buckingham Palace
Big Ben
Covent Garden 
Westminster Abbey

d. How likely are you to visit London again in 
the next 12 months: (1) unlikely, (2) likely,  
(3) very likely?

 1.6 Residents in one housing development were asked a 
series of questions by their homeowners’ association. 
Identify the type of data for each question.

a. Did you play golf during the last month on the de-
velopment’s new golf course?

b. How many times have you eaten at the country 
club restaurant during the last month?

c. Do you own a camper?
d. Rate the new security system for the development 

(very good, good, poor, or very poor).

Application Exercises
 1.7 The supervisor of a very large plant obtained 

the times (in seconds) to complete a task for a 
random sample of employees. This information and 
other data about the employees are stored in the data 
file Completion Times.

a. Give an example of a categorical variable with  
ordinal responses.

b. Give an example of a categorical variable with 
nominal responses.

c. Give an example of a numerical variable.
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1.3 GRAPHS TO DESCRIBE CATEGORICAL VARIABLES

We can describe categorical variables using frequency distribution tables and graphs 
such as bar charts, pie charts, and Pareto diagrams. These graphs are commonly used 
by managers and marketing researchers to describe data collected from surveys and 
questionnaires.

 1.8 The U.S. Department of Agriculture (USDA) 
Center for Nutrition Policy and Promotion 

(CNPP) developed and administered the Healthy Eat-
ing Index–2005 to measure how well the population 
follows the recommendations of the 2005 Dietary 
Guidelines for Americans. The data are contained in 
the data file HEI Cost Data Variable Subset.

a. Give an example of a categorical variable with or-
dinal responses.

b. Give an example of a categorical variable with 
nominal responses.

c. Give an example of a numerical variable with con-
tinuous responses.

d. Give an example of a numerical variable with dis-
crete responses.

Frequency Distribution
A frequency distribution is a table used to organize data. The left column 
(called classes or groups) includes all possible responses on a variable being 
studied. The right column is a list of the frequencies, or number of observa-
tions, for each class. A relative frequency distribution is obtained by dividing 
each frequency by the number of observations and multiplying the resulting 
proportion by 100%.

Tables and Charts

The classes that we use to construct frequency distribution tables of a categorical variable 
are simply the possible responses to the categorical variable. Bar charts and pie charts 
are commonly used to describe categorical data. If our intent is to draw attention to the 
frequency of each category, then we will most likely draw a bar chart. In a bar chart the 
height of a rectangle represents each frequency. There is no need for the bars to touch.

Example 1.1 Healthy Eating Index 2005 (HEI–2005): 
Activity Level (Frequency Distribution and Bar Chart)

The U.S. Department of Agriculture (USDA) Center for Nutrition Policy and Promotion 
(CNPP) and the National Center for Health Statistics (NCHS), part of the Centers for Dis-
ease Control and Prevention (CDC), conduct surveys to assess the health and nutrition of 
the U.S. population. The CNPP conducts the Healthy Eating Index (Guenther et al. 2007) 
and the NCHS conducts the National Health and Nutrition Examination Survey (CDC 
2003–2004). The Healthy Eating Index (HEI) monitors the diet quality of the U.S. popu-
lation, particularly how well it conforms to dietary guidance. The HEI–2005 measures 
how well the population follows the recommendations of the 2005 Dietary Guidelines for 
Americans (Guenther et al.). In particular it measures, on a 100-point scale, the adequacy 
of consumption of vegetables, fruits, grains, milk, meat and beans, and liquid oils.

The data file HEI Cost Data Variable Subset contains considerable information 
on randomly selected individuals who participated in two extended interviews and 
medical examinations. Data for the first interview are identified by daycode = 1; data 
for the second interview are identified by daycode = 2. Other variables in the data file 
are described in the data dictionary in the Chapter 10 Appendix.
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One variable in the HEI–2005 study is a participant’s activity level coded as 
1 = sedentary, 2 = active, and 3 = very active. Set up a frequency distribution and 
relative frequency distribution and construct a simple bar chart of activity level for the 
HEI–2005 participants during their first interview.

Solution Table 1.1 is a frequency distribution and a relative frequency distribution 
of the categorical variable “activity level.” Figure 1.1 is a bar chart of this data.

Table 1.1 HEI–2005 Participants’ Activity Level: First Interview

PARTICIPANTS PERCENT

Sedentary 2,183  48.9

Active  757  17.0

Very active 1,520  34.1

Total 4,460 100.0

Figure 1.1 HEI–2005 Participants’ Activity Level: First Interview (Simple Bar Chart)

Cross Tables

There are situations in which we need to describe relationships between categorical or 
ordinal variables. Market-research organizations describe attitudes toward products, 
measured on an ordinal scale, as a function of educational levels, social status measures, 
geographic areas, and other ordinal or categorical variables. Personnel departments 
study employee evaluation levels versus job classifications, educational levels, and other 
employee variables. Production analysts study relationships between departments or 
production lines and performance measures to determine reasons for product change, 
reasons for interruption of production, and quality of output. These situations are usu-
ally described by cross tables and pictured by component or cluster bar charts. These bar 
charts are useful extensions of the simple bar chart in Figure 1.1.
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Cross Table
A cross table, sometimes called a crosstab or a contingency table, lists the 
number of observations for every combination of values for two categorical 
or ordinal variables. The combination of all possible intervals for the two vari-
ables defines the cells in a table. A cross table with r rows and c columns is 
referred to as an r * c cross table.

Example 1.2 illustrates the use of cross tables, component bar charts, and cluster bar 
charts to describe graphically two categorical variables from the HEI–2005 study.
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Example 1.2 HEI–2005: Activity Level and  
Gender (Component and Cluster Bar Charts)

Consider again the data in Table 1.1. Sometimes a comparison of one variable (activity 
level) with another variable (such as gender) is of interest. Construct component and 
cluster bar charts that compare activity level and gender. Use the data coded daycode = 1 
in the data file HEI Cost Data Variable Subset.

Solution Table 1.2 is a cross table of activity levels (1 = sedentary; 2 = active; and 
3 = very active) and gender (0 = male; 1 = female) obtained from the first interview for 
HEI–2005 participants.

Table 1.2 HEI–2005 Participants’ Activity Level (First Interview) by Gender 
(Component Bar Chart)

MALES FEMALES TOTAL

Sedentary   957 1,226 2,183

Active   340   417   757

Very active   842   678 1,520

Total 2,139 2,321 4,460

Figure 1.2 displays this information in a component or stacked bar chart. Figure 1.3 is 
a cluster, or side-by-side, bar chart of the same data.

Figure 1.2 HEI–2005 Participants’ Activity Level (First Interview) by Gender 
(Component Bar Chart)
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Pie Charts

If we want to draw attention to the proportion of frequencies in each category, then we will 
probably use a pie chart to depict the division of a whole into its constituent parts. The 
circle (or “pie”) represents the total, and the segments (or “pieces of the pie”) cut from its 
center depict shares of that total. The pie chart is constructed so that the area of each seg-
ment is proportional to the corresponding frequency.

Example 1.3 Browser Wars: Market Shares  
(Pie Chart)

In the competition for market share by Internet browsers, StatCounter Global Stats, the 
research arm of StatCounter Stats (StatCounter Global Stats Firefox 2011) reported that 
in December 2010, for the first time Internet Explorer (IE) was not the lead browser in 
Europe. However, we note that IE’s market share of 37.52% in December 2010 does not 
appear to be significantly different from Firefox’s market share of 38.11%. The data file 
Browser Wars contains market-share data for IE, Firefox, Chrome, Safari, and Opera 
for a 14-month period from January 2010 through February 2011 (StatCounter Global 
Stats Top 2011). Construct pie charts of European and North American market shares 
for February 2011. In Section 1.4 we develop a graphical procedure to show the trend in 
market share over a period of time.

Solution Table 1.3 lists the market shares for various browsers in both Europe and 
North America during the month of February 2011. Figure 1.4 is a pie chart of the European 
market shares, and Figure 1.5 is a pie chart of the North American market shares.

Table 1.3 Market Shares (Pie Chart)

EUROPEAN MARKET NORTH AMERICAN MARKET

Firefox 37.69 26.24

Internet Explorer 36.54 48.16

Google Chrome 16.03 13.76

Safari  4.90 10.58

Opera  4.26  0.58

Others  0.58  0.68

source: http://gs.statcounter.com

Figure 1.4 Browser Wars: European Market Share (Pie Chart)
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Pareto Diagrams

Managers who need to identify major causes of problems and attempt to correct them 
quickly with a minimum cost frequently use a special bar chart known as a Pareto diagram. 
The Italian economist Vilfredo Pareto (1848–1923) noted that in most cases a small num-
ber of factors are responsible for most of the problems. We arrange the bars in a Pareto 
diagram from left to right to emphasize the most frequent causes of defects.

Figure 1.5 Browser Wars: North American Market Share (Pie Chart)
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Pareto Diagram
A Pareto diagram is a bar chart that displays the frequency of defect causes. 
The bar at the left indicates the most frequent cause and the bars to the right 
indicate causes with decreasing frequencies. A Pareto diagram is used to sep-
arate the “vital few” from the “trivial many.”

Pareto’s result is applied to a wide variety of behavior over many systems. It is some-
times referred to as the 80–20 rule. A cereal manufacturer may find that most of the packag-
ing errors are due to only a few causes. A student might think that 80% of the work on a 
group project was done by only 20% of the team members. The use of a Pareto diagram can 
also improve communication with employees or management and within production teams.

Example 1.4 illustrates the Pareto principle applied to a problem in a health insurance 
company.

Example 1.4 Insurance Claims Processing Errors 
(Pareto Diagram)

Analysis and payment of health care insurance claims is a complex process that can re-
sult in a number of incorrectly processed claims leading to an increase in staff time to 
obtain the correct information, an increase in costs, or a negative effect on customer re-
lationships. A major health insurance company set a goal to reduce errors by 50%. Show 
how we would use Pareto analysis to help the company determine the most significant 
factors contributing to processing errors. The data are stored in the data file Insurance.

Solution The health insurance company conducted an intensive investigation of the 
entire claims’ submission and payment process. A team of key company personnel 
was selected from the claims processing, provider relations and marketing, internal 
auditing, data processing, and medical review departments. Based on their experience 
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and a review of the process, the team members finally agreed on a list of possible 
errors. Three of these errors (procedural and diagnostic, provider information, and 
patient information) are related to the submission process and must be checked by 
reviewing patient medical records in clinics and hospitals. Three possible errors 
(pricing schedules, contractual applications, and provider adjustments) are related to 
the processing of claims for payment within the insurance company office. The team 
also identified program and system errors. 

A complete audit of a random sample of 1,000 claims began with checking each 
claim against medical records in clinics and hospitals and then proceeded through the 
final payment stage. Claims with errors were separated, and the total number of errors 
of each type was recorded. If a claim had multiple errors, then each error was recorded. 
In this process many decisions were made concerning error definition. If a child were 
coded for a procedure typically used for adults and the computer processing system 
did not detect this, then this error was recorded as error 7 (Program and System  Errors) 
and also as error 3 (Patient Information). If treatment for a sprain were coded as a frac-
ture, this was recorded as error 1 (Procedural and Diagnostic Codes). Table 1.4 is a fre-
quency distribution of the categories and the number of errors in each category.

Next, the team constructed the Pareto diagram in Figure 1.6.

Table 1.4 Errors in Health Care Claims Processing

CATEGORY ERROR TYPE FREQUENCY

1 Procedural and Diagnostic Codes 40

2 Provider Information  9

3 Patient Information  6

4 Pricing Schedules 17

5 Contractual Applications 37

6 Provider Adjustments  7

7 Program and System  Errors  4

Figure 1.6 Errors in Health Care Claims Processing (Pareto Diagram)
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From the Pareto diagram the analysts saw that error 1 (Procedural and Diagnostic 
Codes) and error 5 (Contractual Applications) were the major causes of error. The com-
bination of errors 1, 5, and 4 (Pricing Schedules) resulted in nearly 80% of the errors. 
By examining the Pareto diagram in Figure 1.6, the analysts could quickly determine 
which causes should receive most of the problem correction effort. Pareto analysis sep-
arated the vital few causes from the trivial many.

Armed with this information, the team made a number of recommendations to 
 reduce errors.

EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal 
editions.com/newbold to access the data files.

Basic Exercises
 1.9 A university administrator requested a breakdown of 

travel expenses for faculty to attend various profes-
sional meetings. It was found that 31% of the travel 
expenses was spent for transportation costs, 25% was 
spent for lodging, 17% was spent for food, and 20% 
was spent for conference registration fees; the remain-
der was spent for miscellaneous costs.

a. Construct a pie chart.
b. Construct a bar chart.

 1.10 A company has determined that there are seven pos-
sible defects for one of its product lines. Construct a 
Pareto diagram for the following defect frequencies:

Defect Code Frequency
A 10
B 70

C 15

D 90

E  8

F  4

G  3

 1.11 Bank clients were asked to indicate their level of satis-
faction with the service provided by the bank’s tellers. 
Responses from a random sample of customers were 
as follows: 69 were very satisfied, 55 were moderately 
satisfied, 5 had no opinion, 3 were moderately dissat-
isfied, and 2 were very dissatisfied.

a. Construct a bar chart.
b. Construct a pie chart.

 1.12 The supervisor of a plant obtained a random sample 
of employee experience (in months) and times to com-
plete a task (in minutes). Graph the data with a com-
ponent bar chart.

Experience>
Time

Less 
Than  

5 Minutes

5 Minutes to  
Less Than  
10 Minutes

10 Minutes to  
Less Than  
15 Minutes

Less than  
3 months

10 13 25

3 6  6 months 10 13 12

6 6  9 months  9 22  8

9 6  12 months  5 18 19

Application Exercises
 1.13 Suppose that an estimate of U.S. federal spending 

showed that 46% was for entitlements, 18% was for 
defense, 15% was for grants to states and localities, 
14% was for interest on debt, 6% was for other federal 
operations, and 1% was for deposit insurance. Con-
struct a pie chart to show this information.

 1.14 The Statistical Abstract of the United States provides 
a reliable and complete summary of statistics on the 
political, social, and economic organization of the 
United States. The following table gives a partial list 
of the number of endangered wildlife species both 
inside and outside the United States as of April 2010 
(Table 383, Statistical Abstract of the United States 
2011):

 
 
Item

Endangered  
Wildlife Species  
in United States

Endangered Wildlife 
Species Outside the 

United States
Mammals 70 255

Birds 76 182

Reptiles 13  66

Amphibians 14   8

Fishes 74  11

source: U.S. Fish and Wildlife Service. http://www.census.gov/
compendia/statab/cats/geography_environment.html (accessed 
February 12, 2011).

a. Construct a bar chart of the number of endangered 
wildlife species in the United States.

b. Construct a bar chart of the number of endangered 
wildlife species outside the United States.

c. Construct a bar chart to compare the number of en-
dangered species in the United States to the number 
of endangered species outside the United States.

 1.15 Jon Payne, tennis coach, kept a record of the 
most serious type of errors made by each of his 

players during a 1-week training camp. The data are 
stored in the data file Tennis.

a. Construct a Pareto diagram of total errors  
committed by all players.

b. Construct a Pareto diagram of total errors  
committed by male players.

c. Construct a Pareto diagram of total errors  
committed by female players.

d. Construct a component bar chart showing type of 
 error and gender of the player.
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 1.16 On what type of Internet activity do you spend the 
most time? The responses from a random sample of 
700 Internet users were banking online, 40; buying 
a product, 60; getting news, 150; sending or reading  
e-mail, 200; buying or making a reservation for travel, 
75; checking sports scores or information, 50; and 
searching for an answer to a question, 125. Describe 
the data graphically.

 1.17 A random sample of 100 business majors was 
asked a series of demographic questions includ-

ing major, gender, age, year in school, and current 
grade point average (GPA). Other questions were also 
asked for their levels of satisfaction with campus park-
ing, campus housing, and campus dining. Responses 
to these satisfaction questions were measured on a 
scale from 1 to 5, with 5 being the highest level of sat-
isfaction. Finally, these students were asked if they 
planned to attend graduate school within 5 years of 
their college graduation (0: no; 1: yes). These data are 
contained in the data file Finstad and Lie Study.

a. Construct a cluster bar chart of the respondents’ 
major and gender.

b. Construct a pie chart of their majors.

 1.18 The Healthy Eating Index–2005 measures how 
well the population follows the recommendations 

of the 2005 Dietary Guidelines for Americans. Table 1.2 is a 
frequency distribution of males and females in each of 
three activity level lifestyles: sendentary, active, and very 

active. This activity level was taken at the first interview 
(daycode = 1).

a. Use the data in Table 1.2 or data (coded daycode = 1) 
contained in the data file HEI Cost Data Variable 
Subset to construct a pie chart of the percent of 
males in each of the activity level categories.

b. Use the data in Table 1.2 or data (coded daycode = 1) 
contained in the data file HEI Cost Data Variable 
Subset to construct a pie chart of the percent of 
females in each of the activity level categories.

 1.19 Internet Explorer (IE) dropped below 50% of 
the worldwide market for the first time in Sep-

tember 2010 (StatCounter Global Stats Microsoft 2010). 
IE’s worldwide market share continued to decrease 
over the next several months. Worldwide market 
share data from January 2010 through February 2011 
for IE, Firefox, Chrome, Safari, and Opera are con-
tained in the data file Browser Wars.

a. Depict the worldwide market shares for February 
2011 for the data contained in the data file Browser 
Wars using a pie chart.

b. Use a pie chart to depict the current market shares for 
these Internet browsers (Source: gs.statcounter.com).

c. Select a country or region from the list provided 
by StatCounter Global Stats and depict the market 
shares for the current time period with a pie chart 
(Source: gs.statcounter.com).

1.4 GRAPHS TO DESCRIBE TIME-SERIES DATA

Suppose that we take a random sample of 100 boxes of a new variety of cereal. If we collect our 
sample at one point in time and weigh each box, then the measurements obtained are known 
as cross-sectional data. However, we could collect and measure a random sample of 5 boxes 
every 15 minutes or 10 boxes every 20 minutes. Data measured at successive points in time are 
called time-series data. A graph of time-series data is called a line chart or time-series plot.

Line Chart (Time-Series Plot)
A time series is a set of measurements, ordered over time, on a particular quan-
tity of interest. In a time series the sequence of the observations is important. A 
line chart, also called a time-series plot, is a series of data plotted at various time 
intervals. Measuring time along the horizontal axis and the numerical quantity of 
interest along the vertical axis yields a point on the graph for each observation. 
Joining points adjacent in time by straight lines produces a time-series plot.

Examples of time-series data include annual university enrollment, annual interest rates, 
the gross domestic product over a period of years (Example 1.5), daily closing prices for shares 
of common stock, daily exchange rates between various world currencies ( Example 1.6), gov-
ernment receipts and expenditures over a period of years (Example 1.7), monthly product 
sales, quarterly corporate earnings, and social network weekly traffic (such as weekly num-
ber of new visitors) to a company’s Web site (Example 1.8). In Chapter 16 we consider four 
components (trend, cyclical, seasonal, and irregular) that may affect the  behavior of time-
series data, and we present descriptive procedures for analyzing time-series data.
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Example 1.5 Gross Domestic Product  
(Time-Series Plot)

One of the world’s most prominent providers of economic statistics is the Bureau 
of Economic Analysis (BEA), an agency of the U.S. Department of Commerce. The 
BEA provides economic data such as the annual (or quarterly or monthly) Gross 
Domestic Product (GDP), as well as many other regional, industrial, national, 
and international economic statistics. These data are valuable to government 
 officials, business executives, and individuals in making decisions in the face of 
uncertainty. The annual GDP from 1929 through 2009 (in billions) is contained in 
the data file Macro 2009. GDP and other data provided by Bureau of Economic 
Analysis are available online at www.bea.gov. Graph GDP from 1929–2009 with a 
time-series plot.

Solution The time-series plot in Figure 1.7 shows the annual GDP data growing 
rather steadily over a long period of time from 1929 through 2009. This pattern clearly 
shows a strong upward trend component that is stronger in some periods than in 
others. This time plot reveals a major trend component that is important for initial 
analysis and is usually followed by more sophisticated analyses (Chapter 16).

Figure 1.7 Gross Domestic Product by Time: 1929–2009 (Time-Series Plot)

Example 1.6 Currency Exchange Rates  
(Time-Series Plot)

Investors, business travelers, tourists, and students studying abroad are all aware of 
the fluctuations in the exchange rates between various world currencies. Exchange 
rates between U.S. dollars (USD) and the euro (EUR) as well as the exchange rates 
 between USD and the British pound (GBP) for the 6-month period from August 22, 
2010, through February 17, 2011, are contained in the data file Currency Exchange 
Rates. Plot these data with time-series plots.

Solution Figure 1.8 shows the currency conversion from USD to 1 EUR. Figure 1.9 is 
a time series plot of the currency exchange rate from USD to 1 GBP.
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Example 1.7 Federal Government Receipts  
and Expenditures: 1929–2009 (Time-Series Plot)

The state of the economy is important to each of us. It is not just a topic for govern-
ment officials. The data file Macro 2009 contains information such as the gross domes-
tic product, personal consumption expenditure, gross private domestic investment, 
imports, exports, personal savings in 2005 dollars, and many other variables from 1929 
through 2009. Graph the annual U.S. federal government receipts and expenditures 
from 1929 to 2009.
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Figure 1.8 Currency Exchange Rates: USD to EUR (Time-Series Plot)

Figure 1.9 Currency Exchange Rates: USD to GBP (Time-Series Plot)
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Example 1.7 and Example 1.8 illustrate that sometimes a time-series plot is used to 
compare more than one variable over time



38 Chapter 1 Using Graphs to Describe Data

Solution From the data in the data file Macro 2009 we construct two time-series 
plots. Figure 1.10 is a time plot that shows the annual U.S. federal government receipts 
and expenditures in billions of real 2005 dollars from 1929 through 2009. In Figure 1.11 
the annual U.S. federal government receipts and expenditures are plotted as a percent 
of the GDP.

Figure 1.10 U.S. Federal Government Receipts and Expenditures: 1929–2009 
(Time-Series Plot)

Figure 1.11 U.S. Federal Government Receipts and Expenditures as Percent of 
GDP: 1929–2009 (Time-Series Plot)

Example 1.8 Social Network Traffic (Time-Series Plot)

RELEVANT Magazine keeps records of traffic (such as the number of weekly new 
visitors) to its Web site from various social networks such as Facebook and Twitter 
(Butcher 2011). This information may be helpful to Richard Butcher, Marketing As-
sistant of RELEVANT Magazine. Plot the number of weekly new visitors for a recent 
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9-week period from both Facebook and Twitter. Use a time-series plot. The data are 
stored in the data file RELEVANT Magazine.

Solution From the data file RELEVANT Magazine we obtain the number of 
weekly new visitors for a recent 9-week period from both Facebook and Twitter. This 
information is given in Table 1.5. The time series plot in Figure 1.12 shows the trend 
over this same time period.

Table 1.5 Social Network Traffic: Weekly New Visitors to RELEVANT Magazine 
Web Site

WEEK TWITTER FACEBOOK

1 5,611 20,499

2 6,799 22,060

3 6,391 21,365

4 6,966 17,905

5 6,111 17,022

6 8,101 20,572

7 7,370 22,201

8 7,097 17,628

9 7,531 24,256

Figure 1.12 RELEVANT Magazine: Social Network Traffic of Weekly New Visitors 
(Time-Series Plot)
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EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal 
editions.com/newbold to access the data files.

Basic Exercises
 1.20 Construct a time-series plot for the following number  

of customers shopping at a new mall during a given 
week.

Day Number of Customers
Monday 525

Tuesday 540

Wednesday 469

Thursday 500

Friday 586

Saturday 640
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 1.21 The number of males and females enrolled in colleges 
(undergraduate and postbaccalaureate) in the United 
States from 2000 through 2008 is given here. Graphi-
cally present these data with a time-series plot.

College Enrollment 
(in thousands)

 
Males

 
Females

2000 6,721.8  8,590.5

2001 6,960.8    967.2

2002 7,202.1  9,409.6

2003 7,255.6  9,644.9

2004 7,387.3  9,884.4

2005 7,455.9 10,031.6

2006 7,574.8 10,184.1

2007 7,815.9 10,432.2

2008 8,188.9 10,913.9

source: Table 275. (2011). Statistical Abstract of the United States.

Application Exercises
 1.22 From the data file Macro 2009 use a time plot to 

graph both gross domestic investment and 
gross private savings in billions of real 2005 dollars.

 1.23 Information about the GDP in the area of manufactur-
ing of durable and nondurable goods is important to 
business owners and economists.

a. Use a time-series plot to graph the GDP in manu-
facturing in current and real (2005) dollars by in-
dustry for durable goods (such as wood products, 
furniture and related products, motor vehicles, and 
equipment) from 2000 to 2009. Data are in billions 
of dollars (Source: Table 1002. 2011. Statistical Ab-
stract of the United States).

b. Use a time-series plot to graph the GDP in manu-
facturing in real dollars (2005) by industry for non-
durable goods (such as food, apparel, and leather 
products) from 2000 to 2009. Data are in billions of 
dollars (Source: Table 1002 2011).

 1.24 In Example 1.6 we plotted the USD to 1 EUR for 
a 6-month time period.

a. Use a time-series plot to graphically display the 
currency conversion from the EUR to 1 USD. The 
data are contained in the data file Currency Ex-
change Rates.

b. Use a time-series plot to graphically display the 
currency conversion from the GBP to 1 USD. The 
data are contained in the data file Currency Ex-
change Rates.

c. Compare your currency with an appropriate world 
currency for the last 30 days.

 1.25 Market shares for a period of 14 months for var-
ious Internet providers are contained in the 

data file Browser Wars.

a. Use a time-series plot to graphically display the 
worldwide market shares of IE, Firefox, Chrome, 
Safari, and Opera.

b. Use a time-series plot to graphically display the 
European market shares of IE, Firefox, Chrome, 
Safari, and Opera.

c. Use a time-series plot to graphically display the 
North American market shares of IE, Firefox, 
Chrome, Safari, and Opera.

 1.26 Select annual returns on a stock market index over 
14 years from the Internet. Graph the data with a 
time-series plot.

 1.27 The data file Gold Price shows the year-end 
price of gold (in dollars) over 14 consecutive 

years. Graph the data with a time-series plot.
 1.28 The data file Housing Starts shows private 

housing units started per thousand persons in 
the U.S. population over a period of 24 years. Describe 
the data with a graph.

 1.29 Earnings per share of a corporation over a pe-
riod of 28 years are stored in the data file Earn-

ings per Share. Graph the series and comment on the 
plot.

1.5 GRAPHS TO DESCRIBE NUMERICAL VARIABLES

In this section we briefly present histograms, ogives, and stem-and-leaf displays that sum-
marize and describe numerical data. First, we consider a frequency distribution for nu-
merical data.

Frequency Distributions

Similar to a frequency distribution for categorical data (Section 1.3), a frequency distribution 
for numerical data is a table that summarizes data by listing the classes in the left column 
and the number of observations in each class in the right column. However, the classes, or 
intervals, for a frequency distribution of numerical data are not as easily identifiable.

Determining the classes of a frequency distribution for numerical data requires an-
swers to certain questions: How many classes should be used? How wide should each 
class be? There are some general rules (such as Equation 1.1) for preparing frequency dis-
tributions that make it easier for us to answer these types of questions, to summarize data, 
and to communicate results.
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Rule 1: Number of Classes
The number of classes used in a frequency distribution is decided in a somewhat arbitrary 
manner.

Construction of a Frequency Distribution

Rule 1: Determine k, the number of classes.
Rule 2:  Classes should be the same width, w ; the width is determined by 

the following:

 w = Class Width =
Largest Observation - Smallest Observation

Number of Classes
 (1.1)

 Always round class width, w, upward.
Rule 3:  Classes must be inclusive and nonoverlapping.

Quick Guide to Approximate Number of Classes  
for a Frequency Distribution

SAMPLE SIZE NUMBER OF CLASSES

Fewer than 50 5–7

50 to 100 7–8

101 to 500   8–10

501 to 1,000 10–11

1,001 to 5,000 11–14

More than 5,000 14–20

Practice and experience provide the best guidelines. Larger data sets require 
more classes; smaller data sets require fewer classes. If we select too few 
classes, the patterns and various characteristics of the data may be hidden. If 
we select too many classes, we will discover that some of our intervals may 
contain no observations or have a very small frequency.

Rule 2: Class Width
After choosing the number of classes, the next step is to choose the class width:

w = Class Width =
Largest Observation - Smallest Observation

Number of Classes

The class width must always be rounded upward in order that all observations are in-
cluded in the frequency distribution table.

Rule 3: Inclusive and Nonoverlapping Classes
Classes must be inclusive and nonoverlapping. Each observation must belong to one and 
only one class. Consider a frequency distribution for the ages (rounded to the nearest 
year) of a particular group of people. If the frequency distribution contains the classes 
“age 20 to age 30” and “age 30 to age 40,” to which of these two classes would a person 
age 30 belong?
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The boundaries, or endpoints, of each class must be clearly defined. To avoid overlap-
ping, the age classes could be defined as “age 20 but less than age 30,” followed by “age 
30 but less than age 40” and so on. Another possibility is to define the age classes as 20–29, 
30–39, and so forth. Since age is an integer, no overlapping occurs. Boundary selection is 
subjective. Simply be sure to define class boundaries that promote a clear understanding 
and interpretation of the data.

In Section 1.3 we defined a frequency distribution and a relative frequency distribution. 
Now we introduce two special frequency distributions, the cumulative frequency distribu-
tion and the relative cumulative frequency distribution.

Cumulative and Relative Cumulative Frequency 
Distributions
A cumulative frequency distribution contains the total number of observations 
whose values are less than the upper limit for each class. We construct a  
cumulative frequency distribution by adding the frequencies of all frequency 
distribution classes up to and including the present class. In a relative cumula-
tive frequency distribution, cumulative frequencies can be expressed as cu-
mulative proportions or percents.

Example 1.9 Employee Completion Times  
(Statistical Thinking)

The supervisor of a very large plant obtained the time (in seconds) for a random sam-
ple of n = 110 employees to complete a particular task. The goal is to complete this task 
in less than 4.5 minutes. Table 1.6 contains these times (in seconds). The data are stored 
in the data file Completion Times. What do the data indicate?

Table 1.6 Completion Times (seconds)

271 236 294 252 254 263 266 222 262 278 288

262 237 247 282 224 263 267 254 271 278 263

262 288 247 252 264 263 247 225 281 279 238

252 242 248 263 255 294 268 255 272 271 291

263 242 288 252 226 263 269 227 273 281 267

263 244 249 252 256 263 252 261 245 252 294

288 245 251 269 256 264 252 232 275 284 252

263 274 252 252 256 254 269 234 285 275 263

263 246 294 252 231 265 269 235 275 288 294

263 247 252 269 261 266 269 236 276 248 299

Solution Table 1.6 by itself offers little guidance to the supervisor. We can find some 
information in Table 1.6, such as the quickest time that the task was completed by an 
employee was 222 seconds, and the maximum time used was 299 seconds. However, 
we need more information than this before submitting any report to senior-level 
executives. To better understand what the data in Table 1.6 indicate, we first develop a 
frequency distribution.
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From the Quick Guide we develop a frequency distribution with eight classes for 
the data in Table 1.6. From Equation 1.1, the width of each class is

w =
299 - 222

8
= 10 1rounded up2

Since the smallest value is 222, one choice for the first class is 220 but less than 230. 
Subsequent classes of equal width are added to the frequency distribution, as well as 
the number of seconds that belong to each class. Table 1.7 is a frequency distribution 
for the mobile phone data in Table 1.6.

Table 1.7 Frequency and Relative Frequency Distributions for Completion Times

COMPLETION TIMES (IN SECONDS) FREQUENCY PERCENT

220 less than 230  5  4.5

230 less than 240  8  7.3

240 less than 250 13 11.8

250 less than 260 22 20.0

260 less than 270 32 29.1

270 less than 280 13 11.8

280 less than 290 10  9.1

290 less than 300  7  6.4

Table 1.8 is a cumulative frequency distribution and a cumulative percent 
distribution.

Table 1.8 Cumulative Frequency and Relative Cumulative Frequency Distributions for 
Completion Times

COMPLETION TIMES  
(IN SECONDS)

CUMULATIVE  
FREQUENCY

CUMULATIVE  
PERCENT

Less than 230     5     4.5

Less than 240   13   11.8

Less than 250   26   23.6

Less than 260   48   43.6

Less than 270   80   72.7

Less than 280   93   84.5

Less than 290 103   93.6

Less than 300 110 100.0

The frequency distributions in Table 1.7 and Table 1.8 are an improvement over 
the original list of data in Table 1.6. We have at least summarized 110 observations 
into eight classes and are able to tell the supervisor that less than three-fourths (72.7%) 
of the employees sampled completed the task within the desired goal. The supervisor 
may initiate an extra training session for the employees who failed to meet the time 
constraint.
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Histograms and Ogives

Once we develop frequency distributions, we are ready to graph this information. In this 
section we discuss two graphs, histograms and ogives.

Histogram
A histogram is a graph that consists of vertical bars constructed on a hori-
zontal line that is marked off with intervals for the variable being displayed. 
The intervals correspond to the classes in a frequency distribution table. The 
height of each bar is proportional to the number of observations in that inter-
val. The number of observations can be displayed above the bars.

Ogive
An ogive, sometimes called a cumulative line graph, is a line that connects 
points that are the cumulative percent of observations below the upper limit of 
each interval in a cumulative frequency distribution.

Figure 1.13 is a histogram of the completion times in Table 1.7. Figure 1.14 is an ogive 
that describes the cumulative relative frequencies in Table 1.8.
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Shape of a Distribution

We can describe graphically the shape of the distribution by a histogram. That is, we can 
visually determine whether data are evenly spread from its middle or center. Sometimes 
the center of the data divides a graph of the distribution into two “mirror images,” so 
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Figure 1.15(a), Figure 1.15(b), and Figure 1.15(c) illustrate a histogram for a continu-
ous numerical unimodal variable with a symmetric distribution, a skewed-right distribu-
tion and a skewed-left distribution, respectively.

Symmetry
The shape of a distribution is said to be symmetric if the observations are bal-
anced, or approximately evenly distributed, about its center.

Skewness
A distribution is skewed, or asymmetric, if the observations are not sym-
metrically distributed on either side of the center. A skewed-right distribution 
(sometimes called positively skewed) has a tail that extends farther to the 
right. A skewed-left distribution (sometimes called negatively skewed) has a 
tail that extends farther to the left.

that the portion on one side of the middle is nearly identical to the portion on the other 
side. Graphs that have this shape are symmetric; those without this shape are asymmetric, 
or skewed.
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Figure 1.15(c) Skewed-left Distribution



46 Chapter 1 Using Graphs to Describe Data

Distribution of incomes is often skewed-right because incomes tend to contain a 
relatively small proportion of high values. A large proportion of the population has 
relatively modest incomes, but the incomes of, say, the highest 10% of all earners ex-
tend over a considerable range. An example of a skewed-left distribution is given in 
Example 1.10.

Example 1.10 Grade Point Averages (Skewed Left)

Describe the distribution of grade point averages contained in the data file Grade Point 
Averages.

Solution The data file Grade Point Averages contains a random sample of 156 grade 
point averages for students at one university. Figure 1.16 is a histogram of the data. 
Notice the long tail to the left, indicating that the shape of this distribution is skewed-left.

Figure 1.16 Grade Point Averages (Skewed-left Distribution)
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Although histograms may provide us with insight about the shape of a distribution, 
it is important to remember that poorly designed histograms may be misleading. In 
Section 1.7 we provide some warnings about histograms that distort the truth. In Chapter 2 
we discuss a numerical measure to determine the skewness of a distribution.

Stem-and-Leaf Displays

Exploratory data analysis (EDA) consists of procedures used to describe data in simple 
arithmetic terms with easy-to-draw pencil-and-paper pictures. One such procedure, the 
stem-and-leaf display, is a quick way to identify possible patterns when you have a small 
data set.

Stem-and-Leaf Display
A stem-and-leaf display is an EDA graph that is an alternative to the his-
togram. Data are grouped according to their leading digits (called stems), 
and the final digits (called leaves) are listed separately for each member of 
a class. The leaves are displayed individually in ascending order after each 
of the stems.
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The number of digits in each class indicates the class frequency. The individual digits 
indicate the pattern of values within each class. Except for extreme outliers (data values 
that are much larger or smaller than other values in the data set), all stems are included, 
even if there are no observations (leaves) in the corresponding subset. We illustrate a 
stem-and-leaf display in Example 1.11.

Scatter Plots

In Section 1.3 we discussed graphs (bar chart, pie chart, Pareto diagram) to describe a 
single categorical variable, and we also discussed graphs (component bar chart and clus-
ter bar chart) to describe the relationship between two categorical variables. In this section 
we presented histograms, ogives, and stem-and-leaf displays as graphs to describe a sin-
gle numerical variable. We now extend graphical measures to include a scatter plot, which 
is a graph used to investigate possible relationships between two numerical variables.

Business and economic analyses are often concerned about relationships between 
variables. What is the effect of advertising on total profits? What is the change in quan-
tity sold as the result of a change in price? How are total sales influenced by total 
disposable income in a geographic region? What is the change in infant mortality in de-
veloping countries as per capita income increases? How does one asset perform in rela-
tion to another asset? Do higher SAT mathematics scores predict higher college GPAs?

In these examples we notice that one variable may depend to a certain extent on the 
other variable. For example, the quantity of an item sold may depend on the price of the 
commodity. We then call the quantity sold the dependent variable and label it Y. We call the 
price of the commodity the independent variable and label it X.

To answer these questions, we gather and analyze random samples of data collected 
from relevant populations. A picture often provides insight as to the relationship that may 
exist between two variables. Our analysis begins with constructing a graph called a scat-
ter plot (or scatter diagram). A more extensive study of possible relationships between 
numerical variables is considered in Chapters 11–13.

Example 1.11 Grades on an Accounting Final Exam 
(Stem-and-Leaf Display)

Describe the following random sample of 10 final exam grades for an introductory 
 accounting class with a stem-and-leaf display.

88 51 63 85 79 65 79 70 73 77

Solution In constructing a stem-and-leaf display, each final exam grade is separated 
into two parts. For example, the grade of 63 is separated as 6|3, where 6 is called a 
stem; it appears on the left side of the straight line. The number 3 is called a leaf and 
appears on the right side of the straight line. From Figure 1.17 we see that the lowest 
grade was 51, the hightest grade was 88, and most of the students in the sample earned 
a grade of C on the accounting final exam.

Figure 1.17 Accounting Final-exam Grades (Stem-and-Leaf Display)

Stem-and-Leaf Display
n = 10

 Stem Leaves
 5 1
 6 3 5
 7 0 3 7 9 9
 8 5 8
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Scatter Plot
We can prepare a scatter plot by locating one point for each pair of two vari-
ables that represent an observation in the data set. The scatter plot provides a 
picture of the data, including the following:

1. The range of each variable
2. The pattern of values over the range
3. A suggestion as to a possible relationship between the two variables
4. An indication of outliers (extreme points)

We could prepare scatter plots by plotting individual points on graph paper. How-
ever, all modern statistical packages contain routines for preparing scatter plots directly 
from an electronic data file. Construction of such a plot is a common task in any initial 
data analysis that occurs at the beginning of an economic or business study. In Example 
1.12 we illustrate a scatter plot of two numerical variables.

Example 1.12 Entrance Scores and College GPA 
(Scatter Plots)

Are SAT mathematics scores a good indicator of college success? All of us have taken one 
or more academic aptitude tests as part of a college admission procedure. The admissions 
staff at your college used the results of these tests to determine your admission status. 
Table 1.9 gives the SAT math scores from a test given before admission to college and the 
GPAs at college graduation for a random sample of 11 students at one small private univer-
sity in the Midwest. Construct a scatter plot and determine what information it provides.

Table 1.9 SAT Math Versus GPA

SAT MATH GPA

450 3.25

480 2.60

500 2.88

520 2.85

560 3.30

580 3.10

590 3.35

600 3.20

620 3.50

650 3.59

700 3.95

Solution Using Excel, we obtain Figure 1.18, a scatter plot of the dependent variable, 
college GPA, and the independent variable, SAT math score.

We can make several observations from examining the scatter plot in Figure 1.18. 
GPAs range from around 2.5 to 4, and SAT math scores range from 450 to 700. An inter-
esting pattern is the positive upward trend—GPA scores tend to increase directly with 
increases in SAT math scores. Note also that the relationship does not provide an exact 
prediction. Some students with low SAT math scores have higher GPA scores than do stu-
dents with higher SAT math scores. We see that the basic pattern appears to indicate that 
higher entrance scores predict higher grade point averages, but the results are not perfect.
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EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal 
editions.com/newbold to access the data files.

Basic Exercises
 1.30 Use the Quick Guide to find an approximate number of 

classes for a frequency distribution for each sample size.

a. n = 47 b. n = 80 c. n = 150
d. n = 400 e. n = 650

 1.31 Determine an appropriate interval width for a random 
sample of 110 observations that fall between and in-
clude each of the following:

a. 20 to 85 b. 30 to 190
c. 40 to 230 d. 140 to 500

 1.32 Consider the following data:

17 62 15 65
28 51 24 65
39 41 35 15
39 32 36 37
40 21 44 37
59 13 44 56
12 54 64 59

a. Construct a frequency distribution.
b. Construct a histogram.
c. Construct an ogive.
d. Construct a stem-and-leaf display.

 1.33 Construct a stem-and-leaf display for the hours that 
20 students spent studying for a marketing test.

3.5 2.8 4.5 6.2 4.8 2.3 2.6 3.9 4.4 5.5

5.2 6.7 3.0 2.4 5.0 3.6 2.9 1.0 2.8 3.6

 1.34 Consider the following frequency distribution:

 Class Frequency
  0 6 10   8

10 6 20 10

20 6 30 13

30 6 40 12

40 6 50   6

a. Construct a relative frequency distribution.
b. Construct a cumulative frequency distribution.
c. Construct a cumulative relative frequency 

distribution.

 1.35 Prepare a scatter plot of the following data:15, 532 121, 652 114, 482 111, 662 19, 462 14, 56217, 532 121, 572 117, 492 114, 662 19, 542 17, 56219, 532 121, 522 113, 492 114, 562 19, 592 14, 562
Application Exercises
 1.36 The following table shows the ages of competitors in a 

charity tennis event in Rome:

 Age Percent
18–24 18.26

25–34 16.25

35–44 25.88

45–54 19.26

  55+ 20.35

a. Construct a relative cumulative frequency distribution.
b. What percent of competitors were under the age 

of 35?
c. What percent of competitors were 45 or older?

Figure 1.18 GPA vs. SAT Math Scores (Scatter Plot)
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 1.37 The demand for bottled water increases dur-
ing the hurricane season in Florida. The man-

ager at a plant that bottles drinking water wants to 
be sure that the process to fill 1-gallon bottles (ap-
proximately 3.785 liters) is operating properly. Cur-
rently, the company is testing the volumes of 
1-gallon bottles. A random sample of 75 bottles is 
tested. Study the filling process for this product and 
submit a report of your findings to the operations 
manager. Construct a frequency distribution, cumu-
lative frequency distribution, histogram, and a stem-
and-leaf display. Incorporate these graphs into a 
well-written summary. How could we apply statisti-
cal thinking in this situation? The data are stored in 
the data file Water.

 1.38 Percentage returns for the 25 largest U.S. com-
mon stock mutual funds for a particular day are 

stored in the data file Returns.

a. Construct a histogram to describe the data.
b. Draw a stem-and-leaf display to describe the data.

 1.39 Ann Thorne, the operations manager at a sun-
tan lotion manufacturing plant, wants to be 

sure that the filling process for 8-oz (237 mL) bottles 
of SunProtector is operating properly. Suppose that a 
random sample of 100 bottles of this lotion is se-
lected, the contents are measured, and the volumes 
(in mL) are stored in the data file Sun. Describe the 
data graphically.

 1.40 A company sets different prices for a particular 
DVD system in eight different regions of the coun-
try. The accompanying table shows the numbers of 
units sold and the corresponding prices (in dollars). 
Plot the data using a scatter plot with sales as the 
dependent variable and price as the independent 
variable.

Sales 420 380 350 400 440 380 450 420
Price 104 195 148 204   96 256 141 109

 1.41 A corporation administers an aptitude test to all new 
sales representatives. Management is interested in the 
possible relationship between test scores and the sales 
representatives’ eventual success. The accompanying 
table records average weekly sales (in thousands of 
dollars) and aptitude test scores for a random sample 
of eight representatives. Construct a scatter plot with 
weekly sales as the dependent variable and test scores 
as the independent variable.

Weekly sales 10 12 28 24 18 16 15 12
Test score 55 60 85 75 80 85 65 60

 1.42 Doctors are interested in the possible relationship 
between the dosage of a medicine and the time 
required for a patient’s recovery. The following 
table shows, for a sample of 10 patients, dosage 
levels (in grams) and recovery times (in hours). 

These patients have similar characteristics except 
for medicine dosages. Describe the data graphi-
cally with a scatter plot.

Dosage level 1.2 1.3 1.0 1.4 1.5 1.8 1.2 1.3 1.4 1.3
Recovery time  25  28  40  38  10    9  27  30  16  18

 1.43 Bishop’s supermarket records the actual price 
for consumer food products and the weekly 

quantities sold. Use the data file Bishop to obtain 
the scatter plot for the actual price of a gallon of or-
ange juice and the weekly quantities sold at that 
price. Does the scatter plot follow the pattern from 
economic theory?

 1.44 A Hong Kong snack-food vendor offers 3 types of 
boxed ”lunches to go,” priced at $3, $5, and $10, 
respectively. The vendor would like to establish 
whether there is a relationship between the price of 
the boxed lunch and the number of sales achieved 
per hour. Consequently, over a 15-day period the 
vendor records the number of sales made for each 
of the 3 types of boxed lunches. The following data 
show the boxed-lunch price (x) and the number sold 
(y) during each of the 15 lunch hours.13, 72 15, 52 110, 22 13, 92 15, 62 110, 52 13, 62 15, 62110, 12 13, 102 15, 72 110, 42 13, 52 15, 62 110, 42
Prepare a scatter plot of the points and comment 
on the relationship between the price of the boxed 
lunches and the numbers sold each lunchtime.

 1.45 Sales revenue totals (in dollars) by day of the 
week are contained in the data file Stordata. 

Prepare a cross table that contains the days of the 
week as rows and the four sales quartile intervals as 
columns.

a. Compute the row percentages.
b. What are the major differences in sales level 

by day of the week as indicated by the row 
percentages?

c. Describe the expected sales volume patterns over the 
week based on this table.

 1.46 Many small cities make significant efforts to 
attract commercial operations such as shop-

ping centers and large retail stores. One of the ar-
guments is that these facilities will contribute to 
the property that can be taxed and thus provide 
additional funds for local government needs. The 
data stored in the data file Citydatr come from a 
study of municipal revenue-generation capability. 
Prepare a scatter plot of “taxbase”—the assessed 
value of all city property in millions of dollars—
versus “comper”—the percent of assessed prop-
erty value that is commercial property. What 
information does this scatter plot provide about 
the assessable tax base and percent of commercial 
property in the city?
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1.6 DATA PRESENTATION ERRORS

Poorly designed graphs can easily distort the truth. Used sensibly and carefully, graphs 
can be excellent tools for extracting the essential information from what would otherwise 
be a mere mass of numbers. Unfortunately, it is not invariably the case that an attempt 
at data summarization is carried out either sensibly or carefully. In such circumstances 
one can easily be misled by the manner in which the summary is presented. We must 
draw from data as clear and accurate a picture as possible. Improper graphs can produce 
a distorted picture, yielding a false impression. It is possible to convey the wrong message 
without being deliberately dishonest.

Accurate graphic design is essential in today’s global markets. Cultural biases 
may influence the way people view charts. For example, in Western cultures people 
read from left to right and will automatically do so when reading bar charts or time-
series plots. In this situation, you should aim to place your most important informa-
tion on the right-hand side of the chart. Charts and graphs must be persuasive, clear, 
and truthful.

In this section we present some examples of misleading graphs, the intent being 
not to encourage their use but to caution against their dangers. Example 1.13 shows 
that distortions in histograms can lead to incorrect conclusions. Example 1.14 illus-
trates that different choices for the vertical axis in time-series plots can lead to different 
conclusions.

Misleading Histograms

We know that the width of all intervals should be the same. Suppose a data set contains 
many observations that fall into a relatively narrow part of the range, whereas others are 
widely dispersed. We might be tempted to construct a frequency distribution with narrow 
intervals where the bulk of the observations are and broader ones elsewhere. Even if we 
remember that it is the areas, rather than the heights, of the rectangles of the histogram 
that must be proportional to the frequencies, it is still never a desirable option to construct 
such a histogram with different widths because it may easily deceive or distort the find-
ings. We include this section simply to point out potential errors that we might find in 
histograms. In Example 1.13 we illustrate the construction of a histogram when interval 
widths are not all the same.

Example 1.13 Grocery Receipts (Unequal  
Interval Widths)

The dollar amounts of a random sample of 692 grocery receipts are summarized in the 
frequency distribution given in Table 1. 10.

One possible error in constructing a histogram is to make the heights of the rect-
angles, and not the areas of the rectangles, proportional to the frequencies. We see this 
misleading histogram in Figure 1.19. Inspection of this incorrect histogram gives us the 
mistaken impression of a very large proportion of observations in the highest class. 
Under no circumstance should we ever construct a histogram with this error. We illustrate this 
mistake only as a warning against deceptive graphs.

With continuous upgrades in software packages has come an increase in the use 
and misuse of computer-generated graphs. Figure 1.20 illustrates a computer-gener-
ated histogram with equal interval widths, even though three of the classes vary in 
width. Again, under no circumstance should we ever construct a histogram with this error. We 
illustrate this mistake only as a warning against deceptive graphs.
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Table 1.10 Grocery Receipts (Dollar Amounts)

DOLLAR AMOUNT NUMBER OF RECEIPTS PROPORTIONS

 $ 0 6 $10   84   84>692

$10 6 $20 113 113>692

$20 6 $30 112 112>692

$30 6 $40   85   85>692

$40 6 $50   77   77>692

$50 6 $60   58   58>692

$60 6 $80   75   75>692

  $80 6 $100   48   48>692

$100 6 $200   40   40>692

To construct a histogram, we should observe that the quantities in Table 1.10 are 
interpreted in the usual way. Thus, of all these receipts, 113>692, or 16.3%, were in 
the range from $10 to under $20. We need to draw a histogram with the areas of the 
rectangles drawn over the intervals proportional to their frequencies. Since each of 
the first 6 intervals has a width of 10, we can draw rectangles of heights 84, 113, 112, 
85, 77, and 58 over these intervals. The next two intervals have a width of 20, that 
is, twice the width of each of the first six. Thus, in order for their areas to be pro-
portional to the frequencies, the rectangles drawn over these intervals should have 
heights that are one-half of the corresponding frequencies—that is, 37.5 and 24.

Finally, the last interval has a width of 100, or 10 times the width of each of the 
first 6 intervals. It follows that the height of the rectangle drawn over this last interval 
should be one-tenth of the frequency. That is, the height of the last rectangle should be 4. 
The reason that we make the areas of these rectangles proportional to the frequencies is 
that visually we associate area with size. We see in Figure 1.21 a histogram that avoids 
the errors illustrated in Figure 1.19 and Figure 1.20.

Figure 1.19 Misleading Histogram of Grocery Receipts (Error: Heights 
Proportional to Frequencies for Distribution with Varying Interval Widths)
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Figure 1.20 Misleading Histogram of Grocery Receipts (Error: Bars of Equal 
Width for Distribution with Varying Interval Widths)
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Figure 1.21 Grocery Receipts (Histogram)

Misleading Time-Series Plots

By selecting a particular scale of measurement, we can, in a time-series plot, create an im-
pression either of relative stability or of substantial fluctuation over time.

Example 1.14 SAT Math Scores 1989–2009  
(Choice of Scale for Time-Series Plot)

The average SAT mathematics scores for the incoming first-year students at one uni-
versity over a 20-year period are contained in the data file SAT Math. Graph these data 
with a time-series plot.

Solution Here we show two possible time-series plots for the SAT math scores 
contained in the data file SAT Math. Figure 1.22 suggests quite wide fluctuations in 
average scores. Precisely the same information is graphed in Figure 1.23, but now with 
a much coarser scale on the vertical axis. The resulting picture in Figure 1.23 is much 
flatter, suggesting considerably less variability in average scores over time.
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There is no “correct” choice of scale for any particular time-series plot. Rather, the
conclusion from Example 1.14 is that looking at the shape of the plot alone is inad-
equate for obtaining a clear picture of the data. It is also necessary to keep in mind the 
scale on which the measurements are made.

Figure 1.22 SAT Math Scores: First-Year Students (Time-Series Plot)

EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal 
editions.com/newbold to access the data files.

Basic Exercises
 1.47 A supervisor of a plant kept records of the time (in 

seconds) that employees needed to complete a partic-
ular task. The data are summarized as follows:

Time 30 6 40 40 6 50 50 6 60 60 6 80 8 6 100 100 6 150
Number  10  15  20  30  24  20

a. Graph the data with a histogram.
b. Discuss possible errors.

Figure 1.23 SAT Math Scores: First-Year Students (Revised Time-Series Plot)

 1.48 The following table lists the number of daily visitors to 
the Web site of a new business during its first year.

Month Number Month Number
1 5,400  7 5,600

2 5,372  8 5,520

3 5,265  9 5,280

4 5,250 10 5,400

5 5,289 11 5,448

6 5,350 12 5,500

a. Graph the data with a time-series plot using a 
 vertical scale from 5,000 to 5,700.
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a. Construct a time-series plot of this data using a 
vertical axis that ranges from 92 to 106.

b. Construct a time-series plot of this data using a 
vertical axis that ranges from 75 to 120.

c. Comment on these two time-series plots.

 1.50 The data file Inventory Sales shows the inven-
tory-sales ratio for manufacturing and trade in 

the United States over a period of 12 years. Construct 
two time-series plots for this series with different ver-
tical ranges. Comment on your findings.

KEY WORDS

• bar chart, 28
• categorical variables, 25
• continuous numerical variable, 26
• cross table, 29
• cumulative frequency  

distribution, 42
• descriptive statistics, 25
• discrete numerical variable, 25
• frequency distribution, 28
• histogram, 44
• inferential statistics, 25
• line chart, 35
• nominal data, 26

• nonsampling errors, 24
• numerical variables, 25
• ogive, 44
• ordinal data, 26
• parameter, 24
• Pareto diagram, 32
• pie chart, 31
• population, 23
• qualitative data, 26
• quantitative data, 26
• random sample, 23
• relative frequency  

distribution, 28

• relative cumulative frequency 
 distribution, 42

• sample, 23
• sampling error, 24
• scatter plot, 48
• simple random sampling, 23
• skewed, 45
• statistic, 24
• stem-and-leaf display, 46
• symmetric, 45
• systematic sampling, 23
• time series, 35
• time-series plot, 35

DATA FILES

• Apple Stock Prices, 57
• Bishop, 50
• Browser Wars, 31, 35, 40
• Citydatr, 50
• Completion Times, 27, 42
• Currency Exchange Rates, 36, 40
• Earnings per Share, 40
• Exchange Rate, 55
• Finstad and Lie Study, 35

• Florin, 57
• Gold Price, 40
• Grade Point Averages, 46, 57
• HEI Cost Data Variable  

Subset, 28, 30, 35
• Housing Starts, 40
• Insurance, 32
• Inventory Sales, 55
• Macro 2009, 36, 37, 38, 40

• RELEVANT Magazine, 39, 57
• Returns, 50
• SAT Math, 53
• Shopping Times, 57
• Snappy Lawn Care, 57
• Stordata, 50
• Sun, 50
• Tennis, 34
• Water, 50

b. Graph the data with a time-series plot using  
a vertical scale from 4,000 to 7,000.

c. Comment on the difference between these two 
 time-series plots.

Application Exercises
 1.49 The data file Exchange Rate shows an index of 

the value of the U.S. dollar against trading part-
ners’ currencies over 12 consecutive months.

CHAPTER EXERCISES AND APPLICATIONS

Visit www.mymathlab.com/global or www.pearsonglobal 
editions.com/newbold to access the data files.

 1.51 Describe graphically the time (in hours) that 20 stu-
dents studied for a statistics test.

6.5 5.8 4.5 6.2 4.8 7.3 4.6 3.9 4.4 5.5
5.2 6.7 3.0 2.4 5.0 3.6 2.9 4.0 2.8 3.6

 1.52 A sample of 20 financial analysts was asked to pro-
vide forecasts of earnings per share of a corporation 
for next year. The results are summarized in the fol-
lowing table:

Forecast ($ per share) Number of Analysts
  9.95 6 10.45 2

10.45 6 10.95 8

10.95 6 11.45 6

11.45 6 11.95 3

11.95 6 12.45 1

a. Construct the histogram.
b. Determine the relative frequencies.
c. Determine the cumulative frequencies.
d. Determine and interpret the relative cumulative 

frequencies.
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 1.53 In one region it was found that 28% of people with in-
comes less than $50,000 use the Internet; 48% of those 
with incomes between $50,000 to $74,999 use the Internet; 
and 70% of those with incomes of at least $75,000 use the 
Internet. Use a pie chart or a bar chart to plot this data.

 1.54 Regulatory agencies and the U.S. Congress are recog-
nizing both the values and emerging issues for small 
firms as the Sarbanes-Oxley Act of 2002 (SOX) has 
been implemented. On April 23, 2006, the Advisory 
Committee on Smaller Public Companies issued a fi-
nal report to the Security and Exchange Commission 
assessing the impact of SOX on smaller public compa-
nies (Final Report 2006). A random sample of CEOs, 
CFOs, and board members of small, medium, and 
large firms were surveyed and their opinions of the 
overall impact of SOX on their firm were:

Impact of Sox Small Firms Medium Firms Large Firms

Little or no impact 17 13   6

Moderate to very 
major impact

13 41 22

Construct a cluster bar chart of these findings (Michel-
son, Stryker and Thorne 2009).

 1.55 A survey of consumers who had recently purchased 
their first smartphones sought to identify how much 
these consumers knew about using smartphone tech-
nology. The findings were as follows: 90% could con-
nect to the Internet, 80% could download an app, 55% 
could use Bluetooth, 44% had set up their phones to 
receive e-mail, and 5% knew only how to make and re-
ceive voice calls and texts. Present this data graphically.

 1.56 A team of undergraduate business students was asked 
to recommend improvement to the data entry process 
at the county appraiser’s office. The team identified 
several types of errors, such as posting an incorrect 
name or entering an incorrect parcel number. The 
deed abstractors were asked to keep a record of the 
 errors in data entry that were sent to them. The fol-
lowing table is a frequency distribution of errors:

Defect Total
Posting error in name 23
Posting error in parcel 21
Property sold after tax bills were mailed  5

Inappropriate call transfer (not part of deeds>
mapping)

18

Posting error in legal description>incomplete 
legal description

 4

Deeds received after tax bills printed  6
Correspondence errors  2
Miscellaneous errors  1

a. Construct a Pareto diagram of these defects in data 
entry.

b. What recommendations would you suggest to the 
county appraiser?

 1.57 Groupon, an online Web site, offers its subscribers at 
least one special deal per day to local businesses in their 
cities such as places to eat, health-related activities (spas 
or fitness centers), places to see (museums), a variety of 

activities such as golfing or sky diving, or other specials 
(such as a Gap Groupon or a gourmet fruit basket). Since 
December 2008, the number of subscribers has increased 
from 400 to more than 50 million in more than 400 mar-
kets, in over 40 countries (Groupon Hits 50m Subscribers, 
2011). To date, Groupon claims that more than 30 mil-
lion Groupons have been sold, saving subscribers nearly 
$1.3 billion. From a survey of students at one university, it 
was found that during the past week, the following num-
ber and category of Groupons were purchased: 230 (activ-
ities); 80 (food); 90 (health-related items), and 50 (other).

a. Graph these purchases with a pie chart.
b. Graph these purchases with a bar chart.

 1.58 For the random sample of Groupon purchases by the 
university students in Exercise 1.57, the following 
breakdown by gender was obtained:

Male Female Total

Activities 140  90 230

Food  45  35  80

Health related  20  70  90

Other  10  40  50

Total 215 235 450

a. Graphically depict the type of purchase by gender 
with a component bar chart.

b. Graphically depict the type of purchase by gender 
with a cluster bar chart.

 1.59 What is the relationship between the $ price of paint 
and the gallon demand for this paint? A random sam-
ple of (price, quantity) data for 7 days of operation 
was obtained. Construct a plot and describe the rela-
tionship between quantity and price, with emphasis 
on any unusual observations.110, 1002  18, 1202  15, 2002  14, 2002  110, 90217, 1102  16, 1502

 1.60 A consumer goods company has been studying the 
effect of advertising on total profits. As part of this 
study, data on advertising expenditures (1,000s) and 
total sales (1,000s) were collected for a 5-month period 
and are as follows:110, 1002  115, 2002  17, 802  112, 1202  114, 1502

  The first number is advertising expenditures and the 
second is total sales. Plot the data.

 1.61 The president of Floor Coverings Unlimited wants in-
formation concerning the relationship between retail 
experience (years) and weekly sales (in hundreds of 
dollars). He obtained the following random sample of 
experience and weekly sales:12, 52  14, 102  13, 82  16, 182  13, 62  15, 15216, 202  12, 42

  The first number for each observation is years of expe-
rience and the second is weekly sales. Plot the data.

 1.62 A Malaysian swimming coach wanted to see if work-
ing with a sports psychologist would improve the 
performance of elite swimmers. A random sample of 
12 swimmers took part in the year-long program. The 
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following ordered pairs show the number of sessions 
each swimmer had with the psychologist and the cor-
responding improvement in their personal best times 
(in seconds) for the 800-meter freestyle.19, 2.42, 120, 5.62, 16, 1.82, 112, 4.12, 19, 2.12,115, 4.82, 17, 2.32, 19, 4.32, 118, 6.22, 124, 7.12,19, 1.52, 16, 2.22

  Plot the data and state whether you think the program 
has been successful.

 1.63 Four types of checking accounts are offered by one 
bank. Suppose that recently a random sample of 300 
bank customers was surveyed and asked several ques-
tions. It was found that 60% of the respondents pre-
ferred Easy Checking; 12%, Intelligent Checking; 18%, 
Super Checking; and the remainder, Ultimate Checking. 
Of those who selected Easy Checking, 100 were females; 
one-third of the respondents who selected Intelligent 
Checking were males; half of the respondents who se-
lected Super Checking were males; and 80% of respon-
dents who selected Ultimate Checking were males.

a. Describe the data with a cross table.
b. Describe the data graphically.

 1.64 How did people first learn about a new product? A ran-
dom sample of 200 shoppers at a particular store was 
asked their age and whether they heard about the prod-
uct from a friend or through a local newspaper adver-
tisement. The results indicated that 50 respondents were 
under 21 years of age, 90 people were in the age group 
between 21 and 35, and 60 respondents were older than 
35 years of age. Of those under 21 years old, 30 heard 
about the product from a friend, and the remainder 
learned about the product through an advertisement in 
the local paper. One-third of the people in the age cat-
egory from 21 to 35 first learned about the product from 
the local newspaper advertisement; the remainder of 
this age group learned about the product from a friend. 
A friend informed 30% of the people in the over-35 
age category about the product; the remainder learned 
about it from the local newspaper advertisement.

a. Describe the data with a cross table.
b. Describe the data graphically.

 1.65 A random sample of customers was asked to select 
their favorite soft drink from a list of five brands. The 
results showed that 30 preferred Brand A, 50 preferred 
Brand B, 46 preferred Brand C, 100 preferred Brand D, 
and 14 preferred Brand E.

a. Construct a pie chart.
b. Construct a bar chart.

 1.66 The owner of Snappy Lawn Care thinks that the 
time it takes to mow a yard may be related to the 

temperatures at the time of mowing. He randomly 
sampled several yards of the same size and collected 
data on temperature and time it takes to mow. The data 
are in the data file Snappy Lawn Care. Plot the data 
with a scatter plot and comment on your findings.

 1.67 Construct a time-series plot of population growth for 
the state of New York from 2002 to the present. (Hint: 
Check www.census.gov.)

 1.68 Florin, owner of Florin’s Flower Mart, ran-
domly sampled 124 customers in order to ob-

tain data such as a customer’s method of payment 
(Visa, MasterCard, American Express, cash, or some 
other method) and the day of the week that the cus-
tomer made the purchase (except for when the store is 
closed on Sundays). The data are contained in the data 
file Florin. Construct the following:

a. A cross table of the variables method of payment 
and day of purchase

b. A pie chart of day of purchase

 1.69 A random sample of 50 employees working for a large 
international bank in Hong Kong was interviewed to 
establish whether there was a link between the jobs of 
employees in the bank and where they normally ate at 
lunchtime—either in the canteen or at their desks. The 
results of this research showed that 75% of staff in cleri-
cal roles normally ate in the office canteen and 54% of 
managers normally ate lunch at their desks. Compile a 
cross table and bar chart to display this information. 

 1.70 The closing costs of shares of Apple Inc. (AAPL) 
stock from January 3, 2011, through February 21, 

2011, are contained in the data file Apple Stock Prices.

a. Construct a time series plot of the closing costs.
b. Obtain closing costs of Apple stock for the most 

recent 30-day period.

 1.71 RELEVANT Magazine keeps records of traffic 
(such as the weekly number of new visitors) to 

its Web site from various social networks, such as Face-
book and Twitter (Butcher 2011). Use a time-series plot 
to graph the number of unique page views by weekly 
new visitors to RELEVANT Magazine’s Web site by 
Facebook users over a recent 9-week period. The data 
are stored in the data file RELEVANT Magazine.

 1.72 How much time (in minutes) do people spend 
on a typical visit to a local mall? A random 

sample of n = 104 shoppers was timed and the re-
sults (in minutes) are stored in the data file Shop-
ping Times.

a. Construct a histogram of these shopping times.
b. Construct a stem-and-leaf display of these shop-

ping times.

 1.73 The data file Grade Point Averages contains a 
random sample of 156 grade point averages for 

students at one university. Construct a stem-and-leaf 
display of the data.

 1.74 A corporation administers an aptitude test to all new 
sales representatives. Management is interested in the 
extent to which this test is able to predict weekly sales 
of new representatives. Aptitude test scores range 
from 0 to 30 with greater scores indicating a higher 
aptitude. Weekly sales are recorded in hundreds of 
dollars. Construct a scatter plot of the following test 
scores and weekly sales for a random sample of 10 
representatives.

Test Score, x 12 30 15 24 14 18 28 26 19 27

Weekly Sales, y 20 60 27 50 21 30 61 54 32 57
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United States: 2011 (130th ed.) Washington, DC, 2010. Data available at http://www.census 
.gov/compendia/statab/ (accessed February 12, 2011).
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 2.1 Measures of Central Tendency and Location
Mean, Median, and Mode
Shape of a Distribution
Geometric Mean
Percentiles and Quartiles

 2.2 Measures of Variability
Range and Interquartile Range
Box-and-Whisker Plots
Variance and Standard Deviation
Coefficient of Variation
Chebyshev’s Theorem and the Empirical Rule
z-Score

 2.3 Weighted Mean and Measures of Grouped Data
 2.4 Measures of Relationships Between Variables
  Case Study: Mortgage Portfolio

Introduction

In Chapter 1 we described data graphically, noting that different graphs are 
used for categorical and numerical variables. In this chapter we describe data 
numerically and observe that different numerical measures are used for categor-
ical and numerical data. In addition, we discuss measures for grouped data and 
measures of the direction and strength of relationships between two variables.

2
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Using Numerical 
Measures to Describe 
Data

C
H

A
P

TE
R

 O
U

TL
IN

E

2.1 MEASURES OF CENTRAL TENDENCY AND LOCATION

One of the first and basic questions asked by researchers, economists, corporate execu-
tives, government officials, and anyone with sample data is whether the data in their sam-
ple tend to be centered or located around a particular value. In Chapter 1 we considered a 
graphical response to this question and learned that histograms give us a visual picture of 
the shape of a distribution as well as provide us with an idea of whether our data tend to 
center or cluster around some value. In this section, we present numerical measures—the 
mean, median, and mode—in response to questions concerning the location of the center 
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of a data set. We also study a special type of mean called the geometric mean. These nu-
merical measures provide information about a “typical” observation in the data and are 
referred to as measures of central tendency.

Often we ask questions that concern the location or position of a value relative to the 
entire set of data. We answer this type of query by examining such measures of location 
as percentiles and quartiles. Most of us are somewhat familiar with percentiles from stan-
dardized test scores (such as the SAT). Another measure of location, called a z-score, ex-
amines the location or position of a value relative to the mean of the distribution; z-scores 
are addressed in Section 2.2.

Mean, Median, and Mode

In Chapter 1 we introduced the terms parameter and statistic. A parameter refers to a spe-
cific population characteristic; a statistic refers to a specific sample characteristic. Measures 
of central tendency are usually computed from sample data rather than from population 
data. One measure of central tendency that quickly comes to mind is the arithmetic mean, 
usually just called the mean, or average.

Arithmetic Mean
The arithmetic mean (or simply mean) of a set of data is the sum of the data 
values divided by the number of observations. If the data set is the entire 
 population of data, then the population mean, m, is a parameter given by

 m =
a
N

i=1
xi

N
=

x1 + x2 + . . . + xN

N
 (2.1)

where N = population size and g  means “the sum of.”
If the data set is from a sample, then the sample mean, x, is a statistic 

given by

 x =
a
n

i=1
xi

n
 (2.2)

where n = sample size. The mean is appropriate for numerical data.

Median
The median is the middle observation of a set of observations that are ar-
ranged in increasing (or decreasing) order. If the sample size, n, is an odd 
number, the median is the middle observation. If the sample size, n, is an 
even number, the median is the average of the two middle observations. The 
median will be the number located in the

 0.501n + 12th ordered position. (2.3)

To locate the median, we must arrange the data in either increasing or decreasing order.

Mode
The mode, if one exists, is the most frequently occurring value. A distribu-
tion with one mode is called unimodal; with two modes, it is called bimodal; 
and with more than two modes, the distribution is said to be multimodal. The 
mode is most commonly used with categorical data.
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Example 2.1 Demand for Bottled Water  
(Measures of Central Tendency)

The demand for bottled water increases during the hurricane season in Florida. The 
number of 1-gallon bottles of water sold for a random sample of n = 12 hours in one 
store during hurricane season is:

60  84  65  67  75  72

80  85  63  82  70  75

Describe the central tendency of the data.

Solution The average or mean hourly number of 1-gallon bottles of water demanded 
is found as follows:

x =
a
n

i=1
xi

n
=

60 + 84 + . . . + 75
12

= 73.17

Next, we arrange the sales data from least to greatest sales:

60  63  65  67  70  72  75  75  80  82  84  85

and find that the median sales is located in the 0.5112 + 12 = 6.5th ordered position; 
that is, the median number of 1-gallon bottles of water is midway between the 6th and 
7th ordered data points: (72 + 75)>2 = 73.5 bottles. The mode is clearly 75 bottles.

The decision as to whether the mean, median, or mode is the appropriate measure 
to describe the central tendency of data is context specific. One factor that influences our 
choice is the type of data, categorical or numerical, as discussed in Chapter 1.

Categorical data are best described by the median or the mode, not the mean. If one 
person strongly agrees (coded 5) with a particular statement and another person strongly 
disagrees (coded 1), is the mean “no opinion”? An obvious use of median and mode is 
by clothing retailers considering inventory of shoes, shirts, and other such items that are 
available in various sizes. The size of items sold most often, the mode, is then the one in 
heaviest demand. Knowing that the mean shirt size of European men is 41.13 or that the 
average shoe size of American women is 8.24 is useless, but knowing that the modal shirt 
size is 40 or the modal shoe size is 7 is valuable for inventory decisions. However, the 
mode may not represent the true center of numerical data. For this reason, the mode is 
used less frequently than either the mean or the median in business applications.

Example 2.2 Percentage Change in Earnings  
per Share (Measures of Central Tendency)

Find the mean, median, and mode for a random sample of eight U.S. corporations with 
the following percentage changes in earnings per share in the current year compared 
with the previous year:

0% 0% 8.1% 13.6% 19.4% 20.7% 10.0% 14.2% 

Solution The mean percentage change in earnings per share for this sample is

x =
a
n

i=1
xi

n
=

0 + 0 + 8.1 + 13.6 + . . . + 14.2
8

= 10.75 or 10.75%

and the median percentage change in earnings per share is 11.8%. The mode is 0%, 
since it occurs twice and the other percentages occur only once. But this modal percent-
age rate does not represent the center of this sample data.
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Numerical data are usually best described by the mean. However, in addition to the 
type of data, another factor to consider is the presence of outliers—that is, observations 
that are unusually large or unusually small in comparison to the rest of the data. The me-
dian is not affected by outliers, but the mean is. Whenever there are outliers in the data, 
we first need to look for possible causes. One cause could be simply an error in data entry. 
The mean will be greater if unusually large outliers are present, and the mean will be less 
when the data contain outliers that are unusually small compared to the rest of the data.

Shape of a Distribution

In Chapter 1 we described graphically the shape of a distribution as symmetric or skewed 
by examining a histogram. Recall that if the center of the data divides a graph of the dis-
tribution into two mirror images, so that the portion on one side of the middle is nearly 
identical to the portion on the other side, the distribution is said to be symmetric. Graphs 
without this shape are asymmetric.

We can also describe the shape of a distribution numerically by computing a measure 
of skewness. In nearly all situations, we determine this measure of skewness with Excel 
or a statistical software package such as SPSS, SAS, or Minitab. Skewness is positive if 
a distribution is skewed to the right, negative for distributions skewed to the left, and 0 
for distributions, such as the bell-shaped distribution, that are mounded and symmetric 
about their mean. Manual computation of skewness is presented in the chapter appendix.

For continuous numerical unimodal data, the mean is usually less than the median in a 
skewed-left distribution and the mean is usually greater than the median in a skewed-right 
distribution. In a symmetric distribution the mean and median are equal. This relationship 
between the mean and the median may not be true for discrete numerical variables or for 
some continuous numerical variables (von Hippel 2005).

Example 2.3 Grade Point Averages  
(Skewed-Left Distribution)

Describe the shape of the distribution of grade point averages stored in the data file 
Grade Point Averages.

Solution The data file Grade Point Averages contains a random sample of 156 grade 
point averages for students at one university. In Chapter 1, we described the shape 
of this distribution graphically with a histogram. In Figure 1.16 we saw that the shape of 
the distribution appears to be skewed left. Figure 2.1 gives the descriptive measures 
of the data using Excel. The value of the mean is approximately 3.14 and is less than the 
median of 3.31. Also, the median is less than the mode of 3.42. The graph, the negative 
value of skewness, and the comparison of the mean and the median suggest that this is 
a skewed-left distribution.

Figure 2.1 Grade Point Average

Grade Point Average

Mean 3.141154

Standard Error 0.029144

Median 3.31

Mode 3.42

Standard Deviation 0.364006

Sample Variance 0.132501

Kurtosis 0.609585

Skewness -1.1685

Range 1.73

Minimum 2.12

Maximum 3.85

Sum 490.02

Count 156
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The median is the preferred measure to describe the distribution of incomes in a city, 
state, or country. Distribution of incomes is often right skewed since incomes tend to con-
tain a relatively small proportion of high values. A large proportion of the population has 
relatively modest incomes, but the incomes of, say, the highest 10% of all earners extend 
over a considerable range. As a result, the mean of such distributions is typically quite a 
bit higher than the median. The mean, which is inflated by the very wealthy, gives too 
optimistic a view of the economic well-being of the community. The median is then pre-
ferred to the mean.

We do not intend to imply that the median should always be preferred to the mean 
when the population or sample is skewed. There are times when the mean would still 
be the preferred measure even if the distribution were skewed. Consider an insurance 
company that most likely faces a right-skewed distribution of claim sizes. If the company 
wants to know the most typical claim size, the median is preferred. But suppose the com-
pany wants to know how much money needs to be budgeted to cover claims. Then, the 
mean is preferred.

In spite of its advantage in discounting extreme observations, the median is used less 
frequently than the mean. In Chapter 7 we discuss certain properties of the mean that 
make it more attractive than the median in many situations. The reason is that the theo-
retical development of inferential procedures based on the mean, and measures related 
to it, is considerably more straightforward than the development of procedures based on 
the median.

Geometric Mean

Another measure of central tendency that is important in business and economics, but 
often overlooked, is the geometric mean.

Geometric Mean
The geometric mean, xg, is the nth root of the product of n numbers:

 xg = 2n 1x1x2 . . . xn2 = 1x1x2 . . . xn21>n (2.4)

The geometric mean rate of return, rg,

 rg = 1x1x2 . . . xn21>n - 1 (2.5)

gives the mean percentage return of an investment over time.
Consider the two numbers 20 and 5. The arithmetic mean is 12.5, but the 

geometric mean of the numbers 20 and 5 is 1100 = 10.

Business analysts and economists who are interested in growth over a number of time 
periods use the geometric mean. Applications of the geometric mean in finance include 
compound interest over several years, total sales growth, and population growth. An im-
portant question concerns the average growth each year that will result in a certain total 
growth over several years.

Example 2.4 Annual Growth Rate (Geometric Mean)

Find the annual growth rate if sales have grown 25% over 5 years.

Solution The intuitive but naive temptation is simply to divide total growth, 25%, by 
the number of time periods, 5, and conclude that the average annual growth rate is 5%. 
This result is incorrect because it ignores the compound effect of growth.
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Percentiles and Quartiles

Percentiles and quartiles are measures that indicate the location, or position, of a 
value relative to the entire set of data. Suppose you are told that you scored in the 
92nd percentile on your SAT mathematics exam. This means that approximately 92% 
of the students who took this exam scored lower than you and approximately 8% of 
the students who took this exam scored higher than you. Percentiles and quartiles are 
generally used to describe large data sets, such as sales data, survey data, or even the 
weights of newborn babies. Pediatricians will measure a baby’s weight in terms of 
percentiles. A newborn who weighs in the 5th percentile is quite small in comparison 
to a newborn in the 95th percentile in weight (Grummer-Strawn, Reinold, and Krebs 
2010).

Statisticians do not agree on one best method to calculate percentiles and quartiles 
and propose different ways to calculate these measures (Langford 2006). Slightly dif-
ferent values for percentiles and quartiles are found using various computer software 
packages (such as SPSS, SAS, MINITAB, JMP) or using Excel or with the use of dif-
ferent calculators. In this book we rely on linear interpolation between ranked values 
and identify the location of percentiles and quartiles, as given in Equations 2.6, 2.7, 
and 2.8.

Suppose that the annual growth rate is actually 5%; then the total growth over 
5 years will be 11.052 11.052 11.052 11.052 11.052 = 1.2763

or 27.63%. However, the annual growth rate, r, that would yield 25% over 5 years must 
satisfy this equation: 11 + r25 = 1.25

First, solve for the geometric mean:

xg = 1 + r = 11.2521>5 = 1.046

The geometric mean growth rate is rg = 0.046, or 4.6%.

Percentiles and Quartiles
To find percentiles and quartiles, data must first be arranged in order from the 
smallest to the largest values.

The Pth percentile is a value such that approximately P % of the observa-
tions are at or below that number. Percentiles separate large ordered data sets 
into 100ths. The 50th percentile is the median.

The P th percentile is found as follows:

 Pth percentile = value located in the 1P>10021n + 12th ordered position (2.6)

Quartiles are descriptive measures that separate large data sets into four 
quarters. The first quartile, Q1, (or 25th percentile) separates approximately the 
smallest 25% of the data from the remainder of the data. The second  quartile, 
Q2, (or 50th percentile) is the median (see Equation 2.3).
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In describing numerical data, we often refer to the five-number summary. In Section 2.2 we 
present a graph of the five-number summary called a box-and-whisker plot.

The third quartile, Q3, (or 75th percentile), separates approximately the 
smallest 75% of the data from the remaining largest 25% of the data.

 Q1 = the value in the 0.251n + 12th ordered position (2.7)

 Q2 = the value in the 0.501n + 12th ordered position 

 Q3 = the value in the 0.751n + 12th ordered position (2.8)

Five-Number Summary
The five-number summary refers to the five descriptive measures: minimum, 
first quartile, median, third quartile, and maximum.

minimum 6 Q1 6 median 6 Q3 6 maximum

To illustrate the use of Equations 2.7 and 2.8, we include Example 2.5 with only  
n = 12 observations. For such a small sample size, one would rarely compute these val-
ues in practice. Percentiles and quartiles are generally used to describe large data sets. 
 Example 2.6 has n = 104 observations and Example 2.7 has n = 4,460 observations.

Example 2.5 Demand for Bottled Water (Quartiles)

In Example 2.1 we found the measures of central tendency for the number of 1-gallon 
bottles of water sold in a sample of 12 hours in one store in Florida during hurricane 
season. In particular, the median was found to be 73.5 bottles. Find the five-number 
summary.

Solution We arrange the data from Example 2.1 in order from least to greatest.

60  63  65  67  70  72  75  75  80  82  84  85

Using Equation 2.7, we find the first quartile, Q1, as follows:

Q1 = the value located in the 0.25112 + 12th ordered position
Q1 = the value located in the 3.25th ordered position

The value in the third ordered position is 65 bottles, and the value in the 4th ordered 
position is 67 bottles. The first quartile is found as follows:

 Q1 = 65 + 0.25167 - 652
 Q1 = 65 + 0.50 = 65.5 bottles

Using Equation 2.8, the third quartile, Q3, is located in the 0.75(12 + 1)th ordered 
position—that is, the value in the 9.75th ordered position. The value in the 9th ordered 
position is 80 bottles and the value in the 10th ordered position is 82 bottles. The third 
quartile is calculated as follows:

 Q3 = 80 + 0.75182 - 802
 Q3 = 80 + 0.75122 = 81.5 bottles

The five-number summary for this data is as follows:

Minimum 6 Q1 6 median 6 Q3 6 maximum
60 6 65.5 6 73.5 6 81.5 6 85
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Statistical software packages are useful to describe data when the sample size is 
very large. In Chapter 1 we developed bar charts to graph one of the categorical vari-
ables, activity level, from the Healthy Eating Index–2005 (Figure 1.1 to Figure 1.3). 
Now, in Example 2.7 we find the five-number summary for the HEI–2005 data using 
Minitab.

Example 2.6 Shopping Times at a Mall  
(Percentiles)

In an endeavor to increase sales at a local mall, the management gathered data on the 
amount of time that current shoppers spend in the mall. A random sample of n = 104 
shoppers were timed, and the results (in minutes) are given in Table 2.1. Find the 25th 
and 85th percentiles. The data is listed in Table 2.1 and contained in the data file Shop-
ping Times.

Table 2.1 Shopping Times

18 34 42 37 19 37 30 40 28 34 71 18

46 42 34 30 21 23 40 37 57 69 73 47

45 38 34 25 34 23 37 20 63 57 73 52

20 31 18 42 25 40 21 40 57 69 71 55

33 38 30 41 18 31 34 18 63 57 70 25

33 21 48 34 25 45 34 21 31 70 69

21 37 51 50 25 51 42 52 67 18 68

31 37 52 52 43 45 43 18 25 70 64

23 30 19 50 59 60 60 68 69 70 59

Solution The first step is to sort the data in the data file Shopping Times from 
smallest to largest. Using Equation 2.6, we find the 25th percentile as follows:

25th percentile = the value located in the 0.251n + 12th ordered position
25th percentile = the value located in the 0.251104 + 12th ordered position
25th percentile = the value located in the 26.25th ordered position

The value in the 26th ordered position is 28 minutes, and the value in the 27th ordered 
position is 30 minutes. The 25th percentile is found as follows:

25th percentile = 28 + 0.25130 - 282 = 28.5

Similarly, we use Equation 2.6 to locate the 85th percentile as follows:

85th percentile = the value located in 0.851104 + 12th ordered position
85th percentile = the value located in the 89.25th ordered position

Since the value in the 89th ordered position is 64 minutes and the value in the 90th 
ordered position is 67 minutes, the value in the 89.25th ordered position is 25% of the 
distance between 67 and 64. The 85th percentile is found as follows:

64 + 0.25167 - 642 = 64 + 0.75 = 64.75 minutes

Approximately 85% of the shoppers in our sample spend less than 64.75 minutes at  
the mall.
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Example 2.7 Healthy Eating Index–2005  
(Five-Number Summary)

The HEI–2005 measures how well the population follows the recommendations of the 
2005 Dietary Guidelines for Americans (Guenther et al. 2007). The HEI measures, on a 
100-point scale, the adequacy of consumption of vegetables, fruits, grains, milk, meat 
and beans, and liquid oils. This scale is titled HEI2005 in the data file HEI Cost Data 
Variable Subset.

We saw in Example 1.1 that the data file HEI Cost Data Variable Subset contains 
considerable information on randomly selected individuals who participated in an 
extended interview and medical examination. Recall that there are two interviews for 
each person in the study. Results for the first interview are identified by daycode = 1, 
and data for the second interview are identified by daycode = 2. Other variables in 
the data file are described in the data dictionary in the Chapter 10 appendix. Find the 
five-number summary of the HEI scores taken during the first interview for both males 
(code = 0) and females (code = 1).

Solution Since the data file contains n = 4,460 observations, we use Minitab to 
obtain the measures in the five-number summary (Figure 2.2).

Figure 2.2 Healthy Eating Index–2005 Scores: First Interview (Five-Number 
Summary)

EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

Basic Exercises
2.1 A random sample of 5 weeks showed that a cruise 

agency received the following number of weekly spe-
cials to the Caribbean:

20 73 75 80 82

a. Compute the mean, median, and mode.
b. Which measure of central tendency best describes 

the data?

 2.2 A department-store manager is interested in the num-
ber of complaints received by the customer-service 
department about the quality of electrical products 
sold by the store. Records over a 5-week period show 
the following number of complaints for each week:

13 15 8 16 8

a. Compute the mean number of weekly  
complaints.

b. Calculate the median number of weekly 
complaints.

c. Find the mode.

 2.3 Ten economists were asked to predict the percentage 
growth in the Consumer Price Index over the next 
year. Their forecasts were as follows:

3.6 3.1 3.9 3.7 3.5

3.7 3.4 3.0 3.7 3.4

a. Compute the sample mean.
b. Compute the sample median.
c. Find the mode.

 2.4 A department-store chain randomly sampled 10 stores 
in a state. After a review of sales records, it was found 
that, compared with the same period last year, the fol-
lowing percentage increases in dollar sales had been 
achieved over the Christmas period this year:

10.2 3.1 5.9 7.0 3.7

  2.9 6.8 7.3 8.2 4.3

Descriptive Statistics: HEI2005 (Females; First Interview)

Variable N Minimum Q1 Median Q3 Maximum
HEI2005 2,321 11.172 42.420 53.320 63.907 92.643

Descriptive Statistics: HEI2005 (Males; First Interview)

Variable N Minimum Q1 Median Q3 Maximum
HEI2005 2,139 13.556 39.644 49.674 59.988 99.457
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2.2 MEASURES OF VARIABILITY

The mean alone does not provide a complete or sufficient description of data. In this sec-
tion we present descriptive numbers that measure the variability or spread of the obser-
vations from the mean. In particular, we include the range, interquartile range, variance, 
standard deviation, and coefficient of variation.

No two things are exactly alike. Variation exists in all areas. In sports, the star basket-
ball player might score five 3-pointers in one game and none in the next or play 40 min-
utes in one game and only 24 minutes in the next. The weather varies greatly from day 
to day and even from hour to hour; grades on a test differ for students taking the same 
course with the same instructor; a person’s blood pressure, pulse, cholesterol level, and 
caloric intake will vary daily. In business, variation is seen in sales, advertising costs, the 
percentage of product complaints, the number of new customers, and so forth.

While two data sets could have the same mean, the individual observations in one set 
could vary more from the mean than do the observations in the second set. Consider the 
following two sets of sample data:

Sample A: 1 2 1 36

Sample B: 8 9 10 13

Although the mean is 10 for both samples, clearly the data in sample A are farther 
from 10 than are the data in sample B. We need descriptive numbers to measure this 
spread.

a. Calculate the mean percentage increase in  
dollar sales.

b. Calculate the median.

 2.5 A sample of 12 senior executives found the following 
results for percentage of total compensation derived 
from bonus payments:

15.8 17.3 28.4 18.2 15.0 24.7

13.1 10.2 29.3 34.7 16.9 25.3

a. Compute the sample median.
b. Compute the sample mean.

 2.6 During the last 3 years Consolidated Oil Company 
expanded its gasoline stations into convenience food 
stores (CFSs) in an attempt to increase total sales 
revenue. The daily sales (in hundreds of dollars) 
from a random sample of 10 weekdays from one of 
its stores are:

6 8 10 12 14 9 11 7 13 11

a. Find the mean, median and mode for this store.
b. Find the five-number summary.

 2.7 A textile manufacturer obtained a sample of 50 bolts 
of cloth from a day’s output. Each bolt is carefully in-
spected and the number of imperfections is recorded 
as follows:

Number of imperfections  0  1 2 3

Number of bolts 35 10 3 2

  Find the mean, median, and mode for these sample 
data.

 2.8 The ages of a sample of 12 students enrolled in an on-
line macroeconomics course are as follows:

21 22 27 36 18 19

22 23 22 28 36 33

a. What is the mean age for this sample?
b. Find the median age.
c. What is the value of the modal age?

Application Exercises
2.9 A random sample of 156 grade point averages 

for students at one university is stored in the 
data file Grade Point Averages.

a. Compute the first and third quartiles.
b. Calculate the 30th percentile.
c. Calculate the 80th percentile.

 2.10 A sample of 33 accounting students recorded 
the number of hours spent studying the course 

material during the week before the final exam. The 
data are stored in the data file Study.

a. Compute the sample mean.
b. Compute the sample median.
c. Comment on symmetry or skewness.
d. Find the five-number summary for this data.

 2.11 The data file Sun contains the volumes for a 
random sample of 100 bottles (237 mL) of a new 

suntan lotion.

a. Find and interpret the mean volume.
b. Determine the median volume.
c. Are the data symmetric or skewed? Explain.
d. Find the five-number summary for this data.
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Range and Interquartile Range

Range
Range is the difference between the largest and smallest observations.

The greater the spread of the data from the center of the distribution, the larger the range will 
be. Since the range takes into account only the largest and smallest observations, it is sus-
ceptible to considerable distortion if there is an unusual extreme observation. Although 
the range measures the total spread of the data, the range may be an unsatisfactory mea-
sure of variability (spread) because outliers, either very high or very low observations, 
influence it. One way to avoid this difficulty is to arrange the data in ascending or de-
scending order, discard a few of the highest and a few of the lowest numbers, and find the 
range of those remaining. Sometimes the lowest 25% of the data and the highest 25% of 
the data will be removed. To do this, we define quartiles and the interquartile range, which 
measures the spread of the middle 50% of the data.

Interquartile Range
The interquartile range (IQR) measures the spread in the middle 50% of the 
data; it is the difference between the observation at Q3, the third quartile 
(or 75th percentile), and the observation at Q1, the first quartile (or 25th 
 percentile). Thus,

 IQR = Q3 - Q1 (2.9)

Box-and-Whisker Plot
A box-and-whisker plot is a graph that describes the shape of a distribution 
in terms of the five-number summary: the minimum value, first quartile (25th 
percentile), the median, the third quartile (75th percentile), and the maximum 
value. The inner box shows the numbers that span the range from the first to 
the third quartile. A line is drawn through the box at the median. There are 
two “whiskers.” One whisker is the line from the 25th percentile to the mini-
mum value; the other whisker is the line from the 75th percentile to the maxi-
mum value.

In Example 2.6 we considered a random sample of times (in minutes) spent by n = 
104 people shopping at a mall, and we found the 25th percentile, or the first quartile, to 
be 28.5 minutes. Similarly, it can be shown that the 75th percentile, or the third quartile, is 
56.5 minutes. It follows that the interquartile range for the data contained in the data file 
Shopping Times is as follows:

IQR = Q3 - Q1 = 56.5 - 28.5 = 28 minutes

Box-and-Whisker Plots

In Chapter 1, we introduced one of Tukey’s exploratory data analysis graphs called a 
stem-and-leaf display. We now include another one of Tukey’s exploratory data analy-
sis graphs called a box-and-whisker plot. Both types of graphs reveal information about 
the shape of the distribution. A box-and-whisker plot also provides some insight into the 
spread of the data.
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Example 2.8 Gilotti’s Pizzeria  
(Box-and-Whisker Plot)

Gilotti’s Pizzeria has 4 locations in one large metropolitan area. Daily sales (in hun-
dreds of dollars) from a random sample of 10 weekdays from each of the 4 locations are 
given in Table 2.2. Plot the data with a box-and-whisker plot. The data are contained in 
the data file Gilotti’s Pizzeria.

Table 2.2 Gilotti’s Pizzeria Sales (in $100s)

LOCATION 1 LOCATION 2 LOCATION 3 LOCATION 4

 6  1  2 22

 8 19  3 20

10  2 25 10

12 18 20 13

14 11 22 12

 9 10 19 10

11  3 25 11

 7 17 20  9

13  4 22 10

11 17 26  8

Solution We can easily compute the five-number summary using the equations in 
this chapter, or we can obtain the results using a software package such as Minitab. 
Table 2.3 lists mean sales and the values of each of the five-number summary measures 
for each of the four pizzeria locations.

Table 2.3 Gilotti’s Pizzeria Sales

VARIABLE MEAN MIN. Q1 MEDIAN Q3 MAX. IQR RANGE

Location 1 10.1 6.0 7.75 10.5 12.25 14.0  4.5  8.0

Location 2 10.2 1.0 2.75 10.5 17.25 19.0 14.5 18.0

Location 3 18.4 2.0 15.00 21.0 25.00 26.0 10.0 24.0

Location 4 12.5 8.0 9.75 10.5 14.75 22.0  5.0 14.0

A quick look at Table 2.3 and Figure 2.3 shows that Location 1, Location 2, and Loca-
tion 4 all have the same median sales of $1,050. We even note that Location 1 and Location 
2 have nearly identical mean sales, with $1,010 for Location 1 and $1,020 for Location 
2. However, a closer examination of the range and IQR of Location 1 and Location 2 
reveals that the sales in Location 2 are spread over a wider interval than the sales for 
Location 1. Note that Location 3 has the highest mean sales, $1,840, but it also has the 
largest range, or overall spread.

Using Minitab, we see in Figure 2.3 the shapes of the distribution of sales for these 
four locations.



 2.2 Measures of Variability 71

Figure 2.3 Gilotti’s Pizzeria Sales (Box-and-Whisker Plots)
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Variance and Standard Deviation

Although range and interquartile range measure the spread of data, both measures take 
into account only two of the data values. We need a measure that would average the 
total 1g2  distance between each of the data values and the mean. But for all data sets, this 
sum will always equal zero because the mean is the center of the data. If the data value is 
less than the mean, the difference between the data value and the mean would be negative 
(and distance is not negative). If each of these differences is squared, then each observa-
tion (both above and below the mean) contributes to the sum of the squared terms. The 
average of the sum of squared terms is called the variance.

Variance
With respect to variance, the population variance, s2, is the sum of the 
squared differences between each observation and the population mean 
 divided by the population size, N:

 s2 =
a
N

i=1
1xi - m22

N
 (2.10)

The sample variance, s2, is the sum of the squared differences between each 
observation and the sample mean divided by the sample size, n, minus 1:

 s2 =
a
n

i=1
1xi - x22

n - 1
 (2.11)

Notice that the distribution of sales for Location 3 is skewed left, which indicates 
the presence of days with sales less than most of the other days ($200 and $300) or per-
haps a data-entry error. Similarly, the distribution of sales in Location 4 is skewed right 
indicating the presence of sales higher than most of the other days ($2,200 and $2,000) 
or the possibility that sales were incorrectly recorded.

The management of Gilotti’s Pizzeria will want to know more about the variation 
in sales, both within a given location as well as between these four locations. This infor-
mation will assist Gilotti’s Pizzeria in their decision-making process.
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Notice that, for sample data, variance in Equation 2.11 is found by dividing the nu-
merator by (n - 1) and not n. Since our goal is to find an average of squared deviations 
about the mean, one would expect division by n. So why is the denominator of sample 
variance given as (n - 1) in Equation 2.11? If we were to take a very large number of 
samples, each of size n, from the population and compute the sample variance, as given 
in Equation 2.11 for each of these samples, then the average of all of these sample vari-
ances would be the population variance, s2. In Chapter 6 we see that this property indi-
cates that the sample variance is an “unbiased estimator” of the population variance, s2. 
For now, we rely on mathematical statisticians who have shown that if the population 
variance is unknown, a sample variance is a better estimator of the population variance 
if the denominator in the sample variance is (n - 1) rather than n.

To compute the variance requires squaring the distances, which then changes the 
unit of measurement to square units. The standard deviation, which is the square root of 
variance, restores the data to their original measurement unit. If the original measure-
ments were in feet, the variance would be in feet squared, but the standard deviation 
would be in feet. The standard deviation measures the average spread around the mean.

Standard Deviation
With respect to standard deviation, the population standard deviation, s, is 
the (positive) square root of the population variance and is defined as follows:

 s = 2s2 = Ha
N

i=1
1xi - m22

N
 (2.12)

The sample standard deviation, s, is as follows:

 s = 2s2 = Ha
n

i=1
1xi - x22
n - 1

 (2.13)

In Example 2.8 we found the range of daily sales in Location 1 to be $800, smaller 
than the range of the other three locations (Table 2.3). These differences in the ranges are 
clearly seen in the box-and-whisker plots in Figure 2.3. However, since only the maxi-
mum and minimum values are used to find the range, it is better to calculate the variance 
and standard deviation, as these measures take into account the difference of each daily 
sale from its mean.

Example 2.9 Gilotti’s Pizzeria Sales (Variance  
and Standard Deviation)

Calculate the standard deviation of daily sales for Gilotti Pizzeria, Location 1. From 
Table 2.3 the daily sales for Location 1 are:

6  8  10  12  14  9  11  7  13  11

Solution To calculate sample variance and standard deviation follow these three 
steps:

Step 1: Calculate the sample mean, x, using Equation 2.2. It is equal to 10.1.
Step 2: Find the difference between each of the daily sales and the mean of 10.1.
Step 3: Square each difference. The result is Table 2.4.
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Equations 2.14 and 2.15 are sometimes referred to as shortcut formulas to calculate 
sample variance. We include these equations for statisticians who prefer these methods of 
computation. The value of sample variance is the same using Equation 2.11, 2.14, or 2.15. 
We illustrate this in Example 2.10.

Table 2.4 Gilotti’s Pizzeria Sales

 
SALES ($100S), xi

DEVIATION ABOUT THE 
MEAN, 1xi - x2 SQUARED DEVIATION ABOUT THE MEAN, 1xi - x22

 6 -4.1 16.81

 8 -2.1  4.41

10 -0.1  0.01

12     1.9  3.61

14     3.9 15.21

 9 -1.1  1.21

11     0.9  0.81

 7 -3.1  9.61

13     2.9  8.41

11     0.9  0.81

a
10

i=1
xi = 101

x = a x2
i

n
= 10.1

a
10

i=1
1xi - x2 = 0 a

10

i=1
1xi - x22 = 60.9

s2 =
a
n

i=1
1xi - x22

n - 1
=

60.9
9

= 6.76

s = 2s2 = 26.76 � 2.6

Shortcut Formulas for Sample Variance, s2

Sample variance, s2, can be computed as follows:

 s2 =
a
n

i=1
xi

2 -
1a xi22

n

n - 1
 (2.14)

Alternatively, sample variance, s2, can be computed as follows:

 s2 =
a
n

i=1
xi

2 - nx2

n - 1
 (2.15)

Example 2.10 Gilotti’s Pizzeria Sales (Variance  
by Alternative Formula)

Calculate the variance in daily sales for Gilotti Pizzeria, Location 1, using the alterna-
tive shortcut formulas found in Equations 2.14 and 2.15. From Table 2.3 daily sales for 
Location 1 are:

6  8  10  12  14  9  11  7  13  11
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There are numerous applications of standard deviation in business. For example, in-
vestors may want to compare the risk of different assets. In Example 2.11 we look at two 
assets that have the same mean rates of return. In Example 2.12 we consider an invest-
ment in stocks with different mean closing prices over the last several months.

Solution From Table 2.4 we have the following calculations for the n = 10 daily 
sales:

a
10

i=1
xi = 101  x = 10.1

All we need is to find the sum of the squares of each daily sale. This is found as follows:

a x2
i = 1622 + 1822 + 11022 + . . . + 11122 = 1,081

Substituting into Equation 2.14, sample variance, s2 is calculated as follows:

s2 =
a
n

i=1
xi

2 -
1a xi22

n

n - 1
=

1,081 - c 110122
10

d
9

=
1,081 - 1,020.1

9
=

60.9
9

= 6.76

Using Equation 2.15, sample variance, s2 is calculated as follows:

s2 =
a
n

i=1
xi

2 - nx2

n - 1
=

1,081 - 10110.122

9
=

1,081 - 1,020.1
9

=
60.9

9
= 6.76

Example 2.11 Comparing Risk of Two Assets  
with Equal Mean Rates of Return (Standard 
Deviation)

Wes and Jennie Moore, owners of Moore’s Foto Shop in western Pennsylvania, are con-
sidering two investment alternatives, asset A and asset B. They are not sure which of 
these two single assets is better, and they ask Sheila Newton, a financial planner, for 
some assistance.

Solution Sheila knows that the standard deviation, s, is the most common 
single indicator of the risk or variability of a single asset. In financial situations the 
fluctuation around a stock’s actual rate of return and its expected rate of return is 
called the risk of the stock. The standard deviation measures the variation of returns 
around an asset’s mean. Sheila obtains the rates of return on each asset for the last 
5 years and calculates the means and standard deviations of each asset. Her results 
are given in Table 2.5.

Table 2.5 Rates of Return: Asset A and Asset B

ASSET A ASSET B

Mean Rate of Return 12.2% 12.2%

Standard Deviation in Rate of Return  0.63  3.12

Since each asset has the same average rate of return of 12.2%, Sheila compares the 
standard deviations and determines that asset B is a more risky investment.
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Coefficient of Variation

Since the mean rates of return for asset A and asset B were the same in Example 2.11, a 
comparison of standard deviations was appropriate to determine which asset was more 
risky. Now let’s consider another investment opportunity. We have two stocks, and the 
mean closing prices of these stocks over the last several months are not equal. We need to 
compare the coefficient of variation for both stocks rather than the standard deviations. 
The coefficient of variation expresses the standard deviation as a percentage of the mean.

Coefficient of Variation
The coefficient of variation, CV, is a measure of relative dispersion that ex-
presses the standard deviation as a percentage of the mean (provided the 
mean is positive).

The population coefficient of variation is

 CV =
s

m
* 100%  if m 7 0 (2.16)

The sample coefficient of variation is

 CV =
s
x

* 100%  if x 7 0 (2.17)

If the standard deviations in sales for large and small stores selling similar goods are 
compared, the standard deviation for large stores will almost always be greater. A simple 
explanation is that a large store could be modeled as a number of small stores. Comparing 
variation using the standard deviation would be misleading. The coefficient of variation 
overcomes this problem by adjusting for the scale of units in the population.

Example 2.12 Stock Purchase Comparison 
(Coefficient of Variation)

In Example 2.11 two different investments with the same mean rate of return were con-
sidered. Now, the owners are considering purchasing shares of stock A or shares of 
stock B, both listed on the New York Stock Exchange. From the closing prices of both 
stocks over the last several months, the standard deviations were found to be consider-
ably different, with sA = $2.00 and sB = +8.00. Should stock A be purchased, since the 
standard deviation of stock B is larger?

Solution We might think that stock B is more volatile than stock A. However, the 
mean closing price for stock A is $4.00 and the mean closing price for stock B is $80.00. 
Next, the coefficients of variation are computed to measure and compare the risk of 
these competing investment opportunities:

CVA =
+2.00
+4.00

* 100% = 50% and CVB =
+8.00
+80.00

* 100% = 10%

Notice that the market value of stock A fluctuates more from period to period than 
does that of stock B. The coefficient of variation tells us that for stock A the sample 
standard deviation is 50% of the mean, and for stock B the sample standard deviation is 
only 10% of the mean.

Chebyshev’s Theorem and the Empirical Rule

A Russian mathematician, Pafnuty Lvovich Chebyshev (1821–1894), established data in-
tervals for any data set, regardless of the shape of the distribution.
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The advantage of Chebyshev’s theorem is that its applicability extends to any popu-
lation. However, it is within this guarantee that its major drawback lies. For many popu-
lations the percentage of values falling in any specified range is much higher than the 
minimum assured by Chebyshev’s theorem. In the real world many large populations 
provide mounded data that are at least approximately symmetric, with many of the data 
points clustered around the mean. We often think of this as the bell-shaped distribution. 
In Chapter 5 we give a much more detailed explanation as the empirical rule and its 
more exact formula are one of the main focus points of statistics.

Chebyshev’s Theorem
For any population with mean m, standard deviation s, and k 7 1, the percent 
of observations that lie within the interval 3m { ks4  is

 at least 10031 - 11>k2)4% (2.18)

where k is the number of standard deviations.

Table 2.6 
Chebyshev’s Theorem 
for Selected Values 
of k

Selected Values of k 7 1  1.5 2 2.5    3

[1 - (1>k2)]% 55.56% 75%  84% 88.89%

Empirical Rule (68%, 95%, or Almost All)
For many large populations (mounded, bell-shaped) the empirical 
rule provides an estimate of the approximate percentage of observations 
that are  contained within one, two, or three standard deviations of the  
mean:

• Approximately 68% of the observations are in the interval m { 1s.
• Approximately 95% of the observations are in the interval m { 2s.
• Almost all of the observations are in the interval m { 3s.

Consider a very large number of students taking a college entrance exam such as the 
SAT. Suppose the mean score on the mathematics section of the SAT is 550 with a stan-
dard deviation of 50.

Then, by the empirical rule, we estimate that roughly 68% of the scores are between 
500 and 600 and that approximately 95% fall within the range 450 to 650. There is only a 
relatively small chance that an observation will differ from the mean by more than {2s; 
any observation that differs from the mean by more than {3s is an outlier.

To see how Chebyshev’s theorem works in practice, we construct Table 2.6 for se-
lected values of k.

Suppose that the mean grade on an exam is 72, with a standard deviation of 4. 
 According to Chebyshev’s theorem, at least 75% of the scores are in the interval between 
64 and 80, and at least 88.9% of the scores are in the interval between 60 and 84. Or, sup-
pose that the mean salary for a sample of employees is $33,500 and the standard devia-
tion is $1,554. By Chebyshev’s theorem at least 55.6% of the salaries must fall within (1.5)
($l,554) = $2,331 around the mean—that is, within the range $31,169–$35,831. Similarly, at 
least 75% of the salaries in this population must fall within {$3,108 around the mean—
that is, within the range $30,392–$36,608.
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z-Score

In Section 2.1 we discussed percentiles and quartiles as a measure of location or position 
of a value relative to the entire set of data. Now we consider a measure called a z-score 
that examines the location or position of a value relative to the mean of the distribution. 
Throughout this book you will learn much more about z-scores because they play a major 
role in business statistics.

Example 2.13 Lifetimes of Lightbulbs  
(Chebyshev’s Theorem and Empirical Rule)

A company produces lightbulbs with a mean lifetime of 1,200 hours and a standard 
deviation of 50 hours.

a. Describe the distribution of lifetimes if the shape of the population is unknown.
b.  Describe the distribution of lifetimes if the shape of the distribution is known 

to be bell-shaped.

Solution Using the mean of 1,200 and the standard deviation of 50, we find the 
following intervals:

 m { 1s = 1,200 { 50 = 11,150, 1,2502
 m { 2s = 1,200 { 21502 = 11,100, 1,3002
 m { 3s = 1,200 { 31502 = 11,050, 1,3502

a.  Assuming that the shape of the distribution is unknown, we apply Chebyshev’s 
theorem. But be aware that k 7 1. Therefore, we cannot make any conclusions 
about the percentage of bulbs that last between 1,150 hours and 1,250 hours. We 
can conclude that at least 75% of the lightbulbs will last between 1,100 hours 
and 1,300 hours and that at least 88.89% of the lightbulbs will last between 1,050 
hours and 1,350 hours.

b.  If the shape of the distribution is bell-shaped, then we can conclude that  
approximately 68% of the lightbulbs will last between 1,150 hours and  
1,250 hours; that approximately 95% of the lightbulbs will last between  
1,100 hours and 1,300 hours; and that almost all the bulbs will last between 
1,050 hours and 1,350 hours. It would be very unusual for a lightbulb to burn 
out in, say, 600 hours or 1,600 hours. Such values are possible but not very 
likely. These lifetimes would definitely be outliers.

z-Score
A z-score is a standardized value that indicates the number of standard devia-
tions a value is from the mean. A z-score greater than zero indicates that the 
value is greater than the mean; a z-score less than zero indicates that the value 
is less than the mean; and a z-score of zero indicates that the value is equal to 
the mean.

If the data set is the entire population of data and the population mean, m, 
and the population standard deviation, s, are known, then for each value, xi, 
the corresponding z-score associated with xi is defined as follows:

 z =
xi - m
s

 (2.19)
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Example 2.14 Lifetimes of Lightbulbs  
(z-Score)

Consider the company in Example 2.13, which produces lightbulbs with a mean life-
time of 1,200 hours and a standard deviation of 50 hours.

a. Find the z-score for a lightbulb that lasts only 1,120 hours.
b.  Find the z-score for a lightbulb that lasts 1,300 hours.

Solution Since 1,120 is less than the mean of 1,200 hours, we know that the 
corresponding z-score will be negative. Using Equation 2.19, the z-score for 1,120 hours 
is as follows:

z =
xi - m
s

=
1,120 - 1,200

50
= -1.6

Similarly, the z-score for a lightbulb that lasts 1,300 hours is found as follows:

z =
xi - m
s

=
1,300 - 1,200

50
= 2

Example 2.15 College Entrance Exams  
(z-scores)

Consider a very large number of students taking a college entrance exam such as the 
SAT. And suppose the mean score on the mathematics section of the SAT is 570 with a 
standard deviation of 40.

a. Find the z-score for a student who scored 600.
b.  A student is told that his z-score on this test is -1.5. What was his actual SAT 

math score?

Solution The corresponding z-score for the SAT math score of 600 is found using 
Equation 2.19 as follows:

z =
xi - m
s

=
600 - 570

40
= 0.75

If the student knows that his or her z-score is -1.5, then the student also knows that his 
or her score is less than the mean of 570.

z =
xi - m
s

1 -1.5 =
xi - 570

40

Solving algebraically, the student realizes that his or her test score is found as:

401 -1.52 = xi - 570

or

xi = 510

The standardized z-score is often used with admission tests for colleges and 
universities.
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EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

Basic Exercises
2.12 Compute the variance and standard deviation of the 

following sample data:

6 8 7 10 3 5 9 8

2.13 Compute the variance and standard deviation of the 
following sample data:

3 0 -2 -1 5 10

2.14 Calculate the coefficient of variation for the following 
sample data:

10 8 11 7 9

2.15 The ages of a random sample of people who attended 
a recent soccer match are as follows:

23 35 14 37 38 15 45

12 40 27 13 18 19 23

37 20 29 49 40 65 53

18 17 23 27 29 31 42

35 38 22 20 15 17 21

a. Find the mean age.
b. Find the standard deviation.
c. Find the coefficient of variation.

 2.16 Construct a stem-and-leaf display of the ages of a ran-
dom sample of people who attended a recent soccer 
match given in Exercise 2.15. Then find the interquar-
tile range.

 2.17 A random sample of data has a mean of 75 and a vari-
ance of 25.

a. Use Chebyshev’s theorem to determine the percent 
of observations between 65 and 85.

b. If the data are mounded, use the empirical rule to 
find the approximate percent of observations be-
tween 65 and 85.

 2.18 If the mean of a population is 250 and its standard de-
viation is 20, approximately what proportion of obser-
vations is in the interval between each pair of values?

a. 190 and 310
b. 210 and 290

 2.19 A set of data is mounded, with a mean of 450 and a 
variance of 625. Approximately what proportion of 
the observations is

a. greater than 425?
b. less than 500?
c. greater than 525?

Application Exercises
2.20 The annual percentage returns on common stocks 

over a 7-year period were as follows:

4.0%  14.3%  19.0%  -14.7%  -26.5%  37.2%  23.8%

  Over the same period the annual percentage returns 
on U.S. Treasury Bills were as follows:

6.5% 4.4% 3.8% 6.9% 8.0% 5.8% 5.1% 

a. Compare the means of these two population 
distributions.

b. Compare the standard deviations of these two popu-
lation distributions.

 2.21 How much time do corporate executives exercise 
daily? Training programs exist to help executives im-
prove their health so that they can think more clearly 
and make better business decisions. Suppose that we 
randomly sample ten executives and obtain the fol-
lowing daily exercise times (in minutes):

20 35 28 22 10 40 23 32 28 30

a. Find the mean daily exercise time.
b. Calculate the standard deviation using  

Equation 2.13.
c. Calculate the standard deviation using  

Equation 2.14.
d. Calculate the standard deviation using  

Equation 2.15.
e. Find the coefficient of variation.

 2.22 The operations manager at a plant that bottles 
natural spring water wants to be sure that the 

filling process for 1-gallon bottles (1 gallon is approxi-
mately 3.785 liters) is operating properly. A random 
sample of 75 bottles is selected and the contents are 
measured. The volume of each bottle is contained in 
the data file Water.

a. Find the range, variance, and standard deviation of 
the volumes.

b. Find and interpret the interquartile range for the data.
c. Find the value of the coefficient of variation.

 2.23  In Chapter 1 we described graphically, with a 
frequency distribution and histogram, the time 

(in seconds) for a random sample of n = 110 employ-
ees to complete a particular task. Describe the data in 
Table 1.6 numerically. The data are stored in the data 
file Completion Times.

a. Find the mean time.
b. Find the variance and standard deviation.
c. Find the coefficient of variation.

 2.24 The assessment rates (in percentages) assigned 
to a random sample of 40 commercially zoned 

parcels of land in the year 2012 are stored in the data 
file Rates.

a. What is the standard deviation in the assessment 
rates?

b. Approximately what proportion of the rates will be 
within ± 2 standard deviations of the mean?

 2.25 Calculate the mean dollar amount and the stan-
dard deviation for the dollar amounts charged 

to a Visa account at Florin’s Flower Shop. Data are 
stored in the data file Florin.
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2.3 WEIGHTED MEAN AND MEASURES OF GROUPED DATA

Some situations require a special type of mean called a weighted mean. Applications of 
weighted means include, but are not limited to, calculating GPA, determining average 
stock recommendation, and approximating the mean of grouped data.

Weighted Mean
The weighted mean of a set of data is

 x = awixi

n
 (2.20)

where wi = weight of the i th observation and n = gwi.

One important situation that requires the use of a weighted mean is the calculation of 
grade point average (GPA).

Example 2.16 Grade Point Average (Weighted Mean)

Suppose that a student who completed 15 credit hours during his first semester of col-
lege received one A, one B, one C, and one D. Suppose that a value of 4 is used for an 
A, 3 for a B, 2 for a C, 1 for a D, and 0 for an F. Calculate the student’s semester GPA.

Solution If each course were given the same number of credit hours, the student’s 
semester GPA would equal the following:

x =
a
n

i=1
xi

n
=

x1 + x2 + . . . + xn

n
=

4 + 3 + 2 + 1
4

= 2.5

However, each course is not worth the same number of credit hours. The A was 
earned in a 3-credit-hour English course, and the B was earned in a 3-credit-hour math 
course, but the C was earned in a 4-credit-hour biology lab course, and the D grade, 
unfortunately, was earned in a 5-credit-hour Spanish class. Computation of the mean is

x =
14 + 4 + 42 + 13 + 3 + 32 + 12 + 2 + 2 + 22 + 11 + 1 + 1 + 1 + 12

15
=

34
15

= 2.267

where the numerator is the sum of 14 + 4 + 42  representing the three English credits 
plus 13 + 3 + 32  for the three math credits plus 12 + 2 + 2 + 22  for the four biology 
lab credits plus 11 + 1 + 1 + 1 + 12  for the five Spanish credits. Using Equation 2.20 
the computation of the GPA is given in Table 2.7.

x =
a
n

i=1
wixi

n
=

w1x1 + w2x2 + . . . + wnxn

n
=

12 + 9 + 8 + 5
15

=
34
15

= 2.267

Table 2.7 Semester Academic Record

COURSE GRADE CREDIT HOURS, wi VALUE, xi CREDIT HOURS *  VALUE, wixi

English A  3 4 12

Math B  3 3  9

Biology lab C  4 2  8

Spanish D  5 1  5

Total 15 34
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A survey may ask respondents to select an age category such as 20–29 rather than giv-
ing their specific age. Or respondents may be asked to select a cost category such as $4.00 
to under $6.00 for a purchase at a local coffee shop. In these situations exact values of the 
mean and variance are not possible. However, we are able to approximate the mean and 
the variance.

Example 2.17 Stock Recommendation  
(Weighted Mean)

Zack’s Investment Research is a leading investment research firm. Zack’s will make 
one of the following recommendations with corresponding weights for a given stock: 
Strong Buy (1), Moderate Buy (2), Hold (3), Moderate Sell (4), or Strong Sell (5). Sup-
pose that on a particular day, 10 analysts recommend Strong Buy, 3 analysts recom-
mend Moderate Buy, and 6 analysts recommend Hold for a particular stock. Based on 
Zack’s weights, find the mean recommendation.

Solution Table 2.8 shows the weights for each recommendation and the computation 
leading to a recommendation based on the following weighted mean recommendation 
conversion values: if the weighted mean is 1, Strong Buy; 1.1 through 2.0, Moderate 
Buy; 2.1 through 3.0, Hold; 3.1 through 4.0, Moderate Sell; 4.1 through 5, Strong Sell.

Table 2.8 Computation of Zack’s Investment Research’s Average Brokerage 
Recommendation

ACTION NUMBER OF ANALYSTS, wi VALUE, xi wixi

Strong Buy 10 1 10

Moderate Buy  3 2  6

Hold  6 3 18

Moderate Sell  0 4  0

Strong Sell  0 5  0

x =
a
n

i=1
wixi

n
=

10 + 6 + 18 + 0 + 0
19

= 1.79

The weighted mean of 1.79 yielded a Moderate Buy recommendation.

Approximate Mean and Variance for Grouped Data
Suppose that data are grouped into K classes, with frequencies f1, f2, . . . , fK. If 
the midpoints of these classes are m1, m2, . . . , mK, then the sample mean and 
sample variance of grouped data are approximated in the following manner:

The mean is

 x =
a
K

i=1
fimi

n
 (2.21)

where n = a
K

i=1
fi, and the variance is

 s2 =
a
K

i=1
fi1mi - x22

n - 1
 (2.22)
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Example 2.18 Cost of Coffee Shop  
Purchase (Mean and Variance for  
Grouped Values)

Coffee shop customers were randomly surveyed and asked to select a category that 
described the cost of their recent purchase. The results were as follows:

Cost 1 in USD2          0 6 2 2 6 4 4 6 6 6 6 8 8 6 10
Number of Customers       2   3    6    5    4

Find the sample mean and standard deviation of these costs.

Solution The frequencies are the number of customers for each cost category. The 
computations for the mean and the standard deviation are set out in Table 2.9.

Table 2.9 Cost of Purchase (Grouped Data Computation)

COSTS ($) FREQUENCY, fi MIDPOINT, mi 1 fimi2 1mi - x2 1mi - x22 fi1mi - x22
0 6 2  2 1   2 -4.6 21.16   42.32

2 6 4  3 3   9 -2.6  6.76   20.28

4 6 6  6 5  30 -0.6  0.36    2.16

6 6 8  5 7  35   1.4  1.96     9.80

8 6 10  4 9  36   3.4 11.56   46.24
20 112   120.80

n = a
K

i=1
fi = 20   and   a

K

i=1
fimi = 112

The sample mean is estimated by

x =
a
K

i=1
fimi

n
=

112
20

= 5.6

Since these are sample data, the variance is estimated by

s2 =
a
K

i=1
fi1mi - x22

n - 1
=

120.8
19

= 6.3579

Hence, the sample standard deviation is estimated as

s = 2s2 = 26.3579 = 2.52

Therefore, the mean coffee shop purchase price is estimated as $5.60, and the sam-
ple standard deviation is estimated to be $2.52.
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EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

Basic Exercises
2.26 Consider the following sample of five values and cor-

responding weights:

xi wi

4.6 8
3.2 3
5.4 6
2.6 2
5.2 5

a. Calculate the arithmetic mean of the xi values with-
out weights.

b. Calculate the weighted mean of the xi values.

 2.27 Consider the following frequency distribution for a 
sample of 40 observations:

Class Frequency
0–4  5
5–9  8

10–14 11
15–19  9
20–24  7

a. Calculate the sample mean.
b. Calculate the sample variance and sample standard 

deviation.

Application Exercises
2.28 An online pharmaceutical company obtained the 

following frequency distribution of shipping times 
(number of hours between the time an order is placed 
and the time the order is shipped) for a random sam-
ple of 40 orders. (Be sure to complete all appropriate 
columns and show your work).

Number of Hours fi
4 6 10  8

10 6 16 15
16 6 22 10
22 6 28  7

a. What is the approximate mean shipping time?
b. What is the approximate variance and standard 

deviation?

 2.29 A manufacturer of portable radios obtained a sample 
of 50 radios from a week’s output. The radios were 
checked and the numbers of defects were recorded as 
follows.

Number of defects 0 1 2 3
Number of radios 12 15 17 6

  Calculate the standard deviation.

 2.30 A random sample of 50 personal property insurance 
policies showed the following number of claims over 
the past 2 years.

Number of claims 0 1 2 3 4 5 6

Number of policies 21 13 5 4 2 3 2

a. Find the mean number of claims per policy.
b. Find the sample variance and standard deviation.

 2.31 For a random sample of 25 students from a very large 
university, the accompanying table shows the amount 
of time (in hours) spent studying for final exams.

Study time 0 6  4 4 6  8 8 6  12 12 6  16 16 6  20
Number of  
students

3 7 8 5 2

a. Estimate the sample mean study time.
b. Estimate the sample standard deviation.

 2.32 A sample of 20 financial analysts was asked to provide 
forecasts of earnings per share of a corporation for 
next year. The results are summarized in the following 
table:

Forecast ($ per share) Number of Analysts
$9.95 to under $10.45 2

$10.45 to under $10.95 8

$10.95 to under $11.45 6

$11.45 to under $11.95 3

$11.95 to under $12.45 1

a. Estimate the sample mean forecast.
b. Estimate the sample standard deviation.

 2.33 A publisher receives a copy of a 500-page textbook 
from a printer. The page proofs are carefully read and 
the number of errors on each page is recorded, pro-
ducing the data in the following table:

Number of errors  0  1  2  3  4 5
Number of pages 102 138 140 79 33 8

  Find the mean and standard deviation in number of 
errors per page.

 2.34 In Chapter 1, we described graphically using a 
frequency distribution table and a histogram 

the time (in seconds) for a random sample of n = 110 
employees to complete a particular task. Describe the 
data numerically based on the frequency distribution 
given in Table 1.7. The data is stored in the data file 
Completion Times.

a. Compute the mean using Equation 2.21.
b. Compute the variance using Equation 2.22.
c. Compare your answers to the mean and variance 

calculated in Exercise 2.23.
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2.4 MEASURES OF RELATIONSHIPS BETWEEN VARIABLES

We introduced scatter plots in Chapter 1 as a graphical way to describe a relationship be-
tween two variables. In this section we introduce covariance and correlation, numerical ways 
to describe a linear relationship; we give more attention to these concepts in Chapters 11 to 13. 
Covariance is a measure of the direction of a linear relationship between two variables.

Covariance
Covariance (Cov) is a measure of the linear relationship between two vari-
ables. A positive value indicates a direct or increasing linear relationship, and 
a negative value indicates a decreasing linear relationship.

A population covariance is

 Cov1x, y2 = sxy =
a
N

i=1
1xi - mx2 1yi - my2

N
 (2.23)

where xi and yi are the observed values, mx and my are the population means, 
and N is the population size.

A sample covariance is

 Cov1x, y2 = sxy =
a
n

i=1
1xi - x2 1yi - y2

n - 1
 (2.24)

where xi and yi are the observed values, x and y are the sample means, and n 
is the sample size.

The value of the covariance varies if a variable such as height is measured in feet or 
inches or weight is measured in pounds, ounces, or kilograms. Also, covariance does not 
provide a measure of the strength of the relationship between two variables. The most 
common measure to overcome these shortcomings is called Pearson’s product-moment 
correlation coefficient, Pearson’s r, or simply the correlation coefficient. Although this 
measure is named after Karl Pearson, it was Sir Francis Galton who first introduced the 
concept in the late 1800s (Salsburg 2002). This correlation coefficient will give us a stan-
dardized measure of the linear relationship between two variables. It is generally a more 
useful measure because it provides both the direction and the strength of a relationship. The 
covariance and corresponding correlation coefficient have the same sign (both are positive 
or both are negative). There are other measures of correlation, such as Spearman’s rank 
correlation coefficient, which we discuss in Chapter 14.

Correlation Coefficient
The correlation coefficient is computed by dividing the covariance by the 
product of the standard deviations of the two variables.

A population correlation coefficient, r, is

 r =
Cov1x, y2
sxsy

 (2.25)

A sample correlation coefficient, r, is

 r =
Cov1x, y2

sxsy
 (2.26)

A useful rule to remember is that a relationship exists if

 � r � Ú
22n

 (2.27)
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It can be shown that the correlation coefficient ranges from -1 to +1. The closer r is to 
+1, the closer the data points are to an increasing straight line, indicating a positive linear 
relationship. The closer r is to -1, the closer the data points are to a decreasing straight 
line, indicating a negative linear relationship. When r = 0, there is no linear relationship 
between x and y—but not necessarily a lack of relationship. In Chapter 1 we presented 
scatter plots as a graphical measure to determine relationship. Figure 2.4 presents some 
examples of scatter plots and their corresponding correlation coefficients. Figure 2.5 is a 
plot of quarterly sales for a major retail company.

Note that sales vary by quarter of the year, reflecting consumers’ purchasing patterns. 
The correlation coefficient between the time variable and quarterly sales is zero. However, 
we can see a very definite seasonal relationship, but the relationship is not linear.

Figure 2.4 Scatter 
Plots and Correlation
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Figure 2.5 Retail 
Sales by Quarter

Example 2.19 Facebook Posts and Interactions 
(Covariance and Correlation Coefficient)

RELEVANT Magazine (a culture magazine) keeps in touch and informs their readers by 
posting updates through various social networks. These updates take up a large part of 
both the marketing and editorial teams’ time. Because these updates take so much time, 
marketing is interested in knowing whether reducing posts (updates) on Facebook (a 
specific site) will also lessen their fan interaction; if not, both departments may pursue 
using their time in more productive ways. The weekly number of posts (updates) and 
fan interactions for Facebook during a 9-week period are recorded in Table 2.10. Com-
pute the covariance and correlation between Facebook posts (site updates) and fan in-
teractions. The data are stored in the data file RELEVANT Magazine.
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Table 2.10 Facebook Posts (site updates) and Fan Interactions

Facebook posts (updates), x  16  31  27  23  15  17  17  18 14

Fan interactions, y 165 314 280 195 137 286 199 128 462

Solution The computation of covariance and correlation between Facebook posts 
(site updates) and fan interactions are illustrated in Table 2.11. The mean and the 
variance in the number of Facebook posts are found to be approximately

x = 19.8 and s2
x =

a
n

i=1
1xi - x22
n - 1

= 34.694

and the mean and the variance in the number of fan interactions are found to be 
approximately

y = 240.7 and s2
y =

a
n

i=1
1yi - y22
n - 1

= 11,369.5

Table 2.11 Facebook Posts and Fan Interactions (Covariance and Correlation)

x y 1xi - x2 1xi - x22 1yi - y2 1yi - y22 1xi - x2 1yi - y2
16 165 -3.8 14.44 -75.7 5,730.49 287.66

31 314 11.2 125.44 73.3 5,372.89 820.96

27 280 7.2 51.84 39.3 1,544.49 282.96

23 195 3.2 10.24 -45.7 2,088.49 -146.24

15 137 -4.8 23.04 -103.7 10,753.69 497.76

17 286 -2.8 7.84 45.3 2,052.09 -126.84

17 199 -2.8 7.84 -41.7 1,738.89 116.76

18 128 -1.8 3.24 -112.7 12,701.29 202.86

14 462 -5.8 33.64 221.3 48,973.69 -1,283.54

 x = 19.8  y = 240.7 g = 652.34

From Equation 2.24,

Cov1x, y2 = sxy =
a
n

i=1
1xi - x)1yi - y2

n - 1
=

652.34
8

= 81.542

From Equation 2.26,

r =
Cov1x, y2

sxsy
=

81.542234.694211,369.5
= 0.1298

From Equation 2.27

� 0.1298 � 6
229

= 0.67

We conclude that there is not sufficient data to think that there is a strong linear rela-
tionship between Facebook posts and fan interaction.
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Minitab, Excel, SPSS, SAS, and many other statistical packages can be used to 
compute descriptive measures such as the sample covariance and the sample cor-
relation coefficient. Consider Example 2.19. Figure 2.6 shows the Minitab output for 
computing covariance and correlation, and Figure 2.7 shows the Excel output for the 
same data.

Special care must be taken if we use Excel to compute covariance. In Example 2.19 
the covariance between Facebook posts and fan interactions was found to be 81.542 (the 
same value as in the Minitab output in Figure 2.6). But the covariance of 72.4815 given in 
the Excel output is the population covariance, not the sample covariance. That is, Excel 
automatically calculates the population covariance as well as the population variance for 
the X and Y variables. To obtain the sample covariance, we must multiply the population 
covariance by a factor of n> 1n - 12 .

Covariances: Facebook Posts, Fan Interactions

 Facebook Posts Fan Interactions
Facebook Posts 34.694
Fan Interactions 81.542 11,369.500

Correlations: Facebook Posts, Fan Interactions

Pearson Correlation of Facebook Posts and Fan Interactions = 0.130

 
Covariance

Facebook  
Posts

Fan  
Interactions

Facebook Posts 30.8395

Fan Interactions 72.4815 10106.2222

 
Correlation

Facebook  
Posts

Fan  
Interactions

Facebook Posts       1

Fan Interactions 0.1298 1

Figure 2.7 

Covariance and 
Correlation: 
Facebook Posts, Fan 
Interactions (Excel)

Figure 2.6  

Covariance and 
Correlation: 
Facebook Posts,  
Fan Interactions 
(Minitab)

Example 2.20 Analysis of Stock Portfolios 
(Correlation Coefficient Analysis)

Christina Bishop, financial analyst for Integrated Securities, is considering a number 
of different stocks for a new mutual fund she is developing. One of her questions 
concerns the correlation coefficients between prices of different stocks. To determine 
the patterns of stock prices, she prepared a series of scatter plots and computed 
the sample correlation coefficient for each plot. What information does Figure 2.8 
provide?

From the Excel output, the sample covariance between Facebook posts and fan inter-
actions is found as follows:

Cov1x, y2 = 72.4815a9
8
b = 81.542

More formal procedures to determine if two variables are linearly related are dis-
cussed in Chapters 11 and 12. Also, we consider another measure of correlation in Chap-
ter 14.
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Figure 2.8 Relationships Between Various Stock Prices

Solution Christina sees that it is possible to control the variation in the average 
mutual fund price by combining various stocks into a portfolio. The portfolio variation 
is increased if stocks with positive correlation coefficients are included because the 
prices tend to increase together. In contrast, the portfolio variation is decreased if 
stocks with negative correlation coefficients are included. When the price of one 
stock increases, the price of the other decreases, and the combined price is more 
stable. Experienced observers of stock prices might question the possibility of very 
large negative correlation coefficients. Our objective here is to illustrate graphically 
the correlation coefficients for certain patterns of observed data and not to accurately 
describe a particular market. After examining these correlation coefficients, Christina is 
ready to begin constructing her portfolio. Correlation coefficients between stock prices 
affect the variation of the entire portfolio.

EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

Basic Exercises
2.35 Following is a random sample of seven (x, y) pairs of 

data points:11, 52 13, 72 14, 62 15, 82 17, 92 13, 62 15, 72

a. Compute the covariance.
b. Compute the correlation coefficient.

 2.36 Following is a random sample of five (x, y) pairs of 
data points:112, 2002 130, 6002 115, 2702 124, 5002 114, 2102
a. Compute the covariance.
b. Compute the correlation coefficient.

It is important to understand that correlation does not imply causation. It is possible 
for two variables to be highly correlated, but that does not mean that one variable causes 
the other variable. We need to be careful about jumping to conclusions based on television 
news reports, newspaper articles, online Web sites, or even medical studies that claim that 
A causes B.
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2.37 Following is a random sample of price per piece of 
plywood, X, and quantity sold, Y (in thousands):

Price per Piece (x) Thousands of Pieces Sold (y)
$6 80
 7 60
 8 70
 9 40
10  0

a. Compute the covariance.
b. Compute the correlation coefficient.

Application Exercises
2.38 River Hills Hospital is interested in determining 

the effectiveness of a new drug for reducing the 
time required for complete recovery from knee sur-
gery. Complete recovery is measured by a series of 
strength tests that compare the treated knee with 
the untreated knee. The drug was given in varying 
amounts to 18 patients over a 6-month period. For 
each patient the number of drug units, X, and the 
days for complete recovery, Y, are given by the fol-
lowing (x, y) data:15, 532 121, 652 114, 482 111, 662 19, 462 14, 56217, 532 121, 572 117, 492 114, 662 19, 542 17, 56219, 532 121, 522 113, 492 114, 562 19, 592 14, 562
a. Compute the covariance.
b. Compute the correlation coefficient.
c. Briefly discuss the relationship between the number 

of drug units and the recovery time. What dosage 
might we recommend based on this initial analysis?

 2.39 A Hong Kong snack-food vendor offers 3 types of 
boxed “lunches to go,” priced at $3, $5, and $10, re-
spectively. The vendor would like to establish whether 
there is a relationship between the price of the boxed 
lunch and the number of sales achieved per hour. 
Consequently, over a 15-day period the vendor re-
cords the number of sales made for each of the 3 types 
of boxed lunches. The following data show the boxed-
lunch price (x) and the number sold (y) during each of 
the 15 lunch hours.

(3 , 7) , (5 , 5) , (10 , 2) , (3 , 9) , (5 , 6) , (10 , 5) , (3 , 6) , (5 , 6) ,

(10, 1), (3 , 10) , (5 , 7) , (10 , 4) , (3 , 5) , (5 , 6) , (10 , 4)

a. Describe the data numerically with their covari-
ance and correlation.

b. Discuss the relationship between the price and num-
ber of boxed lunches sold.

 2.40 The following data give X, the price charged for a par-
ticular item, and Y, the quantity of that item sold (in 
thousands):

Price per Piece (X) Hundreds of Pieces Sold (Y)
$5 55

 6 53

 7 45

 8 40

 9 20

a. Compute the covariance.
b. Compute the correlation coefficient.

 2.41 Snappy Lawn Care, a growing business in cen-
tral Florida, keeps records of the temperature 

(in degrees Fahrenheit) and the time (in hours) re-
quired to complete a contract. A random sample of 
temperatures and time for n = 11 contracts is stored in 
the data file Snappy Lawn Care.

a. Compute the covariance.
b. Compute the correlation coefficient.

 2.42 A consumer goods company has been studying the 
effect of advertising on total profits. As part of this 
study, data on advertising expenditures (in thou-
sands of dollars) and total sales (in thousands of dol-
lars) were collected for a 5-month period and are as 
follows:110, 1002 115, 2002 17, 802 112, 1202 114, 1502

  The first number is advertising expenditures and the 
second is total sales. Plot the data and compute the 
correlation coefficient.

 2.43 The president of Floor Coverings Unlimited wants in-
formation concerning the relationship between retail 
experience (years) and weekly sales (in hundreds of 
dollars). He obtained the following random sample on 
experience and weekly sales:12, 52  14, 102 13, 82 16, 182 13, 62 15, 152 16, 202 12, 42

  The first number for each observation is years of expe-
rience, and the second number is weekly sales. Com-
pute the covariance and the correlation coefficient.
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DATA FILES

• Completion Times, 79, 83, 90
• Florin, 79
• Gilotti’s Pizzeria, 70, 90
• Grade Point Averages, 62, 68
• HEI Cost Data Variable Subset, 67

• Mendez Mortgage, 91
• Rates, 79
• RELEVANT Magazine, 85
• Shopping Times, 66, 69, 90
• Snappy Lawn Care, 89, 90

• Student GPA, 90
• Study, 68
• Sun, 68
• Water, 79

CHAPTER EXERCISES AND APPLICATIONS

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

2.44 A major airport recently hired consultant John 
Cadariu to study the problem of air traffic delays. He 
recorded the number of minutes planes were late for a 
sample of flights in the following table:

Minutes  
late

0 6  10 10 6  20 20 6  30 30 6  40 40 6  50 50 6  60

Number  
of flights

30 25 13 6 5 4

a. Estimate the mean number of minutes late.
b. Estimate the sample variance and standard deviation.

 2.45 Snappy Lawn Care, a growing business in cen-
tral Florida, keeps records of charges for its pro-

fessional lawn care services. A random sample of n = 
50 charges is stored in the data file Snappy Lawn 
Care. Describe the data numerically.

a. Compute the mean charge.
b. Compute the standard deviation.
c. Compute the five-number summary.

 2.46 In Example 2.9 we calculated the variance and 
standard deviation for Location 1 of Gilotti’s 

Pizzeria restaurants. Use the data in the data file Gil-
otti’s Pizzeria to find the variance and the standard 
deviation for Location 2, Location 3, and Location 4.

 2.47 Describe the following data numerically:14, 532 110, 652 115, 482 110, 662 18, 462 15, 56217, 602 111, 572 112, 492 114, 702 110, 542 17, 56219, 502 18, 522 111, 592 110, 662 18, 492 15, 502
2.48 Only 67 students in the data file Student GPA 

have SAT verbal scores.

a. Construct the scatter plot of GPAs and SAT scores 
for these 67 students.

b. Calculate the correlation between GPAs and SAT 
scores for these 67 students.

 2.49 Consider the following four populations:

• 1, 2, 3, 4, 5, 6, 7, 8
• 1, 1, 1, 1, 8, 8, 8, 8
• 1, 1, 4, 4, 5, 5, 8, 8,
• -6, -3, 0, 3, 6, 9, 12, 15

  All these populations have the same mean. Without do-
ing the calculations, arrange the populations according 

to the magnitudes of their variances, from smallest to 
largest. Then calculate each of the variances manually.

 2.50 An auditor finds that the values of a corporation’s ac-
counts receivable have a mean of $295 and a standard 
deviation of $63.

a. It can be guaranteed that 60% of these values will 
be in what interval?

b. It can be guaranteed that 84% of these values will 
be in what interval?

 2.51 In one year, earnings growth of the 500 largest U.S. 
corporations averaged 9.2%; the standard deviation 
was 3.5%.

a. It can be guaranteed that 84% of these earnings 
growth figures will be in what interval?

b. Using the empirical rule, it can be estimated that 
approximately 68% of these earnings growth fig-
ures will be in what interval?

 2.52 Tires of a particular brand have a lifetime mean of 
29,000 miles and a standard deviation of 3,000 miles.

a. It can be guaranteed that 75% of the lifetimes of 
tires of this brand will be in what interval?

b. Using the empirical rule, it can be estimated that 
approximately 95% of the lifetimes of tires of this 
brand will be in what interval?

 2.53 The supervisor of a very large plant obtained 
the time (in seconds) for a random sample of 

n = 110 employees to complete a particular task. The 
data is stored in the data file Completion Times.

a. Find and interpret the IQR.
b. Find the five-number summary.

 2.54 How much time (in minutes) do people spend 
on a typical visit to a local mall? A random 

sample of n = 104 shoppers was timed and the results 
(in minutes) are stored in the data file Shopping 
Times. You were asked to describe graphically the 
shape of the distribution of shopping times in Exer-
cise 1.72 (Chapter 1). Now describe the shape of the 
distribution numerically.

a. Find the mean shopping time.
b. Find the variance and standard deviation in shop-

ping times.
c. Find the 95th percentile.
d. Find the five-number summary.
e. Find the coefficient of variation.
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f. Ninety percent of the shoppers completed their 
shopping within approximately how many 
minutes?

 2.55 A random sample for five exam scores produced the 
following (hours of study, grade) data values:

Hours Studied (x) Test Grade (y)
3.5 88
2.4 76
4 92
5 85
1.1 60

a. Compute the covariance.
b. Compute the correlation coefficient

 2.56 A corporation administers an aptitude test to all new 
sales representatives. Management is interested in the 
extent to which this test is able to predict weekly sales 
of new representatives. Aptitude test scores range 
from 0 to 30 with greater scores indicating a higher ap-
titude. Weekly sales are recorded in hundreds of dol-
lars for a random sample of 10 representatives. Test 
scores and weekly sales are as follows:

Test Score, x 12 30 15 24 14 18 28 26 19 27
Weekly Sales, y 20 60 27 50 21 30 61 54 32 57

a. Compute the covariance between test score and 
weekly sales.

b. Compute the correlation between test score and 
weekly sales.

CASE STUDY: MORTGAGE PORTFOLIO

Within the past months, the management team of Mendez Mortgage Company expressed 
concern about the company’s rapidly increasing deterioration of its portfolio which was 
causing the company to lose significant amounts of money. At the end of a particular 
month the mortgage portfolio consisted of $45,060,059. Of this amount, $38,706,788 was 
from active accounts (accounts that are 30–119 days delinquent). The active delinquency 
in that month closed at 6.21% (the goal was 5.30%). The portfolio represents more than 
6,000 accounts, mostly families who purchased a week of Timeshare in the company’s 
resort in Myrtle Beach, SC.

You have been asked to assist Lizbeth Mendez, CEO, with a study of this problem. 
A random sample of n = 350 accounts of the company’s total portfolio was selected and 
data concerning numerous variables on these accounts (like the purchaser’s original and 
latest credit scores, state of residence, amount of down payment) were obtained. The data 
are stored in the data file Mendez Mortgage. Prepare a well-written report that describes 
both graphically and numerically a selected number of variables from this portfolio file. 
Be sure to explain how this data might benefit the management team in their investigation 
of the portfolio’s deterioration.

Appendix
SKEWNESS

In nearly all situations, we would compute skewness with a statistical software package 
or Excel. If skewness is zero or close to zero, then the distribution is symmetric or approxi-
mately symmetric. A negative skewness value tells us that the distribution is skewed to the 
left. Similarly, a positive skewness value tells us that the distribution is skewed to the right.

Skewness
Skewness is calculated as follows:

  skewness =
1
n

 
a
n

i=1
1xi - x23

s3  (2.28) 
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The important part of this expression is the numerator; the denominator serves the pur-
pose of standardization, making units of measurement irrelevant. Positive skewness re-
sults if a distribution is skewed to the right, since average cubed discrepancies about the 
mean are positive. Skewness is negative for distributions skewed to the left and 0 for 
distributions such as the bell-shaped distribution that is mounded and symmetric about 
its mean.

In Example 2.3 we found that the mean grade point average for a random sample 
of 156 students was 3.14 and the median grade point average was 3.31, thus indicating 
negative skewness. From the Excel output in Figure 2.1, the measure of skewness is 
-1.17, again indicating negative skewness. The same skewness value is obtained using 
Equation 2.28.
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Introduction

In his classic Financial Times Best Business Book of the Year, Fooled by 
 Randomness, Nassim Nicholas Taleb—a successful trader in London and New 
York and professor of finance—presents a clear analysis of why all persons 
in business and economics should understand probability. From selected 
passages: “This book is about luck disguised and perceived as nonluck (that 
is, skills) and, more generally, randomness disguised and perceived as non- 
randomness (that is, determinism). . . . more generally, we underestimate the 
share of randomness in about everything. . . . Probability theory is a young 
 arrival in mathematics; probability applied to practice is almost nonexistent as 
a discipline. . . . we seem to have evidence that what is called ‘courage’ comes 
from an  underestimation of the share of randomness in things rather than the 
more noble ability to stick one’s neck out for a given belief” (Taleb 2005).

In this and the following two chapters, we develop an understanding of 
probability and thus help you avoid the pitfalls discussed by Taleb. It will be 
important for you to understand first that the world in which your future oc-
curs is not deterministic. Second, if you can construct and use probability 
models by involving the understandings developed in the following chapters, 
you will have a greater chance of success. But, finally, it is also important to 
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know that there are  future  outcomes where a probability model cannot be 
 developed—the popular term “Black Swans.” One cannot know the prob-
ability that tomorrow a bunch of crazy people will destroy the World Trade 
Center in New York, that the United States will become involved in a very 
long and costly war in the Middle East, that an oil-drilling rig will explode 
and destroy the Gulf Coast fishing and tourism industry, or that a series 
of financial decisions made in September 2008 will lead to the greatest 
world financial collapse since the 1930s. And, of course, these events have 
 seriously influenced business and economic outcomes. But understanding 
probability can also help you realize that in fact there are Black Swans. If you 
understand probability, your future business decisions are more likely to be 
successful. We will show how probability models are used to study the vari-
ation in observed data so that inferences about the underlying process can 
be developed. Our objective is to understand probabilities, how they can be 
determined and how they can be used.

3.1 RANDOM EXPERIMENT, OUTCOMES, AND EVENTS

For a manager the probability of a future event presents a level of knowledge. The man-
ager could know with certainty that the event will occur—for example, a legal contract 
exists. Or the manager may have no idea if the event will occur—for example, the event 
could occur or not occur as part of a new business opportunity. In most business situa-
tions we cannot be certain about the occurrence of a future event, but if the probability 
of the event is known, then we have a better chance of making the best possible decision, 
compared to having no idea about the likely occurrence of the event. Business decisions 
and policies are often based on an implicit or assumed set of probabilities.

To help you develop a clear and rigorous understanding of probability, we will first 
develop definitions and concepts that provide a structure for defining probabilities. These 
definitions and concepts—such as sample space, outcomes, and events—are the basic 
building blocks for defining and computing probabilities. Probability begins with the con-
cept of a random experiment that can have two or more outcomes, but we do not know 
which will occur next.

Random Experiment
A random experiment is a process leading to two or more possible outcomes, 
without knowing exactly which outcome will occur.

Examples of random experiments include the following:

 1. A coin is tossed and the outcome is either a head or a tail.
 2. A company has the possibility of receiving 0–5 contract awards.
 3. The number of persons admitted to a hospital emergency room during any hour 

 cannot be known in advance.
 4. A customer enters a store and either purchases a shirt or does not.
 5. The daily change in an index of stock market prices is observed.
 6. A bag of cereal is selected from a packaging line and weighed to determine if the 

weight is above or below the stated package weight.
 7. A baseball batter has a number of different outcomes—such as a hit, walk, strikeout, 

fly ball out, and more—each time he or she is at bat.

In each of the random experiments listed, we can specify the possible outcomes, 
 defined as basic outcomes. We do not know in advance which outcome will occur.
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Sample Space
The possible outcomes from a random experiment are called the basic out-
comes, and the set of all basic outcomes is called the sample space. We use 
the symbol S to denote the sample space.

Example 3.1 Professional Baseball Batter  
(Sample Space)

What is the sample space for a professional baseball batter? A high-quality professional 
baseball player, when at bat, could have the listed outcomes occur that are shown in 
the sample space displayed in Table 3.1. The sample space consists of six basic out-
comes. No two outcomes can occur together, and one of the seven must occur. The 
probabilities were obtained by examining baseball batters’ data.

Table 3.1 Outcomes for a Baseball Batter

SAMPLE SPACE, S PROBABILITY

O1 Safe hit 0.30

O2 Walk or hit by pitcher 0.10

O3 Strikeout 0.10

O4 Groundball out 0.30

O5 Fly ball out 0.18

O6 Reach base on an error 0.02

Example 3.2 Investment Outcomes (Sample Space)

An investor follows the Dow Jones Industrial index. What are the possible basic out-
comes at the close of the trading day?

Solution The sample space for this experiment is as follows:

S = [{1. The index is higher than at yesterday’s close},
     {2. The index is not higher than at yesterday’s close}]

One of these two outcomes must occur. They cannot occur simultaneously. Thus, these 
two outcomes constitute a sample space.

In many cases we are interested in some subset of the basic outcomes and not the 
individual outcomes. For example, we might be interested in whether the batter reached 
the base safely—that is, safe hit, walk, or reach base on an error. This subset of outcomes 
is defined as an event.

We must define the basic outcomes in such a way that no two outcomes can occur 
simultaneously. In addition, the random experiment must necessarily lead to the occur-
rence of one of the basic outcomes.
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It is possible that the intersection of two events is the empty set. In the hitter example, 
if we had defined an event C, “batter is out,” then the intersection of events A, “batter 
reaches base safely,” and C would be an empty set, so A and C are mutually exclusive.

Event
An event, E, is any subset of basic outcomes from the sample space. An 
event occurs if the random experiment results in one of its constituent basic 
outcomes. The null event represents the absence of a basic outcome and is 
denoted by [.

Intersection of Events
Let A and B be two events in the sample space S. Their intersection, denoted 
by A > B, is the set of all basic outcomes in S that belong to both A and B. 
Hence, the intersection A > B occurs if and only if both A and B occur. We use 
the term joint probability of A and B to denote the probability of the intersec-
tion of A and B.

More generally, given K events E1, E2, . . . , EK, their intersection, 
E1 > E2 > . . . > EK, is the set of all basic outcomes that belong to every 
Ei1 i = 1, 2, . . . , K2.

Mutually Exclusive
If the events A and B have no common basic outcomes, they are called mutu-
ally exclusive, and their intersection, A > B, is said to be the empty set, indi-
cating that A > B has no members.

More generally, the K events E1, E2, . . . , EK are said to be mutually exclusive if every 
pair (Ei, Ej) is a pair of mutually exclusive events.

In the batter example Events A and C from above are mutually exclusive.
Figure 3.1 illustrates intersections using a Venn diagram. In part (a) of Figure 3.1, 

the rectangle S represents the sample space, and the two closed figures represent the 
events A and B. Basic outcomes belonging to A are within the circle labeled A, and basic 
outcomes belonging to B are in the corresponding B circle. The intersection of A and B, 
A > B, is indicated by the shaded area where the figures intersect. We see that a basic 
outcome is in A > B if and only if it is in both A and B. Thus, in the batter example 
outcomes, safe hit, O1, or reach base on an error, O6, belong to both events: “the batter 
reaches base safely” (Event A [O1, O2, O6]) and “the batter hits the ball” (Event B [O1, 
O4, O5, O6]). In Figure 3.1(b) the figures do not intersect, indicating that events A and B 
are mutually exclusive. For example, if a set of accounts is audited, the events “less than 

In some applications we are interested in the simultaneous occurrence of two or more 
events. In the batter example we might be interested in two events: “the batter reaches 
base safely” (Event A [O1, O2, O6]) and “the batter hits the ball” (Event B [O1, O4, O5, O6]). 
One possibility is that specific outcomes in both events occur simultaneously. This will 
happen for outcomes that are contained in both events—that is, safe hit, O1, or reach base 
on an error, O6. This later set of outcomes is the intersection A > B[O1, O6]. Thus, in the 
batter example the outcomes, safe hit, O1, or reach base on an error, O6, belong to both of 
these two events: “the batter reaches base safely” (Event A [O1, O2, O6]) and “the batter 
hits the ball” (Event B [O1, O4, O5, O6]). Note that the probability of this intersection is 
0.32 10.30 + 0.022 .
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5% contain material errors” and “more than 10% contain material errors” are mutually 
exclusive.

Table 3.2 Intersection of and Mutually Exclusive Events

(a) Intersection of Events (b) Mutually Exclusive Events

B B  B B

A A > B A - 1A > B2 A [ A

A B - 1A > B2 A > B A  B A > B

Union
Let A and B be two events in the sample space, S. Their union, denoted by 
A < B, is the set of all basic outcomes in S that belong to at least one of 
these two events. Hence, the union A < B occurs if and only if either A or B 
or both occur.

More generally, given the K events E1, E2, . . . , EK, their union, 
E1 < E2 < . . . < EK, is the set of all basic outcomes belonging to at least
one of these K events.

The Venn diagram in Figure 3.2 shows the union, from which it is clear that a basic 
outcome will be in A < B if and only if it is in either A or B or both.

A

S

B A

S

BA˘B

(a) (b)

Figure 3.1 Venn 
Diagrams for the 
Intersection of 
Events A and B: (a) 
A > B is the Shaded 
Area; (b) A and B are 
Mutually Exclusive

Tables 3.2(a) and 3.2(b) can also be used to demonstrate the same conditions. The en-
tire table represents S the sample space. Basic outcomes belonging to A are in the first row 
labeled A, and basic outcomes belonging to B are in the first column labeled B. The second 
row designates basic outcomes not in A as A, and outcomes not in B as B. The intersection 
of A and B, A > B, is indicated by the upper left table cell. A basic outcome is in A > B 
if and only if it is in both A and B. Thus, in the batter example—Table 3.2(a)—outcomes 
safe hit, O1, and reach base on an error, O6, belong to the two events: “the batter reaches 
base safely” (Event A [O1, O2, O6]) and “the batter hits the ball” (Event B [O1, O4, O5, O6]), 
the result shown in Figure 3.1(a). In Table 3.2(b) the figures do not intersect, indicating 
that events A and B are mutually exclusive, the same as Figure 3.1(b). When we consider 
several events jointly, another possibility of interest is that at least one of them will occur. 
This will happen if the basic outcome of the random experiment belongs to at least one of 
the events. The set of basic outcomes belonging to at least one of the events is called their 
union. For the batter example the two events, “the batter reaches base safely” (Event A 
[O1, O2, O6]) and “the batter hits the ball” (Event B [O1, O4, O5, O6]), the events [O1, O2, O4, 
O5, O6] are included in at least one of the events. This is an example of the union of two 
events.
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If the union of several events covers the entire sample space, S, we say that these 
events are collectively exhaustive. Since every basic outcome is in S, it follows that every 
outcome of the random experiment will be in at least one of these events. In the baseball 
example, the events “the batter gets on base” and “batter makes an out” are collectively 
exhaustive.

Figure 3.2 Venn 
Diagram for the 
Union of Events A 
and B

Collectively Exhaustive
Given the K events E1, E2, . . . , EK in the sample space, S, if 
E1 h  E2 h  . . . h  EK = S, these K events are said to be collectively exhaustive.

We can see that the set of all basic outcomes contained in a sample space is both mu-
tually exclusive and collectively exhaustive. We have already noted that these outcomes 
are such that one must occur, but no more than one can simultaneously occur.

Next, let A be an event. Suppose that our interest is all of the basic outcomes not in-
cluded in A.

Complement
Let A be an event in the sample space, S. The set of basic outcomes of a ran-
dom experiment belonging to S but not to A is called the complement of A 
and is denoted by A.

Clearly, events A and A are mutually exclusive—no basic outcome can belong to 
both—and collectively exhaustive—every basic outcome must belong to one or the other. 
Figure 3.3 shows the complement of A using a Venn diagram. We have now defined three 
important concepts—intersection, union, and complement—that will be important in our 
development of probability.

A

S

B

Figure 3.3 Venn 
Diagram for the 
Complement of 
Event A AA

S
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Example 3.3 Batter Performance Showing Unions, 
Intersections, and Complements

The following examples help to illustrate these concepts. When a batter is up, two 
events of interest are “the batter reaches base safely” (Event A [O1, O2, O6]) and “the 
batter hits the ball”(Event B [O1, O4, O5, O6]), using the definitions from Example 3.1.

1. The complements of these events are, respectively, “the batter does not reach base 
safely” 1A2 and “the batter does not hit the ball” 1B2

A = 3O3, O4, O54 B = 3O2, O34
2. The intersection of A and B is the event “batter reaches base safely as the result 

of hitting the ball,” and so,

  A > B = 3O1, O64  (3.1)

3. The union is the event “the batter reaches base safely or the batter hits the ball,” 
and so,

  A < B = 3O1, O2, O4, O5, O64  (3.2)

4. Note that the events A3O1, O2, O64  and A3O3, O4, O54  are mutually exclusive since 
their intersection is the empty set and collectively exhaustive since their union is the 
sample space S, that is,

A < A = 3O1, O2, O3, O4, O5, O64
The same statements apply for B3O1, O4, O5, O64  and B [O2, O3].

Consider also the intersection of events A3O3, O4, O54  and B3O1, O4, O5, O64. The 
events O4, “ground ball out,” and O5, “fly ball out,” represent the condition where the 
batter hits the ball but makes an out.

Example 3.4 Dow Jones Industrial Average  
(Unions, Intersections, and Complements)

We designate four basic outcomes for the Dow Jones Industrial average over two con-
secutive days:

O1: The Dow Jones average rises on both days.
O2:  The Dow Jones average rises on the first day but does not rise on the 

second day.
O3:  The Dow Jones average does not rise on the first day but rises on the 

second day.
O4: The Dow Jones average does not rise on either day.

Clearly, one of these outcomes must occur, but more than one cannot occur at the 
same time. We can, therefore, write the sample space as S = 3O1, O2, O3, O44 . Now, we 
consider these two events:

A: “The Dow Jones average rises on the first day.”
B: “The Dow Jones average rises on the second day.”

Find the intersection, union, and complement of A and B.

Solution We see that A occurs if either O1 or O2 occurs, and B occurs if either O1 or 
O3 occurs; thus,

A = 3O1, O24 and B = 3O1, O34
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The intersection of A and B is the event “the Dow Jones average rises on the first 
day and rises on the second day.” This is the set of all basic outcomes belonging to both 
A and B, A > B = 3O14 .

The union of A and B is the event “the Dow Jones average rises on at least one of 
the two days.” This is the set of all outcomes belonging to either A or B or both. Thus,

A < B = 3O1, O2, O34
Finally, the complement of A is the event “the Dow Jones average does not rise on 

the first day.” This is the set of all basic outcomes in the sample space, S, that do not 
belong to A. Hence,

A3O3, O44 and, similarly, B3O2, O44
Figure 3.4 shows the intersection of events A and B. This intersection contains all 

outcomes that belong in both A and B. Clearly, A > B = 3O34 .
Figure 3.4 Venn Diagram for the Intersection of A and B

Additional results are shown in the chapter appendix.

EXERCISES

Basic Exercises
For Exercises 3.1–3.4 use the sample space S defined as 
follows:

S = 3E1, E2, E3, E4, E5, E6, E7, E8, E9, E104
 3.1 Given A = 3E1, E3, E6, E94 , define A.
 3.2 Given A = 3E1, E3, E7, E94  and B = 3E2, E3, E8, E94 .

a. What is A intersection B?
b. What is the union of A and B?
c. Is the union of A and B collectively exhaustive?

 3.3 Given A = 3E1, E3, E7, E94 and B = 3E2, E3, E8, E94.
a. What is the intersection of A intersection B?
b. What is the union of A and B?
c. Is the union of A and B collectively exhaustive?

 3.4 Given A = 3E3, E5,  E6, E104  and B = 3E3, E4, E6, E94
a. What is the intersection of A and B?
b. What is the union of A and B?
c. Is the union of A and B collectively exhaustive?

Application Exercises
 3.5 A corporation takes delivery of some new machinery 

that must be installed and checked before it becomes 

available to use. The corporation is sure that it will 
take no more than 7 days for this installation and 
check to take place. Let A be the event “it will be more 
than 4 days before the machinery becomes available” 
and B be the event “it will be less than 6 days before 
the machinery becomes available.”

a. Describe the event that is the complement of 
event A.

b. Describe the event that is the intersection of events 
A and B.

c. Describe the event that is the union of events A 
and B.

d. Are events A and B mutually exclusive?
e. Are events A and B collectively exhaustive?
f.  Show that 1A > B2 < 1A > B2 = B.
g. Show that A < 1A > B2 = A < B.

 3.6 Consider Example 3.4, with the following four basic 
outcomes for the Dow Jones Industrial Average over 
two consecutive days:

O1: The Dow Jones average rises on both days.
O2:  The Dow Jones average rises on the first day 

but does not rise on the second day.

A

S

B

A˘B
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O3:  The Dow Jones average does not rise on the 
first day but rises on the second day.

O4:  The Dow Jones average does not rise on either 
day.

  Let events A and B be the following:

A: The Dow Jones average rises on the first day.
B: The Dow Jones average rises on the second day.

a. Show that 1A > B2 < 1A > B2 = B.
b. Show that A < 1A > B2 = A < B.

 3.7 Florin Frenti operates a small, used car lot that has 
three Mercedes (M1, M2, M3) and two Toyotas (T1, T2). 
Two customers, Cezara and Anda, come to his lot, 

and each selects a car. The customers do not know 
each other, and there is no communication between 
them. Let the events A and B be defined as follows:

A: The customers select at least one Toyota.
B: The customers select two cars of the same model.

a. Identify all pairs of cars in the sample space.
b. Define event A.
c. Define event B.
d. Define the complement of A.
e. Show that 1A > B2< 1A > B2 = B.
f.  Show that A < 1A > B2 = A < B.

3.2 PROBABILITY AND ITS POSTULATES

Now, we are ready to use the language and concepts developed in the previous section 
to determine how to obtain an actual probability for a process of interest. Suppose that a 
random experiment is to be carried out and we want to determine the probability that a 
particular event will occur. Probability is measured over the range from 0 to 1. A prob-
ability of 0 indicates that the event will not occur, and a probability of 1 indicates that the 
event is certain to occur. Neither of these extremes is typical in applied problems. Thus, 
we are interested in assigning probabilities between 0 and 1 to uncertain events. To do 
this, we need to utilize any information that might be available. For example, if incomes 
are high, then sales of luxury automobiles will occur more often. An experienced sales 
manager may be able to establish a probability that future sales will exceed the company’s 
profitability goal based on past experience. In this section we consider three definitions of 
probability:

 1. Classical probability
 2. Relative frequency probability
 3. Subjective probability

Classical Probability

Classical Probability
Classical probability is the proportion of times that an event will occur, assum-
ing that all outcomes in a sample space are equally likely to occur. Dividing 
the number of outcomes in the sample space that satisfy the event by the total 
number of outcomes in the sample space determines the probability of an 
event. The probability of an event A is

P1A2 =
NA

N
 (3.3)

where NA is the number of outcomes that satisfy the condition of event A, and 
N is the total number of outcomes in the sample space. The important idea 
here is that one can develop a probability from fundamental reasoning about 
the process.

The classical statement of probability requires that we count outcomes in the sample 
space. Then we use the counts to determine the required probability. The following ex-
ample indicates how classical probability can be used in a relatively simple problem.
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Example 3.5 Computer Purchase Selection  
(Classical Probability)

Karlyn Akimoto operates a small computer store. On a particular day she has three 
Hewlett-Packard and two Dell computers in stock. Suppose that Susan Spencer comes 
into the store to purchase two computers. Susan is not concerned about which brand 
she purchases—they all have the same operating specifications—so Susan selects the 
computers purely by chance: Any computer on the shelf is equally likely to be selected. 
What is the probability that Susan will purchase one Hewlett-Packard and one Dell 
computer?

Solution The answer can be obtained using classical probability. To begin, the 
sample space is defined as all possible pairs of two computers that can be selected from 
the store. The number of pairs is then counted, as is the number of outcomes that meet 
the condition—one Hewlett-Packard and one Dell. Define the three Hewlett-Packard 
computers as H1, H2, and H3 and the two Dell computers as D1 and D2. The sample 
space, S, contains the following pairs of computers:

S = 5H1D1, H1D2, H2D1, H2D2, H3D1, H3D2, H1H2, H1H3, H2H3, D1D26
The number of outcomes in the sample space is 10. If A is the event “one Hewlett-

Packard and one Dell computer are chosen,” then the number, NA, of outcomes that 
have one Hewlett-Packard and one Dell computer is 6. Therefore, the required prob-
ability of event A—one Hewlett-Packard and one Dell—is

P1A2 =
NA

N
=

6
10

= 0.6

Counting all the outcomes would be very time consuming if we first had to identify 
every possible outcome. However, from previous courses many of you may have learned 
the basic formula to compute the number of combinations of n items taken x at a time.

Formula for Determining the Number of  
Combinations
The counting process can be generalized by using the following equation to 
compute the number of combinations of n items taken x at a time:

Cn
x =

n!
x!1n -  x2!  0! = 1              (3.4)

The following section develops combinations, and you should study this section if 
you need to learn about or review your understanding of combinations.

Permutations and Combinations

A practical difficulty that sometimes arises in computing the probability of an event is 
counting the numbers of basic outcomes in the sample space and the event of interest. For 
some problems the use of permutations or combinations can be helpful.

1. Number of Orderings
We begin with the problem of ordering. Suppose that we have some number x of objects 
that are to be placed in order. Each object may be used only once. How many different 
sequences are possible? We can view this problem as a requirement to place one of the 
objects in each of x boxes arranged in a row.
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Beginning with the left box in Figure 3.5, there are x different ways to fill it. Once an 
object is put in that box, there are 1x - 12  objects remaining, and so 1x - 12  ways to fill 
the second box. That is, for each of the x ways to place an object in the first box, there are 1x - 12  possible ways to fill the second box, so the first two boxes can be filled in a total 
of x1x - 12 ways. Given that the first two boxes are filled, there are now 1x - 22  ways 
of filling the third box, so the first three boxes can be filled in a total of x1x - 121x - 22
ways. When we arrive at the last box, there is only one object left to put in it. Finally, we 
arrive at the number of possible orderings.

(x – 1) (x – 2) .  .  . 2x 1

Figure 3.5 The 
Orderings of x 
Objects

Number of Possible Orderings
The total number of possible ways of arranging x objects in order is given by

x1x - 121x - 22g 122112 = x!

where x! is read “x factorial.”

2. Permutations
Suppose that now we have a number n of objects with which the x ordered boxes could be 
filled (with n 7 x). Each object may be used only once. The number of possible orderings is 
called the number of permutations of x objects chosen from n and is denoted by the symbol Pn

x.
We can argue precisely as before, except that there will be n ways to fill the first box, 1n - 12  ways to fill the second box, and so on, until we come to the final box. At this 

point there will be 1n - x + 12  objects left, each of which could be placed in that box, as 
illustrated in Figure 3.6.

Figure 3.6 

The Permutations of 
x Objects 
Chosen From n 
Objects

n (n – 1) (n – 2) .  .  . (n – x + 2) (n – x + 1)

(n – x) objects left over

Permutations
The total number of permutations of x objects chosen from n, Pn

x, is the num-
ber of possible arrangements when x objects are to be selected from a total of 
n and arranged in order.

Pn
x = n1n - 121n - 22g1n - x + 12

Multiplying and dividing the right hand side by1n - x21n - x - 12g122112 = 1n - x2!
gives

 Pn
x =

n1n - 121n - 22g1n - x + 121n - x21n - x - 12g1221121n - x21n - x - 12g122112
 =

n!1n - x2 !



104 Chapter 3 Elements of Chance: Probability Methods

Example 3.6 Five Letters (Permutations)

Suppose that two letters are to be selected from A, B, C, D, and E and arranged in order. 
How many permutations are possible?

Solution The number of permutations, with n = 5 and x = 2, is as follows:

P5
2 =

5!
3!

= 20

These are

AB AC AD AE BC

BA CA DA EA CB

BD BE CD CE DE

DB EB DC EC ED

3. Combinations
Finally, suppose that we are interested in the number of different ways that x objects can 
be selected from n (where no object may be chosen more than once) but order is not impor-
tant. Notice in Example 3.6 that the entries in the second and fourth rows are just rear-
rangements of those directly above them and may, therefore, be ignored. Thus, there are 
only 10 possibilities for selecting two objects from a group of 5 if order is not important. 
The number of possible selections is called the number of combinations and is denoted by 
Cn

x; here x objects are to be chosen from n. To find this number, note first that the number 
of possible permutations is Pn

x . However, many of these will be rearrangements of the 
same x objects and, therefore, are irrelevant. In fact, since x objects can be ordered in x! 
ways, we are concerned with only a proportion 1>x! of the permutations. This leads us to 
a previously stated outcome—namely, Equation 3.5.

Number of Combinations
The number of combinations, Cn

x, of x objects chosen from n is the number of 
possible selections that can be made. This number is

Cn
x =

Pn
x

x!

or, simply,

Cn
x =

n!
x!1n - x2!               (3.5)

In some applications the notationan
x
b = Cn

x =
n!

x!1n - x2!
is used.
We illustrate the combination equation, Equation 3.5, by noting that in Example 3.5 

the number of combinations of the 5 computers taken 2 at a time is the number of ele-
ments in the sample space:

C5
2 =

5!
2!15 - 22! =

5 # 4 # 3 # 2 # 1
2 # 113 # 2 # 12 = 10
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Example 3.7 Probability of Employee Selection 
(Combinations)

A personnel officer has 8 candidates to fill 4 similar positions. 5 candidates are men, 
and 3 are women. If, in fact, every combination of candidates is equally likely to be  
chosen, what is the probability that no women will be hired?

Solution First, the total number of possible combinations of 4 candidates chosen 
from 8 is as follows:

C8
4 =

8!
4!4!

= 70

Now, in order for no women to be hired, it follows that the 4 successful candidates 
must come from the available 5 men. The number of such combinations is as follows:

C5
4 =

5!
4!1!

= 5

Therefore, if at the outset each of the 70 possible combinations was equally likely to 
be chosen, the probability that one of the 5 all-male combinations would be selected is 
5>70 = 1>14.

Example 3.8 Computer Selection Revised  
(Classical Probability)

Suppose that Karlyn’s store now contains 10 Hewlett-Packard computers, 5 Dell com-
puters, and 5 Sony computers. Susan enters the store and wants to purchase 3 com-
puters. The computers are selected purely by chance from the shelf. Now what is the 
probability that she selects 2 Hewlett-Packard computers and 1 Dell?

Solution The classical definition of probability will be used. But in this example 
the combinations formula will be used to determine the number of outcomes in the 
sample space and the number of outcomes that satisfy the condition A: [2 Hewlett-
Packard and 1 Dell].

The total number of outcomes in the sample space is as follows:

N = C20
3 =

20!
3!120 - 32! = 1,140

The number of ways that we can select 2 Hewlett-Packard computers from the 10 
available is computed by the following:

C10
2 =

10!
2!110 - 22! = 45

Similarly, the number of ways that we can select 1 Dell computer from the 5 available is 
5 and, therefore, the number of outcomes that satisfy event A is as follows:

NA = C10
2 * C5

1 = 45 * 5 = 225

Finally, the probability of A =  [2 Hewlett-Packard and 1 Dell] is as follows:

PA =
NA

N
=

C10
2 * C5

1

C20
3

=
45 * 5
1,140

= 0.197
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Relative Frequency

We often use relative frequency to determine probabilities for a particular population. The 
relative frequency probability is the number of events in the population that meet the condition 
divided by the total number in the population. These probabilities indicate how often an 
event will occur compared to other events. For example, if event A has a probability of 0.40, 
we know that it will occur 40% of the time. This is more often than event B if event B has only 
a 0.30 probability of occurrence. But we do not know which event, A or B, will occur next.

Relative Frequency Probability
The relative frequency probability is the limit of the proportion of times that 
event A occurs in a large number of trials, n,

P1A2 =
nA

n
                   (3.6)

where nA is the number of A outcomes and n is the total number of trials or out-
comes. The probability is the limit as n becomes large (or approaches infinity).

The probabilities for the baseball batter in Example 3.1 were computed from baseball 
statistical files using the definition of relative frequency.

Example 3.9 Probability of Incomes Above $75,000  
(Relative Frequency Probability)

Sally Anderson is considering an opportunity to establish a new-car dealership in Great 
Rivers County, which has a population of 150,000 people. Experience from many other 
dealerships indicates that in similar areas a dealership will be successful if at least 40% 
of the households have annual incomes above $75,000. She has asked Aysha Toprak, a 
marketing consultant, to estimate the proportion of family incomes above $75,000, or 
the probability of such incomes.

Solution After considering the problem, Aysha decides that the probability should 
be based on the relative frequency. She first examines the most recent census data and 
finds that there were 54,345 households in Great Rivers County and that 31,496 had 
incomes above $75,000. Aysha computed the probability for event A, “family income 
greater than $75,000” as follows:

P1A2 =
nA

n
=

31,496
54,345

= 0.580

Since Aysha knows that there are various errors in census data, she also consulted a 
recent population data source on the Web to which her company subscribes. From this 
source she found 55,100 households, with 32,047 having incomes above $75,000. Aysha 
computed the probability of event A from this source as follows:

P1A2 =
nA

n
=

32,047
55,100

= 0.582

Since these numbers are close, she could report either. Aysha chose to report the 
probability as 0.58.

This example shows that probabilities based on the relative frequency approach often 
can be obtained using existing data sources. It also indicates that different results can and 
do occur and that experienced analysts and managers will seek to verify their results by 
using more than one source. Experience and good judgment are needed to decide if con-
firming data is close enough.
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Subjective Probability

Subjective Probability
Subjective probability expresses an individual’s degree of belief about the 
chance that an event will occur. These subjective probabilities are used in  
certain management decision procedures.

We can understand the subjective probability concept by using the concept of fair 
bets. For example, if I assert that the probability of a stock price rising in the next week 
is 0.5, then I believe that the stock price is just as likely to increase as it is to decrease. In 
assessing this subjective probability, I am not necessarily thinking in terms of repeated 
experimentation, but instead I am thinking about a stock price over the next week. My 
subjective probability assessment implies that I would view as fair a bet in which I paid 
$1 if the price decreased and I received $1 if the price increased. If I would receive more 
than $1 for a price increase, then I would regard the bet as being in my favor. Similarly, if 
I believe that the probability of a horse winning a particular race is 0.4, then I am asserting 
the personal view that there is a 40-to-60 chance of it winning. Given this belief, I would 
regard as fair a bet in which I would gain $3 if the horse won and lose $2 if the horse lost.

We emphasize that subjective probabilities are personal. There is no requirement that 
different individuals arrive at the same probabilities for the same event. In the stock price 
example we would conclude that the appropriate probability of a stock increase is 0.50. 
However, an individual with more information about the stock might believe otherwise. 
In the horse race example, it is likely that two bettors will reach different subjective proba-
bilities. They may not have the same information, and, even if they do, they may interpret 
the information differently. We know that individual investors do not all hold the same 
views on the future behavior of the stock market. Their subjective probabilities depend on 
their knowledge and experience and the way they interpret it. Managers of different firms 
have different subjective probabilities about the potential sales opportunities in a given 
regional market, and, thus, they make different decisions.

Probability Postulates
We need to develop a framework for assessing and manipulating probabilities. To do this, 
we will first set down three rules (or postulates) that probabilities will be required to obey 
and show that these requirements are “reasonable.”

Probability Postulates
Let S denote the sample space of a random experiment, Oi the basic 
outcomes, and A, an event. For each event A of the sample space, S, we 
assume that P(A) is defined and we have the following probability postulates:

1. If A is any event in the sample space, S,

0 … P1A2 … 1

2. Let A be an event in S and let Oi denote the basic outcomes. Then,

P1A2 = a
A

P1Oi2
where the notation implies that the summation extends over all the basic 
outcomes in A.

3. P1S2 = 1.

The first postulate requires that the probability lie between 0 and 1. The second pos-
tulate can be understood in terms of relative frequencies. Suppose that a random experi-
ment is repeated N times. Let Ni be the number of times the basic outcome Oi occurs, and 
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let NA be the number of times event A occurs. Then, since the basic outcomes are mutually 
exclusive, NA is just the sum of Ni for all basic outcomes in A; that is,

NA = a
A

Ni

and, on dividing by the number of trials, N, we obtain

NA

N
= a

A

Ni

N

But under the relative frequency concept of probability, NA>N tends to P1A2, and 
each Ni>N tends to P1Oi2  as N becomes infinitely large. Thus, the second postulate can be 
seen as a logical requirement when probability is viewed in this way.

The third postulate can be paraphrased as, When a random experiment is carried out, 
something has to happen. Replacing A by the sample space, S, in the second postulate 
gives

P1S2 = a
S

P1Oi2
where the summation extends over all the basic outcomes in the sample space. But since 
P1S2 = 1 by the third postulate, it follows that

a
S

P1Oi2 = 1

That is, the sum of the probabilities for all basic outcomes in the sample space is 1.

Consequences of the Postulates
We now list and illustrate some immediate consequences of the three postulates.

 1. If the sample space, S, consists of n equally likely basic outcomes, O1, O2, . . . , On, then

P1Oi2 = 1
n
  where i = 1, 2,c, n

This follows because the n outcomes cover the sample space and are equally likely. For 
example, if a fair die is rolled, the probability for each of the six basic outcomes is 1>6.

 2. If the sample space, S, consists of n equally likely basic outcomes and event A consists 
of nA of these outcomes, then

P1A2 =
nA

n

This follows from consequence 1 and postulate 2. Every basic outcome has the 
probability 1>n, and, by postulate 2, P1A2  is just the sum of the probabilities of 
the nA basic outcomes in A. For example, if a fair die is rolled and A is the event 
“even number results,” there are n = 6 basic outcomes, and nA = 3 of these are in 
A. Thus, P1A2 = 3>6 = 1>2.

 3. Let A and B be mutually exclusive events. Then the probability of their union is the 
sum of their individual probabilities—that is,

P1A < B2 = P1A2 + P1B2
In general, if E1, E2, . . . , EK are mutually exclusive events,

P1E1 < E2 < g< EK2 = P1E12 + P1E22 + g + P1EK2
This result is a consequence of postulate 2. The probability of the union of A and B is

P1A < B2 = a
A<B

P1Oi2
where the summation extends over all basic outcomes in A < B. But since A and B 
are mutually exclusive, no basic outcome belongs to both, so

a
A<B

P1Oi2 = a
A

P1Oi2 + a
B

P1Oi2 = P1A2 + P1B2
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 4. If E1, E2, . . . , EK are collectively exhaustive events, the probability of their union is

P1E1 < E2 < g< EK2 = 1

Since the events are collectively exhaustive, their union is the whole sample space, S, 
and the result follows from postulate 3.

Example 3.10 Web Advertising (Probability)

The Web site for a specialty clothing retailer receives 1,000 hits on a particular day. 
From past experience it has been determined that every 1,000 hits results in 10 large 
sales of at least $500 and 100 small sales of less than $500. Assuming that all hits have 
the same probability of a sale, what is the probability of a large sale from a particular 
hit? What is the probability of a small sale? What is the probability of any sale?

Solution Over many days with 1,000 hits there will be 10 large sales, 100 small sales, 
and 890 will result in no sales. Our single hit is selected from the 1,000 total hits. Let 
A be the event “selected hit results in a large sale” and let B be the event “selected hit 
results in a small sale.” The probabilities are as follows:

 P1A2 =
10

1,000
= 0.01

 P1B2 =
100

1,000
= 0.10

The event “hit results in a sale” is the union of events A and B. Since these events 
are mutually exclusive,

P1A < B2 = P1A2 + P1B2 = 0.01 + 0.10 = 0.11

Example 3.12 Oil Well Drilling (Probability)

In the early stages of the development of the Hibernia oil site in the Atlantic Ocean, 
the Petroleum Directorate of Newfoundland estimated the probability to be 0.1 that 
economically recoverable reserves would exceed 2 billion barrels. The probability for 
reserves in excess of 1 billion barrels was estimated to be 0.5. Given this information, 
what is the estimated probability of reserves between 1 and 2 billion barrels?

Example 3.11 Dow Jones Revisited (Probability)

In Example 3.4 we considered the course of the Dow Jones Industrial Average over 
2 days and defined four basic outcomes:

O1: The Dow Jones average rises on both days.
O2:  The Dow Jones average rises on the first day but does not rise on the second day.
O3:  The Dow Jones average does not rise on the first day but rises on the second day.
O4: The Dow Jones average does not rise on either day.

Suppose that we assume these four basic outcomes are equally likely. In that case 
what is the probability that the market will rise on at least 1 of the 2 days?

Solution The event of interest, “market rises on at least 1 of the 2 days,” contains 3 of 
the 4 basic outcomes—O1, O2, and O3. Since the basic outcomes are all equally likely, it 
follows that the probability of this event is 3>4, or 0.75.
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Basic Exercises
 3.8 The sample space contains 5 As and 7 Bs. What is the 

probability that a randomly selected set of 2 will in-
clude 1 A and 1 B? 

 3.9 The sample space contains 6 As and 4 Bs. What is the 
probability that a randomly selected set of 3 will in-
clude 1 A and 2 Bs? 

 3.10 The sample space contains 10 As and 6 Bs. What is the 
probability that a randomly selected set of 4 will in-
clude 2 As and 2 Bs?

 3.11 In a city of 120,000 people there are 20,000 Norwe-
gians. What is the probability that a randomly selected 
person from the city will be Norwegian?

 3.12 In a city of 180,000 people there are 20,000 legal 
immigrants from Latin America. What is the prob-
ability that a random sample of two people from the 
city will contain two legal immigrants from Latin 
America?

Application Exercises
 3.13 A corporation has just received new machinery that 

must be installed and checked before it becomes op-
erational. The accompanying table shows a manager’s 
probability assessment for the number of days re-
quired before the machinery becomes operational.

Number of days    3     4    5    6      7
Probability 0.08 0.24 0.41 0.20 0.07

Let A be the event “it will be more than four days be-
fore the machinery becomes operational,” and let B be 
the event “it will be less than six days before the ma-
chinery becomes available.”

a. Find the probability of event A.
b. Find the probability of event B.
c. Find the probability of the complement of event A.
d. Find the probability of the intersection of events A 

and B.
e. Find the probability of the union of events A and B.

 3.14 On a sample of 1,500 people in Sydney, Austra-
lia, 89 have no credit cards (event A), 750 have one 

(event B), 450 have two (event C) and the rest have 
more than two (event D). On the basis of the data, 
calculate each of the following.

a. The probability of event A
b. The probability of event D
c. The complement of event B
d. The complement of event C
e. The probability of event A or D

 3.15 A manager has available a pool of 8 employees who 
could be assigned to a project-monitoring task. 4 of 
the employees are women and 4 are men. 2 of the men 
are brothers. The manager is to make the assignment 
at random so that each of the 8 employees is equally 
likely to be chosen. Let A be the event “chosen em-
ployee is a man” and B the event “chosen employee is 
one of the brothers.”

a. Find the probability of A.
b. Find the probability of B.
c. Find the probability of the intersection of A and B.

 3.16 If two events are mutually exclusive, we know that 
the probability of their union is the sum of their in-
dividual probabilities. However, this is not the case 
for events that are not mutually exclusive. Verify 
this assertion by considering the events A and B of 
Exercise 3.2.

 3.17 A department store manager has monitored the 
number of complaints received per week about 
poor service. The probabilities for numbers of com-
plaints in a week, established by this review, are 
shown in the following table. Let A be the event 
“there will be at least one complaint in a week” and 
B the event “there will be fewer than ten complaints 
in a week.”

Number of 
complaints

 
0

 
1 to 3

 
4 to 6

 
7 to 9

 
10 to 12

  More 
than 12

Probability 0.14 0.39 0.23 0.15  0.06   0.03

a. Find the probability of A.
b. Find the probability of B.

Solution Let A be the event “reserves exceed 2 billion barrels” and B, the event 
“reserves between 1 and 2 billion barrels.” These are mutually exclusive, and their 
union, A < B, is the event “reserves exceed 1 billion barrels.” We therefore have the 
following:

P1A2 = 0.1 P1A < B2 = 0.5

Then, since A and B are mutually exclusive,

P1B2 = P1A < B2 - P1A2 = 0.5 - 0.1 = 0.4

EXERCISES
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c. Find the probability of the complement of A.
d. Find the probability of the union of A and B.
e. Find the probability of the intersection of A and B.
f.  Are A and B mutually exclusive?
g. Are A and B collectively exhaustive?

 3.18 A corporation receives a particular part in shipments 
of 100. Research indicated the probabilities shown in 
the accompanying table for numbers of defective parts 
in a shipment.

Number  0 1 2 3 7 3 defective
Probability 0.29 0.36 0.22 0.10 0.03

a. What is the probability that there will be fewer 
than three defective parts in a shipment?

b. What is the probability that there will be more 
than one defective part in a shipment?

c. The five probabilities in the table sum to 1. Why 
must this be so?

3.3 PROBABILITY RULES

We now develop some important rules for computing probabilities for compound events. 
The development begins by defining A as an event in the sample space, S, with A and its 
complement, A, being mutually exclusive and collectively exhaustive.

P1A < A2 = P1A2 + P1A2 = 1

This is the complement rule.

Complement Rule
Let A be an event and A its complement. Then the complement rule is as 
follows:

P1A2 = 1 - P1A2                 (3.7)

For example, when a die is rolled, the probability of obtaining a 1 is 1>6, and, thus, 
by the complement rule the probability of not getting a 1 is 5>6. This result is important 
because in some problems it may be easier to find P1A2  and then obtain P(A), as seen 
in Example 3.13.

Example 3.13 Personnel Selection  
(Complement Rule)

Wipro Ltd., an India-owned software firm, is hiring candidates for 4 key positions in the 
management of its new office in Denver. 5 candidates are from India and 3 are from the 
United States. Assuming that every combination of Indian and American is equally likely 
to be chosen, what is the probability that at least 1 American will be selected?

Solution We will solve this problem by first computing the probability of the 
complement A, “no American is selected,” and then using the complement rule to 
compute the probability of A, “at least 1 American is selected.” This will be easier than 
computing the probabilities of 1 through 3 Americans being selected. Using the method 
of classical probability

P1A2 = C5
4

C8
4
=

1
14

and, therefore, the required probability is

P1A2 = 1 - P1A2 = 1 -
1
14

=
13
14
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Previously, we showed that if two events are mutually exclusive, then the probability 
of their union is the sum of the probabilities of each event:

P1A < B2 = P1A2 + P1B2
Next, we want to determine the result when events A and B are not mutually exclu-

sive. In Section 3.1 we noted that events A and A > B are mutually exclusive and, thus,

P1A < B2 = P1A2 + P1A > B2
In addition, events A > B and A > B are mutually exclusive, and their union is B:

P1B2 = P1A > B2< P1A > B2
From this we can derive the following result:

P1A > B2 = P1B2 - P1A > B2
Combining these two results, we obtain the addition rule of probabilities. as shown 

in Figure 3.7.

Figure 3.7 Venn Diagram for Addition Rule P1A < B2 = P1A2 + P1B2 - P1A > B2
B

BABABA

=

+ –

P(A>B)

P(A<B)

P(A) P(B)

S

S S S

A

The Addition Rule of Probabilities
Let A and B be two events. Using the addition rule of probabilities, the 
probability of their union is as follows:

P1A < B2 = P1A2 + P1B2 - P1A > B2           (3.8)

The Venn diagram in Figure 3.7 provides an intuitive understanding of the addition rule. 
The larger rectangle, S, represents the entire sample space. The smaller circles, A and B, repre-
sent events A and B. We can see that the area where A and B overlap represents the intersec-
tion of the two probabilities, P1A > B2 . To compute the probability of the union of events A 
and B, we first add the events’ probabilities, P1A2 + P1B2 . However, notice that the prob-
ability of the intersection, P1A > B2 , is counted twice and thus must be subtracted once.

Example 3.14 Product Selection (Addition Rule)

A cell phone company found that 75% of all customers want text messaging on their 
phones, 80% want photo capability, and 65% want both. What is the probability that a 
customer will want at least one of these?
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Conditional Probability

Consider a pair of events, A and B. Suppose that we are concerned about the probability 
of A, given that B has occurred. This problem can be approached using the concept of 
conditional probability. The basic idea is that the probability of any event occurring  often 
depends on whether or not other events have occurred. For example, a manufacturer 
planning to introduce a new brand may test-market the product in a few selected stores. 
This manufacturer will be much more confident about the brand’s success in the wider 
market if it is well accepted in the test market than if it is not. The firm’s assessment of the 
probability of high sales will, therefore, be conditioned by the test-market outcome.

If I knew that interest rates would fall over the next year, I would be far more bullish 
about the stock market than if I believed they would rise. What I know, or believe, about 
interest rates conditions my probability assessment of the course of stock prices. Next, we 
give a formal statement of conditional probability that can be used to determine the effect 
of prior results on a probability.

Solution Let A be the event “customer wants text messaging” and B be the event 
“customer wants photo capability.” Thus,

P1A2 = 0.75 P1B2 = 0.80  and P1A > B2 = 0.65

The required probability is as follows:

P1A < B2 = P1A2 + P1B2 - P1A > B2 = 0.75 + 0.80 - 0.65 = 0.90

Note that the first step was to write the probabilities in mathematical form; then the 
solution followed directly using Equation 3.8.

Conditional Probability
Let A and B be two events. The conditional probability of event A, given that 
event B has occurred, is denoted by the symbol P1A u  B2  and is found to be 
as follows:

P1A u  B2 = P1A > B2
P1B2  provided that P1B2 7 0          (3.9)

Similarly,

P1B u  A2 =
P1A > B2

P1A2  provided that P1A2 7 0

We can better understand these results and those that follow by considering Table 3.3. 
The conditional probability, P1A u  B2 , is the ratio of the joint probability, P1A > B2 , di-
vided by the probability of the conditional variable, P1B2 . This conditional probability 
could be thought of as using only the first row of the table that deals only with condition 
B. A similar analysis could be made for the conditional probability P1B u  A2 .

Table 3.3 
Joint Probability  
of A and B

A A

B P1A > B2 P1A > B2 P(B)

B P1A > B2 P1A > B2 P1B2
P(A) P1A2 1.0

Relative frequencies can also help us understand conditional probability. Suppose that 
we repeat a random experiment n times, with nB occurrences of event B and nA>B occur-
rences of A and B together. Then the proportion of times that A occurs, when B has occurred, 
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is nA>B>nB, and one can think of the conditional probability of A, given B, as the limit of this 
proportion as the number of replications of the experiment becomes infinitely large:

nA>B

nB
=

nA>B>n
nB>n

As n becomes large, the numerator and denominator of the right-hand side of this 
expression approach P1A > B2  and P1B2 , respectively.

Example 3.15 Product Choice: Cell Phone Features  
(Conditional Probability)

In Example 3.14 we noted that 75% of the customers want text messaging, 80% want 
photo capability, and 65% want both. What are the probabilities that a person who 
wants text messaging also wants photo capability and that a person who wants photo 
capability also wants text messaging?

Solution Designating A as text messaging and B as photo capability, we know that 
P1A2 = 0.75, P1B2 = 0.80, and P1A > B2 = 0.65. The probability that a person who 
wants photo capability also wants text messaging is the conditional probability of event 
A, given event B is:

P1A u B2 =
P1A > B2

P1B2 =
0.65
0.80

= 0.8125

In the same way, the probability that a person who wants text messaging also 
wants photo capability is as follows:

P1B u A2 =
P1A > B2

P1A2 =
0.65
0.75

= 0.8667

These calculations can also be developed using Table 3.4.
Note that the conditional probability that a person wanting photo capability also 

wants text messaging is the joint probability 0.65 divided by the probability of a person 
wanting photo capability, 0.80. A similar calculation can be made for the other conditional 
probability. We have found that some people believe that using a table such as Table 3.4 
provides better motivation and success for solving conditional probability and related 
problems that follow. Using the table correctly will provide exactly the same results as 
using the equations. So, if this helps you with these problems you can feel perfectly com-
fortable with using tables to solve the problems.

Table 3.4 
Joint Probability  
for Example 3.15

Text Messaging No Text Messaging

Photo 0.65 0.15 0.80

No Photo 0.10 0.10 0.20

0.75 0.25 1.0

The Multiplication Rule of Probabilities
Let A and B be two events. Using the multiplication rule of probabilities, the 
probability of their intersection can be derived from conditional probability as

P1A > B2 = P1A u B2  P1B2              (3.10)

and also as

P1A > B2 = P1B u A2  P1A2
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In the following example we see an interesting application of the multiplication rule 
of probabilities. We also tie together some ideas introduced previously.

Example 3.17 Sensitive Questions  
(Multiplication Rule)

Suppose that a survey was carried out in New York, and each respondent was faced 
with the following two questions:

a. Is the last digit of your Social Security number odd?
b. Have you ever lied on an employment application?

The second question is, of course, quite sensitive, and for various reasons we might 
expect that a number of people would not answer the question honestly, especially if 
their response were yes. To overcome this potential bias, respondents were asked to 
flip a coin and then to answer question (a) if the result was “head” and answer (b) oth-
erwise. A yes response was given by 37% of all respondents. What is the probability 
that a respondent who was answering the sensitive question, (b), replied yes?

Solution We define the following events:

A: Respondent answers yes.
E1: Respondent answers question (a).
E2: Respondent answers question (b).

From the problem discussion we know that P1A2 = 0.37. We also know that the 
choice of question was determined by a flip of a coin and that P1E12 = 0.50 and 
P1E22 = 0.50. In addition, we know the answers to question (a). Since half of all Social 
Security numbers have an odd last digit, it must be that the probability of a yes answer, 
given that question (a) has been answered, is 0.50—that is, P1A u E12 = 0.50.

However, we require P1A u E22 , the conditional probability of a yes response, given 
that question (b) was answered. We can obtain this probability by using two results 
from previous sections. We know that E1 and E2 are mutually exclusive and collectively 
exhaustive. We also know that intersections E1 > A and E2 > A are mutually exclusive 
and that their union is A. It therefore follows that the sum of the probabilities of these 
two intersections is the probability of A, so

P1A2 = P1E1 > A2 + P1E2 > A2
Next, we use the multiplication rule to obtain

P1E1 > A2 = P1A u E12P1E12 = 10.502 10.502 = 0.25

and

P1E2 > A2 = P1A2 - P1E1 > A2 = 0.37 - 0.25 = 0.12

Example 3.16 Cell Phone Features  
(Multiplication Rule)

When the conditional probability of text messaging, given photo capability,

P1A u B2 =
0.65
0.80

= 0.8125

is multiplied by the probability of photo capability, we have the joint probability of 
both messaging and photo capability:

P1A > B2 = 10.8125210.802 = 0.65
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Statistical Independence

Statistical independence is a special case for which the conditional probability of A, given B, 
is the same as the unconditional probability of A—that is, P1A u B2 = P1A2 . In general, 
this result is not true, but when it is, we see that knowing that event B has occurred does 
not change the probability of event A.

Then we can solve for the conditional probability:

P1A u E22 =
P1E2 > A2

P1E22 =
0.12
0.50

= 0.24

From this result, we estimate that 24% of the surveyed population has lied on some 
employment application.

Statistical Independence
Let A and B be two events. These events are said to be statistically 
independent if and only if

P1A > B2 = P1A2P1B2                 (3.11)

From the multiplication rule it also follows that

 P1A u B2 = P1A2   1 if P1B2 7 02
 P1B u A2 = P1B2   1 if P1A2 7 02

More generally, the events E1, E2, . . . , EK are mutually statistically independent 
if and only if

P1E1 > E2 > g> EK2 = P1E12P1E22gP1EK2
The logical basis for the definition of statistical independence is best seen in terms 

of conditional probabilities and is most appealing from a subjective view of probability. 
Suppose that I believe the probability that event A will occur is P1A2 . Then I am given 
the information that event B has occurred. If this new information does not change my 
view of the probability of A, then P1A2 = P1A u B2 , and the information about the occur-
rence of B is of no value in determining P1A2 . This definition of statistical independence 
agrees with a commonsense notion of independence. To help understand independence, 
we present a revised version of our photo and messaging problem in Table 3.5. In this case 
the marginal probabilities of messaging and photo capabilities are the same, but their us-
age is independent. Note how the preceding definitions for independence yield a conclu-
sion of independence for Table 3.5 but not for Table 3.4.

Table 3.5 
Joint Probability  
for Photo and  
Messaging When 
They Are 
Independent

Messaging No Messaging

Photo 0.60 0.20 0.80

No photo 0.15 0.05 0.20

0.75 0.25 1.0

In our following discussions we refer to events being independent. For example, the 
events “Dow Jones will rise” and “neckties are wider” are independent. Whatever I be-
lieve about the likelihood of the latter will not influence my judgment of the chances of 
the former. Example 3.18 illustrates a test for independence.
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It is also important to distinguish between the terms mutually exclusive and indepen-
dent. Two events are mutually exclusive if they cannot occur jointly; that is, the probability 
of their intersection is 0. For independent events the probability of their intersection is the 
product of their individual probabilities and, in general, that probability is not 0 (unless 
the probability of one of the events is 0, and that result is not very interesting). Also note 
that if we know two events are mutually exclusive, then if one occurs, the other cannot, 
and the events are not independent.

In some circumstances independence can be deduced, or at least reasonably inferred, 
from the nature of a random experiment. For example, if we toss a fair coin two or more 
times, the probability of a head is the same for each toss and is not influenced by the out-
come of the previous toss. Then the probability of the intersection can be computed from 
the product of individual probabilities. This is particularly useful in the case of repeated 
trials that are logically independent.

Example 3.18 Probability of College Degrees 
(Statistical Independence)

Suppose that women obtain 54% of all bachelor’s degrees in a particular country and 
that 20% of all bachelor’s degrees are in business. Also, 8% of all bachelor’s degrees 
go to women majoring in business. Are the events “the bachelor’s degree holder is a 
woman” and “the bachelor’s degree is in business” statistically independent?

Solution Let A denote the event “the bachelor’s degree holder is a woman” and B 
denote the event “the bachelor’s degree is in business.” We then have the following:

P1A2 = 0.54 P1B2 = 0.20 P1A > B2 = 0.08

Since

P1A2P1B2 = 10.54210.202 = 0.108 ? 0.08 = P1A > B2
these events are not independent. The dependence can be seen from the conditional 
probability:

P1A u B2 =
P1A > B2

P1B2 =
0.08
0.20

= 0.40 ? 0.54 = P1A2
Thus, in the country of interest, only 40% of business degrees go to women, whereas 
women constitute 54% of all degree recipients.

Example 3.19 Computer Repair (Independence)

The experience for a particular computer model is that 90% of the computers will oper-
ate for at least one year before repair is required. A manager purchases three of these 
computers. What is the probability that all three will work for one year without requir-
ing any repair?

Solution In this case it is reasonable to assume that computer failures are 
independent for the three computers. They were all produced on different production 
lines, and their use in the company is likely to be different. Given the assumption of 
independence, let Ei be “the ith computer works for one year without needing repair.” 
The assumption of independence then leads to the following:

P1E1 > E2 > E32 = P1E12  P1E22  P1E32 = 0.903 = 0.729
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We must emphasize that events are not always independent. In Example 3.19 the 
computers might have their power supply from the same electrical circuit, and that circuit 
may not be protected against electrical surges. In that case a power surge that increases 
the probability of failure for one computer would result in an increase for all computers. 
Therefore, the events are not independent. The condition that the events are independent 
is an assumption and should be used only after careful analysis of the process that is being 
analyzed.

The following two examples illustrate how we can often simplify the determination of 
the probability of an event by first computing the probability of the complement and then 
using the probability of the complement to obtain the probability of the event of interest.

Example 3.20 The Birthday Problem  
(Complement Rule)

A great question for a party is, What is the probability that at least 2 people in this room 
have the same birthday (month and day)? Unfortunately, it will be difficult for you to 
share the solution procedure at the party.

To make the problem manageable, we assign all those born on February 29 to 
March 1 and assume that all 365 possible birthdays are equally likely in the population 
at large. We also assume that the people in the room are a random sample, with respect 
to birthdays, of the larger population. (These simplifications have only very small ef-
fects on the numerical results.)

Solution Let M be the number in the group and A be the event “at least 1 pair 
has a common birthday.” Now, to find the probability of A directly would be very 
tedious, since we would have to take into account the possibility of more than 1 pair of 
matching birthdays. It is easier to find the probability that “all M people have different 
birthdays”; this is A.

Since there are 365 possible birthdays for each person and each can be associated 
with every possible birthday of other individuals, the total number of equally likely 
distinct arrangements for M people is 365M. Next, we ask how many of these outcomes 
are contained in the event A, that is, how many that involve the M individuals all hav-
ing different birthdays. This is precisely the same as asking in how many ways M 
birthdays can be selected from 365 possible birthdays and arranged in order. The first 
person’s birthday can occur on any of 365 days, the second on any of 364 days, the third 
on any of 363 days, and so forth. Thus, for M people the number of different birthdays 
is as follows: 13652 13642 13632  g1365 - M + 12
The number of possible birthdays for M people is 365M. Hence, the probability that all 
M birthdays will be different is as follows:

P1A2 =
13652 13642  g1365 - M + 12

365M

The required probability of at least two persons is the complement:

P1A2 = 1 - P1A2 = 1 -
13652 13642  g1365 - M + 12

365M

Probabilities for selected numbers of people, M, are

M 10 20 22 23 30 40 60

P(A) 0.117 0.411 0.476 0.507 0.706 0.891 0.994



 Exercises 119

If at least 23 people are in the group, the probability of at least 1 pair with the same 
birthday exceeds 0.50. This probability rises sharply as the group size increases, until, 
with 60 people in the group, we are almost certain to find at least 1 pair. This result is 
surprising to most people. The probability that any given pair of people will have the 
same birthday is 1>365. But as the group size increases, the number of possible matches 
increases, until the probability of at least one match becomes quite large. Here, we have 
the union of events that are individually unlikely, but when the events are considered 
together, the probability is quite large. Careful analysis using the rather simple prob-
ability rules sometimes leads to surprising results.

Example 3.21 Winning Airline Tickets  
(Complement Rule)

In a promotion for a particular airline, customers and potential customers were given 
vouchers. A 1 >325 proportion of these were worth a free round-trip ticket anywhere 
this airline flies. How many vouchers would an individual need to collect in order to 
have a 50% chance of winning at least one free trip?

Solution The event of interest, A, is “at least one free trip is won from M vouchers.” 
Again, it is easier to find first the probability of the complement, A, where A is the event 
“no free trips are won with M vouchers.” The probability of a win with one voucher 
is 1>325, and, thus, the probability of not winning is 324>325. If the individual has M 
vouchers, the event that none of these wins is just the intersection of the “no win” events 
for each of the vouchers. Moreover, these events are independent, and, thus,

P1A2 = a 324
325
bM

and the probability of at least one win is

P1A2 = 1 - P1A2 = 1 - a 324
325
bM

In order for P1A2  to be at least 0.5, the individual needs at least M = 225 vouchers.
Again, this result is surprising. One might guess that, if the probability of a win 

for a single voucher was 1>325, then 163 vouchers would be enough to ensure a 50% 
chance of a win. However, in that case one would be implicitly assuming that the prob-
ability of a union is the sum of the individual probabilities, neglecting to subtract for 
double counting in the intersections (which in this case would involve more than one 
win from M vouchers).

 3.22 The probability of A is 0.60, the probability of B is 0.45, 
and the probability of both is 0.30. What is the prob-
ability of either A and B?

 3.23 The probability of A is 0.60, the probability of B is 0.45, 
and the probability of both is 0.30. What is the condi-
tional probability of A, given B? Are A and B indepen-
dent in a probability sense?

 3.24 The probability of A is 0.80, the probability of B is 0.10, 
and the probability of both is 0.08. What is the condi-
tional probability of A, given B? Are A and B indepen-
dent in a probability sense?

EXERCISES

Basic Exercises
 3.19 The probability of A is 0.60, the probability of B is 

0.45, and the probability of either is 0.80. What is the 
probability of both A and B?

 3.20 The probability of A is 0.40, the probability of B is 0.45, 
and the probability of either is 0.85. What is the prob-
ability of both A and B?

 3.21 The probability of A is 0.60, the probability of B is 0.40, 
and the probability of either is 0.76. What is the prob-
ability of both A and B?
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 3.25 The probability of A is 0.30, the probability of B is 0.40 
and the probability of both is 0.30. What is the condi-
tional probability of A given B? Are A and B indepen-
dent in a probability sense?

 3.26 The probability of A is 0.70, the probability of B is 0.80, 
and the probability of both is 0.50. What is the condi-
tional probability of A, given B? Are A and B indepen-
dent in a probability sense?

Application Exercises
 3.27 A company knows that a rival is about to bring out 

a competing product. It believes that this rival has 
three possible packaging plans (superior, normal, 
and cheap) in mind and that all are equally likely. 
Also, there are three equally likely possible marketing 
strategies (intense media advertising, price discounts, 
and the use of a coupon to reduce the price of future 
purchases). What is the probability that the rival will 
employ superior packaging in conjunction with an in-
tense media advertising campaign? Assume that pack-
aging plans and marketing strategies are determined 
independently.

 3.28 A financial analyst was asked to evaluate earnings 
prospects for seven corporations over the next year 
and to rank them in order of predicted earnings 
growth rates.
a. How many different rankings are possible?
b. If, in fact, a specific ordering is the result of a guess, 

what is the probability that this guess will turn out 
to be correct?

 3.29 A company has 50 sales representatives. It decides 
that the most successful representative during the 
previous year will be awarded a January vacation in 
Hawaii, while the second most successful will win 
a vacation in Las Vegas. The other representatives 
will be required to attend a conference on modern 
sales methods in Buffalo. How many outcomes are 
possible?

 3.30 A securities analyst claims that, given a specific list of 
6 common stocks, it is possible to predict, in the cor-
rect order, the 3 that will perform best during the com-
ing year. What is the probability of making the correct 
selection by chance?

 3.31 A student committee has 6 members—4 under-
graduate and 2 graduate students. A subcommit-
tee of 3 members is to be chosen randomly so that 
each possible combination of 3 of the 6 students is 
equally likely to be selected. What is the probabil-
ity that there will be no graduate students on the 
subcommittee?

 3.32 The soccer league in 1 community has 5 teams. You 
are required to predict, in order, the top 3 teams at the 
end of the season. Ignoring the possibility of ties, cal-
culate the number of different predictions you could 
make. What is the probability of making the correct 
prediction by chance?

 3.33 The senior management of a corporation has decided 
that in the future it wishes to divide its consulting 
budget between 2 firms. 8 firms are currently being 
considered for this work. How many different choices 
of 2 firms are possible?

 3.34 You are 1 of 7 female candidates auditioning for 2 
parts—the heroine and her best friend—in a play. 
Before the auditions you know nothing of the other 
candidates, and you assume all candidates have equal 
chances for the parts.

a. How many distinct choices are possible for casting 
the two parts?

b. In how many of the possibilities in part (a) would 
you be chosen to play the heroine?

c. In how many of the possibilities in part (a) would 
you be chosen to play the best friend?

d. Use the results in parts (a) and (b) to find the 
probability that you will be chosen to play the 
heroine. Indicate a more direct way of finding this 
probability.

e. Use the results in parts (a), (b), and (c) to find the 
probability that you will be chosen to play 1 of the 
2 parts. Indicate a more direct way of finding this 
probability.

 3.35 A work crew for a building project is to be made up 
of 2 craftsmen and 4 laborers selected from a total of 5 
craftsmen and 6 laborers.

a. How many different combinations are possible?
b. The brother of one of the craftsmen is a laborer. If 

the crew is selected at random, what is the prob-
ability that both brothers will be selected?

c. What is the probability that neither brother will be 
selected?

 3.36 A mutual fund company has 6 funds that invest in the 
U.S. market and 4 that invest in international markets. 
A customer wants to invest in two U.S. funds and 2 
international funds.

a. How many different sets of funds from this com-
pany could the investor choose?

b. Unknown to this investor, one of the U.S. funds and 
one of the international funds will seriously under-
perform next year. If the investor selects funds for 
purchase at random, what is the probability that at 
least one of the chosen funds will seriously under-
perform next year?

 3.37 It was estimated that 30% of all seniors on a campus 
were seriously concerned about employment pros-
pects, 25% were seriously concerned about grades, 
and 20% were seriously concerned about both. What 
is the probability that a randomly chosen senior from 
this campus is seriously concerned about at least one 
of these two things?

 3.38 A video movie store owner finds that 30% of the cus-
tomers entering the store ask an assistant for help and 
that 20% of the customers make a purchase before 
leaving. It is also found that 15% of all customers both 
ask for assistance and make a purchase. What is the 
probability that a customer does at least one of these 
two things?

 3.39 A local public-action group solicits donations by 
telephone. For a particular list of prospects it was es-
timated that for any individual the probability was 
0.05 of an immediate donation by credit card, 0.25 
of no immediate donation but a request for further 
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 information through the mail, and 0.7 of no expression 
of interest. Information is mailed to all people request-
ing it, and it is estimated that 20% of these people will 
eventually donate. An operator makes a sequence of 
calls, the outcomes of which can be assumed to be 
independent.

a. What is the probability that no immediate credit-
card donation will be received until at least four 
unsuccessful calls have been made?

b. What is the probability that the first call leading to 
any donation (either immediately or eventually after 
a mailing) is preceded by at least four unsuccessful 
calls?

 3.40 A mail-order firm considers three possible events in 
filling an order:

A: The wrong item is sent.
B: The item is lost in transit.
C: The item is damaged in transit.

  Assume that A is independent of both B and C and 
that B and C are mutually exclusive. The individual 
event probabilities are P1A2 = 0.02, P1B2 = 0.01, 
and P1C2 = 0.04. Find the probability that at least 
one of these foul-ups occurs for a randomly chosen 
order.

 3.41 A coach recruits for a college team a star player who 
is currently a high school senior. In order to play next 
year, the senior must both complete high school with 
adequate grades and pass a standardized test. The 
coach estimates that the probability the athlete will 
fail to obtain adequate high school grades is 0.02, 
that the probability the athlete will not pass the stan-
dardized test is 0.15, and that these are independent 
events. According to these estimates, what is the 
probability that this recruit will be eligible to play in 
college next year?

 3.42 Market research in a particular city indicated that dur-
ing a week, 18% of all adults watch a television pro-
gram oriented to business and financial issues, 12% 
read a publication oriented to these issues, and 10% 
do both.

a. What is the probability that an adult in this city 
who watches a television program oriented to 
business and financial issues reads a publication 
oriented to these issues?

b. What is the probability that an adult in this city who 
reads a publication oriented to business and finan-
cial issues watches a television program oriented to 
these issues?

 3.43 In Sipadan, Malaysia, there is a national park where 
up to 100 dolphins can be found. Suppose we ran-
domly select two of them in one draw.

a. What is the probability that we pick two females, 
knowing that there are only 10 females in all?

b. What is the probability of getting two males instead?

 3.44 An analyst is presented with lists of 4 stocks and 
5 bonds. He is asked to predict, in order, the 2 stocks 
that will yield the highest return over the next year 
and the 2 bonds that will have the highest return 

over the next year. Suppose that these predictions 
are made randomly and independently of each 
other. What is the probability that the analyst will 
be successful in at least 1 of the 2 tasks?

 3.45 A bank classifies borrowers as high risk or low risk. 
Only 15% of its loans are made to those in the high-
risk category. Of all its loans, 5% are in default, and 
40% of those in default were made to high-risk bor-
rowers. What is the probability that a high-risk bor-
rower will default?

 3.46 A conference began at noon with two parallel sessions. 
The session on portfolio management was attended by 
40% of the delegates, while the session on chartism 
was attended by 50%. The evening session consisted 
of a talk titled “Is the Random Walk Dead?” This was 
attended by 80% of all delegates.

a. If attendance at the portfolio management ses-
sion and attendance at the chartism session are 
mutually exclusive, what is the probability that a 
randomly chosen delegate attended at least one of 
these sessions?

b. If attendance at the portfolio management session 
and attendance at the evening session are statisti-
cally independent, what is the probability that a 
randomly chosen delegate attended at least one of 
these sessions?

c. Of those attending the chartism session, 75% also 
attended the evening session. What is the prob-
ability that a randomly chosen delegate attended at 
least one of these two sessions?

 3.47 A stock market analyst claims expertise in picking 
stocks that will outperform the corresponding in-
dustry norms. This analyst is presented with a list 
of 5 high-technology stocks and a list of 5 airline 
stocks, and she is invited to nominate, in order,  
the 3 stocks that will do best on each of these 2 lists 
over the next year. The analyst claims that success 
in just 1 of these 2 tasks would be a substantial  
accomplishment. If, in fact, the choices are made 
randomly and independently, what is the probabil-
ity of success in at least 1 of the 2 tasks merely by 
chance? Given this result, what do you think of the 
analyst’s claim?

 3.48 A quality-control manager found that 30% of work-
related problems occurred on Mondays and that 20% 
occurred in the last hour of a day’s shift. It was also 
found that 4% of worker-related problems occurred in 
the last hour of Monday’s shift.

a. What is the probability that a worker-related prob-
lem that occurs on a Monday does not occur in the 
last hour of the day’s shift?

b. Are the events “problem occurs on Monday” and 
“problem occurs in the last hour of the day’s shift” 
statistically independent?

 3.49 A corporation was concerned with the basic edu-
cational skills of its workers and decided to offer a 
selected group of them separate classes in reading 
and practical mathematics. Of these workers, 40% 
signed up for the reading classes and 50% for the 
practical mathematics classes. Of those signing up 
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for the reading classes 30% signed up for the math-
ematics classes.

a. What is the probability that a randomly selected 
worker signed up for both classes?

b. What is the probability that a randomly selected 
worker who signed up for the mathematics classes 
also signed up for the reading classes?

c. What is the probability that a randomly chosen 
worker signed up for at least one of these two 
classes?

d. Are the events “signs up for the reading classes” and 
“signs up for the mathematics classes” statistically 
independent?

 3.50 A lawn-care service makes telephone solicitations, 
seeking customers for the coming season. A review 
of the records indicates that 15% of these solicitations 
produce new customers and that, of these new cus-
tomers, 80% had used some rival service in the pre-
vious year. It is also estimated that, of all solicitation 
calls made, 60% are to people who had used a rival 

service the previous year. What is the probability that 
a call to a person who had used a rival service the pre-
vious year will produce a new customer for the lawn-
care service?

 3.51 An editor may use all, some, or none of three possible 
strategies to enhance the sales of a book:

a. An expensive prepublication promotion
b. An expensive cover design
c. A bonus for sales representatives who meet prede-

termined sales levels

  In the past, these three strategies have been applied 
simultaneously to only 2% of the company’s books. 
Twenty percent of the books have had expensive 
cover designs, and, of these, 80% have had expensive 
prepublication promotion. A rival editor learns that a 
new book is to have both an expensive prepublication 
promotion and an expensive cover design and now 
wants to know how likely it is that a bonus scheme for 
sales representatives will be introduced. Compute the 
probability of interest to the rival editor.

3.4 BIVARIATE PROBABILITIES

In this section we introduce a class of problems that involve two distinct sets of events, 
which we label A1, A2, c , AH and B1, B2, c , BK. These problems have broad applica-
tion in business and economics. They can be studied by constructing two-way tables that 
develop intuition for problem solutions. The events Ai and Bj are mutually exclusive and 
collectively exhaustive within their sets, but intersections 1Ai > Bj2  can occur between 
all events from the two sets. These intersections can be regarded as basic outcomes of a 
random experiment. Two sets of events, considered jointly in this way, are called bivariate, 
and the probabilities are called bivariate probabilities. It is possible to apply the methods of 
this section to trivariate and higher-level probabilities, but with added complexity.

We also consider situations where it is difficult to obtain desired conditional prob-
abilities, but where alternative conditional probabilities are available. It may be difficult 
to obtain probabilities because the costs of enumeration are high or because some critical, 
ethical, or legal restriction prevents direct collection of probabilities.

Table 3.6 illustrates the outcomes of bivariate events labeled A1, A2, c , AH and B1, 
B2, c, BK. If probabilities can be attached to all intersections 1Ai > Bj2 , then the whole 
probability structure of the random experiment is known, and other probabilities of inter-
est can be calculated.

Table 3.6 
Outcomes for 
Bivariate Events

B1 B2 c BK

A1 P1A1 > B12 P1A1 > B22 c P1A1 > BK2
A2 P1A2 > B12 P1A2 > B22 c P1A2 > BK2
. . . . .

. . . . .

. . . . .

AH P1AH > B12 P1AH > B22 c P1AH > BK2
As a discussion example, consider a potential advertiser who wants to know both 

income and other relevant characteristics of the audience for a particular television show. 
Families may be categorized, using Ai, as to whether they regularly, occasionally, or never 
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watch a particular series. In addition, they can be categorized, using Bj, according to low-, 
middle-, and high-income subgroups. Then the nine possible cross-classifications can  
be set out in the form of Table 3.7, with H = 3 and K = 3. The subsetting of the pop-
ulation can also be displayed using a tree diagram, as shown in Figure 3.8. Beginning 
at the left, we have the entire population of families. This population is separated into 
three branches, depending on their television-viewing frequency. In turn, each of these 
branches is separated into three subbranches, according to the family income level. As a 
result, there are nine subbranches corresponding to all combinations of viewing frequency 
and income level.

Table 3.7 Probabilities for Television Viewing and Income Example

Viewing Frequency High Income Middle Income Low Income  Totals

Regular 0.04 0.13 0.04 0.21

Occasional 0.10 0.11 0.06 0.27

Never 0.13 0.17 0.22 0.52

Totals 0.27 0.41 0.32 1.00

Figure 3.8 Tree 
Diagram for 
Television Viewing 
and Income Example
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Low income
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Joint and Marginal Probabilities
In the context of bivariate probabilities the intersection probabilities, 
P1Ai > Bj2, are called joint probabilities. The probabilities for individual events, 
P1Ai2 or P1Bj2, are called marginal probabilities. Marginal probabilities are at 
the margin of a table such as Table 3.7 and can be computed by summing the 
corresponding row or column.

Now it is necessary to obtain the probabilities for each of the event intersections. These 
probabilities, as obtained from viewer surveys, are all presented in Table 3.7. For example, 
10% of the families have high incomes and occasionally watch series. These probabili-
ties are developed using the relative frequency concept of probability, assuming that the 
survey is sufficiently large so that proportions can be approximated as probabilities. On 
this basis, the probability that a family chosen at random from the population has a high 
income and occasionally watches the show is 0.10.



124 Chapter 3 Elements of Chance: Probability Methods

To obtain the marginal probabilities for an event, we merely sum the corresponding 
mutually exclusive joint probabilities:

P1Ai2 = P1Ai > B12 + P1Ai > B22 + g + P1Ai > BK2
Note that this would be equivalent to summing the probabilities for a particular row 
in Table 3.7. An analogous argument shows that the probabilities for Bj are the column 
totals.

Continuing with the example, define the television-watching subgroups as A1, “reg-
ular”; A2, “occasional”; and A3, “never.” Similarly define the income subgroups as B1, 
“high”; B2, “middle”; and B3, “low.” Then the probability that a family is an occasional 
viewer is as follows:

P1A22 = P1A2 > B12 + P1A2 > B22 + P1A2 > B32 = 0.10 + 0.11 + 0.06 = 0.27

Similarly, we can add the other rows in Table 3.7 to obtain P1A12 = 0.21 and P1A32 = 0.52. 
We can also add the columns in Table 3.7 to obtain

P1B12 = 0.27 P1B22 = 0.41 and P1B32 = 0.32

Marginal probabilities can also be obtained from tree diagrams like Figure 3.9, 
which has the same branches as Figure 3.8. The right-hand side contains all of the joint 
probabilities, and the marginal probabilities for the three viewing-frequency events are 
entered on the main branches by adding the probabilities on the corresponding sub-
branches. The tree-branch model is particularly useful when there are more than two 
events of interest. In this case, for example, the advertiser might also be interested in the 
age of the head of household or the number of children. The marginal probabilities for 
the various events sum to 1 because those events are mutually exclusive and mutually 
exhaustive.

Figure 3.9 Tree 
Diagram for the 
Television Viewing–
Income Example, 
Showing Joint 
and Marginal 
Probabilities

P(A1>B1) = .04

P(A2) = .27

P(A 1)
 = .2

1

P(A
3 ) = .52

P(A1>B2) = .13

P(A1>B3) = .04

P(A3>B1) = .13

P(A3>B2) = .17

P(A3>B3) = .22

P(A2>B1) = .10

P(S ) = 1 P(A2>B2) = .11

P(A2>B3) = .06

A1: Regularly watch

A2: Occasionally watch

A3: Never watch

B1: High income

B2: Middle income

B3: Low income

S  : Sample space

In many applications we find that the conditional probabilities are of more interest 
than the marginal probabilities. An advertiser may be more concerned about the prob-
ability that a high-income family is watching than the probability of any family watching. 
The conditional probability can be obtained easily from the table because we have all the 
joint probabilities and the marginal probabilities. For example, the probability of a high-
income family regularly watching the show is as follows:

P1A1 u B12 =
P1A1 > B12

P1B12 =
0.04
0.27

= 0.15
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Table 3.8 shows the probability of the viewer groups conditional on income levels. 
Note that the conditional probabilities with respect to a particular income group always 
add up to 1, as seen for the three columns in Table 3.8. This will always be the case, as seen 
by the following:

a
H

i=1
P1Ai u Bj2 = a

H

i=1

P1Ai > Bj2
P1Bj2 =

P1Bj2
P1Bj2 = 1

The conditional probabilities for the income groups, given viewing frequencies, can also 
be computed, as shown in Table 3.9, using the definition for conditional probability and 
the joint and marginal probabilities.

To obtain the conditional probabilities of income given viewing frequency in Table 3.7, 
we divide each of the joint probabilities in a row by the marginal probability in the right-
hand column. For example,

P1 low income u occasional viewer2 =
0.06
0.27

= 0.22

Table 3.8 Conditional Probabilities of Viewing Frequencies, Given Income Levels

Viewing Frequency High Income Middle Income Low Income

Regular 0.15 0.32 0.12

Occasional 0.37 0.27 0.19

Never 0.48 0.41 0.69

Table 3.9 Conditional Probabilities of Income Levels, Given Viewing Frequencies

Viewing Frequency High Income Middle Income Low Income

Regular 0.19 0.62 0.19

Occasional 0.37 0.41 0.22

Never 0.25 0.33 0.42

We can also check, by using a two-way table, whether or not paired events are statis-
tically independent. Recall that events Ai and Bj are independent if and only if their joint 
probability is the product of their marginal probabilities—that is, if

P1Ai > Bj2 = P1Ai2P1Bj2
In Table 3.7 joint events A2 (“occasionally watch”) and B1 (“high income”) have a prob-
ability of

P1A2 > B12 = 0.10

and

P1A22 = 0.27 P1B12 = 0.27

The product of these marginal probabilities is 0.0729 and, thus, not equal to the joint prob-
ability of 0.10. Hence, events A2 and B1 are not statistically independent.

Independent Events
Let A and B be a pair of events, each broken into mutually exclusive and col-
lectively exhaustive event categories denoted by labels A1, A2, . . . , AH and B1, 
B2, . . . , BK. If every event Ai is statistically independent of every event Bj, then 
A and B are independent events.
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Since A2 and B1 are not statistically independent, it follows that the events “viewing 
frequency” and “income” are not independent.

In many practical applications the joint probabilities will not be known precisely. A 
sample from a population is obtained, and estimates of the joint probabilities are made 
from the sample data. We want to know, based on this sample evidence, if these events 
are independent of one another. We will develop a procedure for conducting such a test 
later in the book.

Odds

Odds are used to communicate probability information in some situations. For example, 
a sports analyst might report that the odds in favor of team A winning over team B are 2 
to 1. Odds can be converted directly to probabilities, and probabilities can be converted to 
odds using the following equations.

Odds
The odds in favor of a particular event are given by the ratio of the probability 
of the event divided by the probability of its complement. The odds in favor of 
A are as follows:

 Odds =
P1A2

1 - P1A2 =
P1A2
P1A2 (3.12)

Therefore, the odds of 2 to 1 can be converted to the probability of A winning,

2
1
=

P1A2
1 - P1A2

and by basic algebra

2 * 11 - P(A22 = P1A2
giving

P1A2 = 0.67

Similarly, if the odds in favor of winning are 3 to 2, then the probability of winning is 
0.60. Note that 0.60>0.40 is equal to 3>2.

Overinvolvement Ratios

There are a number of situations where it is difficult to obtain desired conditional prob-
abilities, but alternative conditional probabilities are available. For example, the costs of 
enumeration might be high, or some critical, ethical, or legal restriction prevents direct 
collection of probabilities. In some of those cases it may be possible to use basic probabil-
ity relationships to derive desired probabilities from available probabilities. In this section 
we develop one such approach based on the use of overinvolvement ratios (Carlson and 
Thorne 1997).

We start by considering a simple example. Suppose that we know 60% of the purchas-
ers of our product have seen our advertisement, but only 30% of the nonpurchasers have 
seen the advertisement. The ratio of 60% to 30% is the overinvolvement of the event “seen 
our advertisement” in the purchasers group, compared to the nonpurchasers group. In 
the analysis to follow, we show how an overinvolvement ratio greater than 1.0 provides 
evidence that, for example, advertising influences purchase behavior.

An overinvolvement ratio, Equation 3.13, is the ratio of the probability of an event—
such as viewing an advertisement—that occurs under two mutually exclusive and com-
plementary outcome conditions, such as a product sale or not a product sale. If the ratio 
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of the conditional probabilities is not equal to 1.0, then the event has an influence on the 
outcome condition. These ratios have applications in a number of business situations, in-
cluding marketing, production, and accounting. In this section we develop the theory and 
application of overinvolvement ratios.

Overinvolvement Ratios
The probability of event A1, conditional on event B1, divided by the probabil-
ity of A1, conditional on event B2, where B1 and B2 are mutually exclusive and 
complementary, is defined as the overinvolvement ratio:

 
P1A1 u B12
P1A1 u B22  (3.13)

An overinvolvement ratio greater than 1,

P1A1 u B12
P1A1 u B22 7 1.0

implies that event A1 increases the conditional odds ratio in favor of B1:

P1B1 u A12
P1B2 u A12 7

P1B12
P1B22

Consider a company that wishes to determine the effectiveness of a new advertise-
ment. An experiment is conducted in which the advertisement is shown to one customer 
group and not to another, followed by observation of the purchase behavior of both 
groups. Studies of this type have a high probability of error; they can be biased because 
people who are watched closely often behave differently than they do when not being ob-
served. It is possible, however, to measure the percentage of buyers who have seen an ad 
and to measure the percentage of nonbuyers who have seen the ad. Let us consider how 
those study data can be analyzed to determine the effectiveness of the new advertisement.

Advertising effectiveness is determined using the following analysis. The population 
is divided into the following categories:

B1: Buyers
B2: Nonbuyers

and

A1: Those who have seen the advertisement
A2: Those who have not seen the advertisement

The odds in favor of the buyer in this problem are as follows:

P1B12
P1B22

Similarly, we can define the conditional odds, in which we use the ratio of the prob-
abilities that are both conditional on the same event. For this problem the odds of a buyer 
being conditional on the event “have seen an advertisement” are as follows:

P1B1 u A12
P1B2 u A12

If the conditional odds are greater than the unconditional odds, the conditioning event is 
said to have an influence on the event of interest. Thus, advertising would be considered 
effective if

P1B1 u A12
P1B2 u A12 7

P1B12
P1B22
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The left-hand terms are equal to the following:

 P1B1 u A12 =
P1A1 u B12P1B12

P1A12
 P1B2 u A12 =

P1A1 u B22P1B22
P1A12

By substituting these later terms, the conditional odds ratio equation becomes the following:

P1A1 u B12P1B12
P1A1 u B22P1B22 7

P1B12
P1B22

Dividing both sides by the right-hand ratio, we obtain the following:

P1A1 u B12
P1A1 u B22 7 1.0

This result shows that, if a larger percent of buyers have seen the advertisement, com-
pared to nonbuyers, then the odds in favor of purchasing being conditional on having 
seen the advertisement are greater than the unconditional odds. Therefore, we have evi-
dence that the advertising is associated with an increased probability of purchase.

From the original problem, 60% of the purchasers and 30% of the nonpurchasers had 
seen the advertisement. The overinvolvement ratio is 2.0 (60>30), and, thus, we conclude 
that the advertisement increases the probability of purchase. Market researchers use this 
result to evaluate the effectiveness of advertising and other sales promotion activities. 
Purchasers of products are asked whether they have seen certain advertisements. This is 
combined with random sample surveys of households from which the percentage of non-
purchasers who have seen an advertisement is determined.

Consider another situation in which it is difficult, illegal, or unethical to obtain prob-
ability results (Carlson 1972).

Example 3.22 Alcohol and Highway Crashes 
(Overinvolvement Ratios)

Researchers at the National Highway Traffic Safety Administration in the U.S. Depart-
ment of Transportation wished to determine the effect of alcohol on highway crashes. 
Clearly, it would be unethical to provide one group of drivers with alcohol and then 
compare their crash involvement with that of a group that did not have alcohol. How-
ever, researchers did find that 10.3% of the nighttime drivers in a specific county had 
been drinking and that 32.4% of the single-vehicle-accident drivers during the same time 
and in the same county had been drinking. Single-vehicle accidents were chosen to en-
sure that any driving error could be assigned to only one driver, whose alcohol usage 
had been measured. Based on these results they wanted to know if there was evidence to 
conclude that accidents increased at night when drivers had been drinking. Use the data 
to determine if alcohol usage leads to an increased probability of crashes (Carlson 1972).

Solution Using the overinvolvement ratios can help solve this problem. First, the 
events in the sample space need to be defined:

A1: The driver had been drinking.
A2: The driver had not been drinking.
C1: The driver was involved in a crash.
C2: The driver was not involved in a crash.

We know that alcohol, A1, increases the probability of a crash if

P1A1 u C12
P1A1 u C22 7 1.0
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The overinvolvement ratio is a good example of how mathematical manipulations of 
probabilities can be used to obtain results that are useful for business decisions. The wide 
usage of automated methods of data collection, including bar code scanners, audience 
segmentation, and census data on tapes and disks, provides the possibility to compute 
many different probabilities, conditional probabilities, and overinvolvement ratios. As a 
result, analyses similar to those presented in this chapter have become part of the daily 
routine for marketing analysts and product managers.

From the research the conditional probabilities are as follows:

 P1A1 u C12 = 0.324
 P1A1 u C22 = 0.103

Using these results, the overinvolvement ratio is as follows:

P1A1 u C12
P1A1 u C22 =

0.324
0.103

= 3.15

Based on this analysis, there is evidence to conclude that alcohol increases the probabil-
ity of automobile crashes.

EXERCISES

Basic Exercises
Basic Exercises 3.52–3.58 refer to Table 3.10.
 3.52 What is the joint probability of “high income” and 

“never”?
 3.53 What is the joint probability of “low income” and 

“regular”?
 3.54 What is the joint probability of “middle income” and 

“never”?
 3.55 What is the joint probability of “middle income” and 

“occasional”?
 3.56 What is the conditional probability of “high income,” 

given “never”?
 3.57 What is the conditional probability of “low income,” 

given “occasional”?
 3.58 What is the conditional probability of “regular,” given 

“high income”?
 3.59 The probability of a sale is 0.80. What are the odds in 

favor of a sale?
 3.60 The probability of a sale is 0.50. What are the odds in 

favor of a sale?
 3.61 Consider two groups of students: B1, students who 

received high scores on tests, and B2, students who 

received low scores on tests. In group B1, 80% study 
more than 25 hours per week, and in group B2, 40% 
study more than 25 hours per week. What is the over-
involvement ratio for high study levels in high test 
scores over low test scores?

 3.62 Consider two groups of students: B1, students who 
received high scores on tests, and B2, students who 
received low scores on tests. In group B1, 40% study 
more than 25 hours per week, and in group B2, 20% 
study more than 25 hours per week. What is the over-
involvement ratio for high study levels in high test 
scores over low test scores?

 3.63 Consider two groups of students: B1, students who 
received high scores on tests, and B2, students who 
received low scores on tests. In group B1, 20% study 
more than 25 hours per week, and in group B2, 40% 
study more than 25 hours per week. What is the over-
involvement ratio for high study levels in high test 
scores over low test scores?

Table 3.10 Probabilities for Television Viewing and Income

Viewing Frequency High Income Middle Income Low Income Totals

Regular 0.10 0.15 0.05 0.30

Occasional 0.10 0.20 0.10 0.40

Never 0.05 0.05 0.20 0.30

Totals 0.25 0.40 0.35 1.00
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Application Exercises
 3.64 A survey carried out for a supermarket classified cus-

tomers according to whether their visits to the store 
are frequent or infrequent and whether they often, 
sometimes, or never purchase generic products. The 
accompanying table gives the proportions of people 
surveyed in each of the six joint classifications.

 
Frequency of

Purchase of Generic  
Products

Visit   Often Sometimes Never
Frequent 0.12 0.48 0.19
Infrequent 0.07 0.06 0.08

a. What is the probability that a customer both is 
a frequent shopper and often purchases generic 
products?

b. What is the probability that a customer who never 
buys generic products visits the store frequently?

c. Are the events “never buys generic products” and 
“visits the store frequently” independent?

d. What is the probability that a customer who 
infrequently visits the store often buys generic 
products?

e. Are the events “often buys generic products” and 
“visits the store infrequently” independent?

f.  What is the probability that a customer frequently 
visits the store?

g. What is the probability that a customer never buys 
generic products?

h. What is the probability that a customer either fre-
quently visits the store or never buys generic prod-
ucts or both?

 3.65 A consulting organization predicts whether corpo-
rations’ earnings for the coming year will be unusu-
ally low, unusually high, or normal. Before deciding 
whether to continue purchasing these forecasts, a 
stockbroker compares past predictions with actual 
outcomes. The accompanying table shows proportions 
in the nine joint classifications.

Prediction

 Unusually Normal Unusually 
Outcome High Low
Unusually high 0.23 0.12 0.03
Normal 0.06 0.22 0.08
Unusually low 0.01 0.06 0.19

a. What proportion of predictions have been for un-
usually high earnings?

b. What proportion of outcomes have been for un-
usually high earnings?

c. If a firm were to have unusually high earnings, 
what is the probability that the consulting organi-
zation would correctly predict this event?

d. If the organization predicted unusually high earn-
ings for a corporation, what is the probability that 
these would materialize?

e. What is the probability that a corporation for which 
unusually high earnings had been predicted will 
have unusually low earnings?

 3.66 Subscribers to a local newspaper were asked whether 
they regularly, occasionally, or never read the busi-
ness section and also whether they had traded com-
mon stocks (or shares in a mutual fund) over the last 
year. The table shown here indicates the proportions 
of subscribers in six joint classifications.

Traded Read Business Section

Stocks  Regularly Occasionally Never
Yes 0.18 0.10 0.04
No 0.16 0.31 0.21

a. What is the probability that a randomly chosen 
subscriber never reads the business section?

b. What is the probability that a randomly chosen 
subscriber has traded stocks over the last year?

c. What is the probability that a subscriber who never 
reads the business section has traded stocks over 
the last year?

d. What is the probability that a subscriber who 
traded stocks over the last year never reads the 
business section?

e. What is the probability that a subscriber who does 
not regularly read the business section traded stocks 
over the last year?

 3.67 A corporation regularly takes deliveries of a particu-
lar sensitive part from three subcontractors. It found 
that the proportion of parts that are good or defective 
from the total received were as shown in the following 
table:

Subcontractor
Part    A B  C
Good 0.27 0.30 0.33
Defective 0.02 0.05 0.03

a. If a part is chosen randomly from all those received, 
what is the probability that it is defective?

b. If a part is chosen randomly from all those 
 received, what is the probability it is from  
subcontractor B?

c. What is the probability that a part from subcon-
tractor B is defective?

d. What is the probability that a randomly chosen 
 defective part is from subcontractor B?

e. Is the quality of a part independent of the source of 
supply?

f.  In terms of quality, which of the three subcontractors 
is most reliable?

 3.68 Students in a business statistics class were asked 
what grade they expected in the course and whether 
they worked on additional problems beyond those 
assigned by the instructor. The following table 
gives proportions of students in each of eight joint 
classifications.

Worked Expected Grade

Problems   A   B   C Below C
Yes 0.12 0.06 0.12 0.02
No 0.13 0.21 0.26 0.08
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a. Find the probability that a randomly chosen 
student from this class worked on additional 
problems.

b. Find the probability that a randomly chosen stu-
dent from this class expects an A.

c. Find the probability that a randomly chosen student 
who worked on additional problems expects an A.

d. Find the probability that a randomly chosen 
student who expects an A worked on additional 
problems.

e. Find the probability that a randomly chosen stu-
dent who worked on additional problems expects 
a grade below B.

f.  Are “worked additional problems” and “expected 
grade” statistically independent?

 3.69 The accompanying table shows proportions of com-
puter salespeople classified according to marital status 
and whether they left their jobs or stayed over a pe-
riod of 1 year.

Time on job
Marital Status  Úone year 6 one year
Married 0.64 0.13
Single 0.17 0.06

a. What is the probability that a randomly chosen 
salesperson was married?

b. What is the probability that a randomly chosen 
salesperson left the job within the year?

c. What is the probability that a randomly chosen 
single salesperson left the job within the year?

d. What is the probability that a randomly chosen 
salesperson who stayed in the job over the year was 
married?

 3.70 The accompanying table shows proportions of adults 
in metropolitan areas, categorized as to whether they 
are public-radio contributors and whether or not they 
voted in the last election.

Voted Contributors Noncontributors
Yes 0.63 0.13
No 0.14 0.10

a. What is the probability that a randomly chosen 
adult from this population voted?

b. What is the probability that a randomly chosen 
adult from this population contributes to public 
radio?

c. What is the probability that a randomly chosen adult 
from this population did not contribute and did not 
vote?

 3.71 A campus student club distributed material about 
membership to new students attending an orienta-
tion meeting. Of those receiving this material 40% 
were men and 60% were women. Subsequently, it was 
found that 7% of the men and 9% of the women who 
received this material joined the club.

a. Find the probability that a randomly chosen new 
student who receives the membership material 
will join the club.

b. Find the probability that a randomly chosen new 
student who joins the club after receiving the mem-
bership material is a woman.

 3.72 An analyst attempting to predict a corporation’s earn-
ings next year believes that the corporation’s business 
is quite sensitive to the level of interest rates. He be-
lieves that, if average rates in the next year are more 
than 1% higher than this year, the probability of sig-
nificant earnings growth is 0.1. If average rates next 
year are more than 1% lower than this year, the prob-
ability of significant earnings growth is estimated to 
be 0.8. Finally, if average interest rates next year are 
within 1% of this year’s rates, the probability for sig-
nificant earnings growth is put at 0.5. The analyst es-
timates that the probability is 0.25 that rates next year 
will be more than 1% higher than this year and 0.15 
that they will be more than 1% lower than this year.

a. What is the estimated probability that both inter-
est rates will be 1% higher and significant earnings 
growth will result?

b. What is the probability that this corporation will 
experience significant earnings growth?

c. If the corporation exhibits significant earnings 
growth, what is the probability that interest rates 
will have been more than 1% lower than in the cur-
rent year?

 3.73 Forty-two percent of a corporation’s blue-collar 
employees were in favor of a modified health care 
plan, and 22% of its blue-collar employees favored 
a proposal to change the work schedule. Thirty-four 
percent of those favoring the health care plan modifi-
cation favored the work schedule change.

a. What is the probability that a randomly selected 
blue-collar employee is in favor of both the modified 
health care plan and the changed work schedule?

b. What is the probability that a randomly chosen 
blue-collar employee is in favor of at least one of 
the two changes?

c. What is the probability that a blue-collar employee 
favoring the work schedule change also favors the 
modified health care plan?

 3.74 The grades of a freshman college class, obtained after 
the first year of college, were analyzed. Seventy per-
cent of the students in the top quarter of the college 
class had graduated in the upper 10% of their high 
school class, as had 50% of the students in the middle 
half of the college class and 20% of the students in the 
bottom quarter of the college class.

a. What is the probability that a randomly chosen 
freshman graduated in the upper 10% of his high 
school class?

b. What is the probability that a randomly chosen 
freshman who graduated in the upper 10% of the 
high school class will be in the top quarter of the 
college class?

c. What is the probability that a randomly chosen 
freshman who did not graduate in the upper 10% of 
the high school class will not be in the top quarter of 
the college class?
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 3.75 Before books aimed at preschool children are mar-
keted, reactions are obtained from a panel of preschool 
children. These reactions are categorized as favorable, 
neutral, or unfavorable. Subsequently, book sales are 
categorized as high, moderate, or low, according to 
the norms of this market. Similar panels have evalu-
ated 1,000 books in the past. The accompanying table 
shows their reactions and the resulting market perfor-
mance of the books.

Panel Reaction
Sales   Favorable Neutral Unfavorable
High   173 101 61
Moderate 88 211 70
Low 42 113 141

a. If the panel reaction is favorable, what is the prob-
ability that sales will be high?

b. If the panel reaction is unfavorable, what is the 
probability that sales will be low?

c. If the panel reaction is neutral or better, what is the 
probability that sales will be low?

d. If sales are low, what is the probability that the panel 
reaction was neutral or better?

 3.76 A manufacturer produces boxes of candy, each con-
taining 10 pieces. Two machines are used for this 

purpose. After a large batch has been produced, it is 
discovered that one of the machines, which produces 
40% of the total output, has a fault that has led to the 
introduction of an impurity into 10% of the pieces 
of candy it makes. The other machine produced no 
defective pieces. From a single box of candy, one 
piece is selected at random and tested. If that piece 
contains no impurity, what is the probability that 
the faulty machine produced the box from which it 
came?

 3.77 A student feels that 70% of her college courses have 
been enjoyable and the remainder have been bor-
ing. This student has access to student evaluations 
of professors and finds out that professors who had 
previously received strong positive evaluations 
from their students have taught 60% of his enjoy-
able courses and 25% of his boring courses. Next se-
mester the student decides to take three courses, all 
from professors who have received strongly positive 
student evaluations. Assume that this student’s re-
actions to the three courses are independent of one 
another.

a. What is the probability that this student will find 
all three courses enjoyable?

b. What is the probability that this student will find at 
least one of the courses enjoyable?

3.5 BAYES’ THEOREM

In this section we introduce an important result that has many applications to manage-
ment decision making. Bayes’ theorem provides a way of revising conditional probabil-
ities by using available information. It also provides a procedure for determining how 
probability statements should be adjusted, given additional information.

Reverend Thomas Bayes (1702–1761) developed Bayes’ theorem, originally published 
in 1763 after his death and again in 1958 (Bayes 1958). Because games of chance—and, 
hence, probability—were considered to be works of the devil, the results were not widely 
publicized. Since World War II a major area of statistics and a major area of management 
decision theory have developed based on the original works of Thomas Bayes. We begin 
our development with an example problem, followed by a more formal development.

Example 3.23 Drug Screening (Bayes’ Theorem)

A number of amateur and professional sports organizations use routine screening tests 
to determine if athletes are using performance-enhancing drugs. Jennifer Smith, presi-
dent of an amateur athletic union, has asked you to determine the feasibility of screen-
ing athletes to determine if they are using performance-enhancing drugs. Amateur 
athletes are increasingly denied participation or deprived of victories if they are found 
to be users.

As part of the study, you propose the following scenario for analysis. Suppose that 
10% of the athletes seeking participation in the athletic union have used performance-
enhancing drugs. In addition, suppose that a test is available that correctly identifies an 
athlete’s drug usage 90% of the time. If an athlete is a drug user, the probability is 0.90 
that the athlete is correctly identified by the test as a drug user. Similarly, if the athlete 
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is not a drug user, the probability is 0.90 that the athlete is correctly identified as not 
 using performance-enhancing drugs.

We should note that there are potential ethical and possible legal questions con-
cerning the use of these tests. Here, we are concerned about the feasibility of using such 
a test if one has decided that such a test is proper, given the legal and value systems.

Solution The first step in the analysis is to identify the events in the sample space:

D1: The athlete is a user of performance-enhancing drugs.
D2: The athlete is not a user of performance-enhancing drugs.

The proposed test indicates positive or negative results:

T1: Test says that the athlete is a user of performance-enhancing drugs.
T2: Test says that the athlete is not a user of performance-enhancing drugs.

From the information provided, the following probabilities can be defined:

 P1D12 = 0.10    P1D22 = 0.90
 P1T1 u D12 = 0.90 P1T2 u D12 = 0.10
 P1T1 u D22 = 0.10 P1T2 u D22 = 0.90

Using these probabilities, a two-way table, Table 3.11, containing the joint probabilities 
can be constructed:

 P1D1 > T12 = P1T1 u D12P1D12 = 0.90 * 0.10 = 0.09
 P1D1 > T22 = P1T2 u D12P1D12 = 0.10 * 0.10 = 0.01
 P1D2 > T12 = P1T1 u D22P1D22 = 0.10 * 0.90 = 0.09
 P1D2 > T22 = P1T2 u D22P1D22 = 0.90 * 0.90 = 0.81

Table 3.11 Drug Test Subgroups

T1 (TEST SAYS DRUG USER) T2 (TEST SAYS NOT A DRUG USER) TOTAL

D1 (Drug User) 0.09 0.01 0.10  

D2 (Not a Drug User) 0.09 0.81 0.90

Total 0.18 0.82 1.0

From Table 3.11 we can easily determine the conditional probability of a drug user, 
given that the test says drug user, by dividing the joint probability of D1 and T1 (0.09) 
by the marginal probability of T1 (0.18):

P1D1 u T12 =
P1D1 > T12

P1T12 =
0.09
0.18

= 0.50

Similarly, the probability of not a drug user, given that the test says not a drug user, can 
be obtained from the second column:

P1D2 u T22 =
P1D2 > T22

P1T22 =
0.81
0.82

= 0.988

From these results we see that, if the test says an athlete is not a drug user, the 
probability is very high that the test result is correct. However, if the test says that the 
athlete is a drug user, the probability is only 0.50 that the athlete is a drug user. This is 
a large increase over a probability of 0.10 for a randomly selected athlete. However, it is 
clear that the athletic association would not want to reject athletes merely on the results 
of this screening test. The potential for unethical actions and serious legal challenge 



134 Chapter 3 Elements of Chance: Probability Methods

Given this background, we now provide a more formal development of Bayes’ theo-
rem. To begin, we first review the multiplication rule, Equation 3.10:

P1A1 > B12 = P1A1 u B12P1B12 = P1B1 u A12P1A12
Bayes’ theorem follows from this rule.

would be too great. The best strategy would be to use a second independent test to 
further screen the athlete identified as a drug user by the first test. We stress again that 
there may be serious ethical and medical concerns if athletes are rejected on the basis of 
only the first test!

Bayes’ Theorem
Let A1 and B1 be two events. Then Bayes’ theorem states that

 P1B1 u A12 =
P1A1 u B12P1B12

P1A12  (3.14)

and

P1A1 u B12 =
P1B1 u A12P1A12

P1B12
Solution Steps for Bayes’ Theorem

1. Define the subset events from the problem.
2. Define the probabilities and conditional probabilities for the events 

 defined in Step 1.
3. Compute the complements of the probabilities.
4. Formally state and apply Bayes’ theorem to compute the solution 

probability.

Here, we apply these solution steps to a problem that requires careful analysis. Con-
sider Example 3.23 again. The first task is to identify the events in the sample space. The 
sample space in Example 3.23 consists of athletes separated into D1, users of performance-
enhancing drugs, and D2, nonusers of the drugs. This required an independent diagnosis 
to determine which athletes were actually drug users and which were not. These events 
cover the sample space. Athletes were also identified by their test classification, T1, the 
test indicates drug user, and T2, the test indicates not a drug user. These events also cover 
the sample space. Note that a test result T1, which indicates drug user, does not guarantee 
that the person is a drug user.

After the events have been defined, we need to determine the capability of the pro-
cedure to predict, using the data. Thus, in Example 3.23 the test was given to a group of 
known users of performance-enhancing drugs and to a group of known non–drug users. 
These test results provided the conditional probabilities of the test results, given either 
drug user or not. The data were converted to information concerning the quality of the 
screening test predictions by using Bayes’ theorem. The final task is to express one or 
more questions in the form of Bayes’ theorem. In Example 3.23 we were interested in the 
probability that an athlete was a drug user, given that the athlete obtained a positive re-
sult on the test. We also realized that it was important to know the probability that an 
athlete was not a drug user, given a positive test result.

Bayes’ theorem is often expressed in a different, but equivalent, form that uses more 
detailed information. Let E1, E2, . . . , EK be K mutually exclusive and collectively exhaustive 
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events, and let A1 be some other event. We can find the probability of Ei, given A1, by using 
Bayes’ theorem:

P1Ei u A12 =
P1A1 u Ei2P1Ei2

P1A12
The denominator can be expressed in terms of the probabilities of A1, given the various 
Eis, by using the intersections and the multiplication rule:

 P1A12 = P1A1 > E12 + P1A1 > E22 + g + P1A1 > EK2
 = P1A1 u E12P1E12 + P1A1 u E22P1E22 + g + P1A1 u EK2P1EK2

These results can be combined to provide a second form of Bayes’ theorem.

Bayes’ Theorem (Alternative Statement)
Let E1, E2, . . . , EK be K mutually exclusive and collectively exhaustive events, 
and let A be some other event. The conditional probability of Ei, given A, can 
be expressed as Bayes’ theorem:

  P1Ei u A12 =
P1A1 u Ei2P1Ei2

P1A12
  P1Ei u A12 =

P1A1 u Ei2P1Ei2
P1A1 u E12P1E12 + P1A1 u E22P1E22 + g + P1A1 u EK2P1EK2  (3.15)

where

 P1A12 = P1A1 > E12 + P1A1 > E22 + g + P1A1 > EK2
 = P1A1 u E12P1E12 + P1A1 u E22P1E22 + g + P1A1 u EK2P1EK2

The advantage of this restatement of the theorem lies in the fact that the probabilities 
it involves are often precisely those that are directly available.

This process for solving conditional probability and>or Bayes’ problems is summa-
rized in Example 3.24.

Example 3.24 Automobile Sales Incentive  
(Bayes’ Theorem)

A car dealership knows from past experience that 10% of the people who come into 
the showroom and talk to a salesperson will eventually purchase a car. To increase the 
chances of success, you propose to offer a free dinner with a salesperson for all people 
who agree to listen to a complete sales presentation. You know that some people will 
do anything for a free dinner, even if they do not intend to purchase a car. However, 
some people would rather not spend a dinner with a car salesperson. Thus, you wish 
to test the effectiveness of this sales promotion incentive. The project is conducted for 6 
months, and 40% of the people who purchased cars had a free dinner. In addition, 10% 
of the people who did not purchase cars had a free dinner.

The specific questions to be answered are the following:

a.  Do people who accept the dinner have a higher probability of purchasing a new 
car?

b.  What is the probability that a person who does not accept a free dinner will pur-
chase a car?

Solution

Step 1. Define the subset events from the problem:

D1: The customer has dinner with the salesperson.
D2: The customer does not have dinner with the salesperson.
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We have presented a logical step-by-step or linear procedure for solving Bayes’ prob-
lems. This procedure works very well for persons experienced in solving this type of prob-
lem. The procedure can also help you to organize Bayes’ problems. However, most real 
problem solving in new situations does not follow a step-by-step, or linear, procedure. 
Thus, you are likely to move back to previous steps and revise your initial definitions. In 
some cases you may find it useful to write out Bayes’ theorem before you define the prob-
abilities. The mathematical form defines the probabilities that must be obtained from the 
problem description. Alternatively, you may want to construct a two-way table, as we did 
in Example 3.23. As you are learning to solve these problems, use the structure, but learn 
to be creative and willing to go back to previous steps.

P1: The customer purchases a car.
P2: The customer does not purchase a car.

Step 2. Define the probabilities for the events defined in Step 1:

P1P12 = 0.10 P1D1 u P12 = 0.40 P1D1 u P22 = 0.10

Step 3. Compute the complements of the probabilities:

P1P22 = 0.90 P1D2 u P12 = 0.60 P1D2 u P22 = 0.90

Step 4. Apply Bayes’ theorem to compute the probability for the problem solution.

a.  We know that the sales promotion plan has increased the probability of a car 
purchase if more than 10% of those that had dinner purchased a car. Specifically, 
we ask if

P1P1 u D12 7 P1P12 = 0.10

Using Bayes’ theorem, we find that

 P1P1 u D12 =
P1D1 u P12P1P12

P1D1 u P12P1P12 + P1D1 u P22P1P22
 =

0.40 * 0.10
0.40 * 0.10 + 0.10 * 0.90

 = 0.308

 Therefore, the probability of purchase is higher, given the dinner with the 
salesperson.

b.  This question asks that we compute the probability of purchase, P1, given that 
the customer does not have dinner with the salesperson, D2. We again apply 
Bayes’ theorem to compute the following:

 P1P1 u D22 =
P1D2 u P12P1P12

P1D2 u P12P1P12 + P1D2 u P22P1P22
 =

0.60 * 0.10
0.60 * 0.10 + 0.90 * 0.90

 = 0.069

We see that those who refuse the dinner have a lower probability of purchase. 
To provide additional evaluation of the sales program, we might also wish to 
compare the 6-month sales experience with that of other dealers and with previ-
ous sales experience, given similar economic conditions.
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Example 3.25 Market Research (Bayes’ Throrem)

Blue Star United, a major electronics distributor, has hired Southwest Forecasters, a 
market research firm, to predict the level of demand for its new product that combines 
cell phone and complete Internet capabilities at a price substantially below its major 
competitors. As part of its deliverables, Southwest provides a rating of Poor, Fair, or 
Good, on the basis of its research. Prior to engaging Southwest Blue Star, management 
concluded the following probabilities for the market-demand levels:

P1Low2 = P1s12 = 0.1 P1Moderate2 = P1s22 = 0.5 P1High2 = P1s32 = 0.4

Southwest completes its study and concludes that the market potential for this product 
is poor. What conclusion should Blue Star reach based on the market-study results?

Solution A review of the market-research company’s records reveals the quality of 
its past predictions in this field. Table 3.12 shows, for each level of demand outcome, 
the proportion of Poor, Fair, and Good assessments that were made prior to introducing 
the product to the market.

Table 3.12 Proportion of Assessments Provided by a Market-Research Organization 
Prior to Various Levels of Market Demand (Conditional Probabilities)

Market Demand That Actually Occurred After Assessment Was Provided

Assessment Low Demand (s1) Moderate Demand (s2) High Demand (s3)

Poor 0.6 0.3 0.1

Fair 0.2 0.4 0.2

Good 0.2 0.3 0.7

For example, on 10% of occasions that demand was high, the assessment prior to 
market introduction was Poor. Thus, in the notation of conditional probability, denot-
ing Low, Moderate, and High demand levels by s1, s2, and s3, respectively, it follows that

P1Poor u s12 = 0.6  P1Poor u s22 = 0.3  P1Poor u s32 = 0.1

Given this new information, the prior probabilities

P1s12 = 0.1  P1s22 = 0.5  P1s32 = 0.4

for the three demand levels can be modified using Bayes’ theorem. For a low level of 
demand, the posterior probability is as follows:

 P1s1 u Poor2 =
P1Poor u s12P(s12

P1Poor u s12P1s12 + P1Poor u s22P1s22 + P1Poor u s32P1s32
 =

10.62 10.1210.62 10.12 + 10.32 10.52 + 10.12 10.42 =
0.06
0.25

= 0.24

Similarly, for the other two demand levels, the posterior probabilities are as follows:

P1s2 u Poor2 = 10.32 10.52
0.25

= 0.6 P1s3 u Poor2 = 10.12 10.42
0.25

= 0.16

Based on this analysis we see that the probability for high demand is now reduced 
to 0.16, and the most likely outcome is moderate demand with a posterior probability 
of 0.6.
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Subjective Probabilities in Management Decision Making

An interesting interpretation of Bayes’ theorem has been developed in the context of sub-
jective probabilities. Suppose that an individual is interested in event B and forms a sub-
jective view of the probability that B will occur; in this context the probability P1B2  is 
called a prior probability. If the individual then acquires an additional piece of informa-
tion—namely, that event A has occurred—this may cause a modification of the initial judg-
ment as to the likelihood of the occurrence of B. Since A is known to have happened, the 
relevant probability for B is now the conditional probability of B, given A, and is termed 
the posterior probability. Viewed in this way, Bayes’ theorem can be thought of as a mech-
anism for updating a prior probability to a posterior probability when the information 
that A has occurred becomes available. The theorem then states that the updating is ac-
complished through the multiplication of the prior probabilityP1B2  by P1A u  B2 >P1A2 .

We know that people commonly form and subsequently modify subjective probability 
assessments. For example, an important part of an auditor’s work is to determine whether 
or not the account balances are correct. Before examining a particular account, the auditor 
will have formed an opinion, based on previous audits, of the probability that there is an 
error. However, if the balance is found to be substantially different from what might be 
expected on the basis of the last few years’ figures, the auditor will believe that the prob-
ability of an error is higher and, therefore, give the account particularly close attention. 
Here, the prior probability has been updated in the light of additional information.

Example 3.26 Auditing Business Records  
(Bayes’ Theorem)

Based on an examination of past records of a corporation’s account balances, an auditor 
finds that 15% have contained errors. Of those balances in error, 60% were regarded as 
unusual values based on historical figures. Of all the account balances, 20% were un-
usual values. If the figure for a particular balance appears unusual on this basis, what is 
the probability that it is in error?

Solution Let A1 be “error in account balance” and B1 be “unusual value based on 
historical figures.” Then, from the available information,

P1A12 = 0.15 P1B12 = 0.20 P1B1 u A12 = 0.60

Using Bayes’ theorem,

P1A1 u B12 =
P1B1 u A12P1A12

P1B12 =
10.602 10.152

0.20
= 0.45

Thus, given the information that the account balance appears unusual, the probability 
that it is in error is modified from the prior 0.15 to the posterior 0.45.

EXERCISES

Basic Exercises
The following basic exercises use a sample space defined by 
events A1, A2, B1, and B2.
 3.78 Given P1A12 = 0.40, P1B1 u A12 = 0.60, and 

P1B1 u A22 = 0.70, what is the probability of P1A1 u B12?
 3.79 Given P1A12 = 0.80, P1B1 u A12 = 0.60, and 

P1B1 u A22 = 0.20, what is the probability of P1A1 u B12?
 3.80 Given P1A12 = 0.50, P1B1 u A12 = 0.40, and 

P1B1 u A22 = 0.70, what is the probability of 
P1A1 u B22?
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 3.81 Given P1A12 = 0.40, P1B1 u A12 = 0.60, and 
P1B1 u A22 = 0.70, what is the probability of 
P1A2 u B22?

 3.82 Given P1A12 = 0.60, P1B1 u A12 = 0.60, and 
P1B1 u A22 = 0.40, what is the probability of 
P1A1 u B12?

Application Exercises
 3.83 A publisher sends advertising materials for an ac-

counting text to 80% of all professors teaching the 
appropriate accounting course. Thirty percent of the 
professors who received this material adopted the 
book, as did 10% of the professors who did not receive 
the material. What is the probability that a professor 
who adopts the book has received the advertising 
material?

 3.84 A stock market analyst examined the prospects of 
the shares of a large number of corporations. When 
the performance of these stocks was investigated one 
year later, it turned out that 25% performed much 
better than the market average, 25%, much worse, 
and the remaining 50%, about the same as the aver-
age. Forty percent of the stocks that turned out to do 
much better than the market were rated good buys 
by the analyst, as were 20% of those that did about 
as well as the market and 10% of those that did much 
worse. What is the probability that a stock rated a 
good buy by the analyst performed much better than 
the average?

 3.85 The Watts New Lightbulb Corporation ships large 
consignments of lightbulbs to big industrial users. 
When the production process is functioning cor-
rectly, which is 90% of the time, 10% of all bulbs 
produced are defective. However, the process is 

susceptible to an occasional malfunction, leading to 
a defective rate of 50%. If a defective bulb is found, 
what is the probability that the process is func-
tioning correctly? If a nondefective bulb is found, 
what is the probability that the process is operating 
correctly?

 3.86 You are the meat products manager for Gigantic 
Foods, a large retail supermarket food distribu-
tor who is studying the characteristics of its whole 
chicken product mix. Chickens are purchased from 
both Free Range Farms and Big Foods Ltd. Free 
Range Farms produces chickens that are fed with 
natural grains and grubs in open feeding areas. 
In their product mix, 10% of the processed chick-
ens weigh less than 3 pounds. Big Foods Ltd. pro-
duces chickens in cages using enriched food grains 
for rapid growth. They note that 20% of their pro-
cessed chickens weigh less than three poounds. 
Gigantic Foods purchases 40% of its chickens from 
Free Range Farms and mixes the products together 
with no identification of the supplier. Suppose you 
purchase a chicken that weighs more than three 
pounds. What is the probability the chicken came 
from Free Range Farms? If you purchase 5 chickens, 
what is the probability that at least 3 came from Free 
Range Farms?

 3.87 You and a friend are big soccer fans and are debating 
the possibility that FC Barcelona will win the final 
of the UEFA Champions League against Manchester 
United. You are supporting Manchester United, but 
your friend tells you that the bookmakers have given 
the following odds for the game: 2:8 (Manchester 
United vs. FC Barcelona). What is the probability that 
Manchester United will win?
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CHAPTER EXERCISES AND APPLICATIONS

 3.88 Suppose that you have an intelligent friend who has 
not studied probability. How would you explain to 
your friend the distinction between mutually exclu-
sive events and independent events? Illustrate your 
answer with suitable examples.

 3.89 State, with evidence, whether each of the following 
statements is true or false:

a. The complement of the union of two events is the 
intersection of their complements.

b. The sum of the probabilities of collectively exhaus-
tive events must equal 1.

c. The number of combinations of x objects cho-
sen from n is equal to the number of combina-
tions of 1n - x2  objects chosen from n, where 
1 … x … 1n - 12 .

d. If A and B are two events, the probability of A, 
given B, is the same as the probability of B, given 
A, if the probability of A is the same as the prob-
ability of B.

e. If an event and its complement are equally likely 
to occur, the probability of that event must be 0.5.

f. If A and B are independent, then A and B must be 
independent.

g. If A and B are mutually exclusive, then A and B 
must be mutually exclusive.

 3.90 Explain carefully the meaning of conditional probabil-
ity. Why is this concept important in discussing the 
chance of an event’s occurrence?

 3.91 Bayes’ theorem is important because it provides a 
rule for moving from a prior probability to a poste-
rior probability. Elaborate on this statement so that 
it would be well understood by a fellow student who 
has not yet studied probability.

 3.92 State, with evidence, whether each of the following 
statements is true or false:

a. The probability of the union of two events cannot 
be less than the probability of their intersection.

b. The probability of the union of two events can-
not be more than the sum of their individual 
probabilities.

c. The probability of the intersection of two events 
cannot be greater than either of their individual 
probabilities.

d. An event and its complement are mutually exclusive.
e. The individual probabilities of a pair of events can-

not sum to more than 1.
f. If two events are mutually exclusive, they must 

also be collectively exhaustive.
g. If two events are collectively exhaustive, they must 

also be mutually exclusive.

 3.93 Distinguish among joint probability, marginal prob-
ability, and conditional probability. Provide some ex-
amples to make the distinctions clear.

 3.94 State, with evidence, whether each of the following 
claims is true or false:

a. The conditional probability of A, given B, must be 
at least as large as the probability of A.

b. An event must be independent of its complement.
c. The probability of A, given B, must be at least 

as large as the probability of the intersection of  
A and B.

d. The probability of the intersection of two events 
cannot exceed the product of their individual 
probabilities.

e. The posterior probability of any event must be at 
least as large as its prior probability.

 3.95 Show that the probability of the union of events A and 
B can be written as follows:

P1A < B2 = P1A2 + P1B2 31 - P1A u B2 4
 3.96 An insurance company estimated that 30% of all au-

tomobile accidents were partly caused by weather 
conditions and that 20% of all automobile accidents 
involved bodily injury. Further, of those accidents that 
involved bodily injury, 40% were partly caused by 
weather conditions.

a. What is the probability that a randomly chosen 
accident both was partly caused by weather condi-
tions and involved bodily injury?

b. Are the events “partly caused by weather condi-
tions” and “involved bodily injury” independent?

c. If a randomly chosen accident was partly caused 
by weather conditions, what is the probability that 
it involved bodily injury?

d. What is the probability that a randomly chosen 
accident both was not partly caused by weather 
conditions and did not involve bodily injury?

 3.97 A company places a rush order for wire of two thick-
nesses. Consignments of each thickness are to be sent 
immediately when they are available. Previous expe-
rience suggests that the probability is 0.8 that at least 
one of these consignments will arrive within a week. It 
is also estimated that, if the thinner wire arrives within 
a week, the probability is 0.4 that the thicker wire will 
also arrive within a week. Further, it is estimated that, 
if the thicker wire arrives within a week, the probabil-
ity is 0.6 that the thinner wire will also arrive within a 
week.

a. What is the probability that the thicker wire will 
arrive within a week?

b. What is the probability that the thinner wire will 
arrive within a week?

c. What is the probability that both consignments 
will arrive within a week?

 3.98 Staff, Inc., a management consulting company, is sur-
veying the personnel of Acme Ltd. It determined that 
35% of the analysts have an MBA and that 40% of all 
analysts are over age 35. Further, of those who have an 
MBA, 30% are over age 35.

a. What is the probability that a randomly chosen 
analyst both has an MBA and also is over age 35?

b. What is the probability that a randomly chosen 
analyst who is over age 35 has an MBA?
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c. What is the probability that a randomly chosen 
analyst has an MBA or is over age 35?

d. What is the probability that a randomly chosen 
analyst who is over age 35 does not have an  
MBA?

e. Are the events MBA and over age 35 independent?
f. Are the events MBA and over age 35 mutually 

exclusive?
g. Are the events MBA and over age 35 collectively 

exhaustive?

 3.99 In a campus restaurant it was found that 35% of all 
customers order vegetarian meals and that 50% of all 
customers are students. Further, 25% of all customers 
who are students order vegetarian meals.

a. What is the probability that a randomly chosen 
customer both is a student and orders a vegetarian 
meal?

b. If a randomly chosen customer orders a vegetarian 
meal, what is the probability that the customer is a 
student?

c. What is the probability that a randomly chosen 
customer both does not order a vegetarian meal 
and is not a student?

d. Are the events “customer orders a vegetarian 
meal” and “customer is a student” independent?

e. Are the events “customer orders a vegetarian  
meal” and “customer is a student” mutually 
exclusive?

f. Are the events “customer orders a vegetarian 
meal” and “customer is a student” collectively 
exhaustive?

 3.100 It is known that 20% of all farms in a state exceed 160 
acres and that 60% of all farms in that state are owned 
by persons over 50 years old. Of all farms in the state 
exceeding 160 acres, 55% are owned by persons over 
50 years old.

a. What is the probability that a randomly chosen 
farm in this state both exceeds 160 acres and is 
owned by a person over 50 years old?

b. What is the probability that a farm in this state 
either is bigger than 160 acres or is owned by a 
person over 50 years old (or both)?

c. What is the probability that a farm in this state, 
owned by a person over 50 years old, exceeds 160 
acres?

d. Are size of farm and age of owner in this state sta-
tistically independent?

 3.101 In a large corporation, 80% of the employees are men 
and 20% are women. The highest levels of education 
obtained by the employees are graduate training for 
10% of the men, undergraduate training for 30% of the 
men, and high school training for 60% of the men. The 
highest levels of education obtained are also graduate 
training for 15% of the women, undergraduate train-
ing for 40% of the women, and high school training for 
45% of the women.

a. What is the probability that a randomly chosen 
employee will be a man with only a high school 
education?

b. What is the probability that a randomly chosen 
employee will have graduate training?

c. What is the probability that a randomly chosen 
employee who has graduate training is a man?

d. Are gender and level of education of employees in 
this corporation statistically independent?

e. What is the probability that a randomly chosen 
employee who has not had graduate training is  
a woman?

 3.102 A large corporation organized a ballot for all its work-
ers on a new bonus plan. It was found that 65% of all 
night-shift workers favored the plan and that 40% 
of all female workers favored the plan. Also, 50% of 
all employees are night-shift workers and 30% of all 
employees are women. Finally, 20% of all night-shift 
workers are women.

a. What is the probability that a randomly chosen 
employee is a woman in favor of the plan?

b. What is the probability that a randomly chosen 
employee is either a woman or a night-shift worker 
(or both)?

c. Is employee gender independent of whether the 
night shift is worked?

d. What is the probability that a female employee is a 
night-shift worker?

e. If 50% of all male employees favor the plan, what 
is the probability that a randomly chosen em-
ployee both does not work the night shift and does 
not favor the plan?

 3.103 A jury of 12 members is to be selected from a panel 
consisting of 8 men and 8 women.

a. How many different jury selections are possible?
b. If the choice is made randomly, what is the prob-

ability that a majority of the jury members will be 
men?

 3.104 A consignment of 12 electronic components contains 1 
component that is faulty. Two components are chosen 
randomly from this consignment for testing.

a. How many different combinations of 2 compo-
nents could be chosen?

b. What is the probability that the faulty component 
will be chosen for testing?

 3.105 Tiger Funds Ltd. operates a number of mutual funds 
in high technology and in financial sectors. Hussein 
Roberts is a fund manager who runs a major fund 
that includes a wide variety of technology stocks. As 
fund manager he decides which stocks should be pur-
chased for the mutual fund. The compensation plan 
for fund managers includes a first-year bonus for each 
stock purchased by the manager that gains more than 
10% in the first six months it is held. Of those stocks 
that the company holds, 40% are up in value after be-
ing held for two years. In reviewing the performance 
of Mr. Roberts, they found that he received a first-year 
bonus for 60% of the stocks that he purchased that 
were up after two years. He also received a first-year 
bonus for 40% of the stocks he purchased that were 
not up after two years.



142 Chapter 3 Elements of Chance: Probability Methods

  What is the probability that a stock will be up after 
two years given that Mr. Roberts received a first-year 
bonus?

 3.106 Of 100 patients with a certain disease, 10 were chosen 
at random to undergo a drug treatment that increases 
the cure rate from 50% for those not given the treat-
ment to 75% for those given the drug treatment.

a. What is the probability that a randomly chosen 
patient both was cured and was given the drug 
treatment?

b. What is the probability that a patient who was 
cured had been given the drug treatment?

c. What is the probability that a specific group  
of 10 patients was chosen to undergo the drug 
treatment? (Leave your answer in terms of 
factorials.)

 3.107 Subscriptions to a particular magazine are classified 
as gift, previous renewal, direct mail, and subscription 
service. In January 8% of expiring subscriptions were 
gifts; 41%, previous renewal; 6%, direct mail; and 
45%, subscription service. The percentages of renew-
als in these four categories were 81%, 79%, 60%, and 
21%, respectively. In February of the same year, 10% 
of expiring subscriptions were gift; 57%, previous re-
newal; 24%, direct mail; and 9%, subscription service. 
The percentages of renewals were 80%, 76%, 51%, and 
14%, respectively.

a. Find the probability that a randomly chosen sub-
scription expiring in January was renewed.

b. Find the probability that a randomly chosen sub-
scription expiring in February was renewed.

c. Verify that the probability in part (b) that is higher 
than that in part (a). Do you believe that the edi-
tors of this magazine should view the change from 
January to February as a positive or negative 
development?

 3.108 The Customs Inspection agency at international 
airports has developed a traveler profiling sys-
tem (TPS) to detect passengers who are trying to 
bring more liquor into the country than is allowed 
by present regulations. Long-term studies indicate 
that 20% of the passengers are carrying more li-
quor than is allowed. Tests on the new TPS scheme 
has shown that of those carrying illegal amounts of 
liquor, 80% will be identified and subject to com-
plete luggage search. In addition 20% of those not 
carrying illegal amounts of liquor will also be iden-
tified by TPS and subject to a complete luggage 
search.

If a passenger is identified by TPS, what is the prob-
ability that the passenger is carrying an illegal amount 
of liquor? Comment on the value of this system.

 3.109 In a large city, 8% of the inhabitants have contracted 
a particular disease. A test for this disease is positive 
in 80% of people who have the disease and is negative 
in 80% of people who do not have the disease. What is 
the probability that a person for whom the test result 
is positive has the disease?

 3.110 A life insurance salesman finds that, of all the sales he 
makes, 70% are to people who already own policies. 
He also finds that, of all contacts for which no sale is 
made, 50% already own life insurance policies. Fur-
thermore, 40% of all contacts result in sales. What is 
the probability that a sale will be made to a contact 
who already owns a policy?

 3.111 A professor finds that she awards a final grade of A 
to 20% of her students. Of those who obtain a final 
grade of A, 70% obtained an A on the midterm ex-
amination. Also, 10% of the students who failed to 
obtain a final grade of A earned an A on the midterm 
exam. What is the probability that a student with an 
A on the midterm examination will obtain a final 
grade of A?

 3.112 The accompanying table shows, for 1,000 forecasts 
of earnings per share made by financial analysts, the 
numbers of forecasts and outcomes in particular cat-
egories (compared with the previous year).

Forecast
 
Outcome

 
 Improvement

About the 
 Same

 
Worse

Improvement  210  82   66
About the same  106 153   75
Worse  75  84 149

a. Find the probability that if the forecast is for a 
worse performance in earnings, this outcome will 
result.

b. If the forecast is for an improvement in earnings, 
find the probability that this outcome fails to 
result.

 3.113 A dean has found that 62% of entering freshmen 
and 78% of community college transfers eventually 
graduate. Of all entering students, 73% are entering 
freshmen and the remainder are community college 
transfers.

a. What is the probability that a randomly chosen 
entering student is an entering freshman who will 
eventually graduate?

b. Find the probability that a randomly chosen enter-
ing student will eventually graduate.

c. What is the probability that a randomly chosen 
entering student either is an entering freshman or 
will eventually graduate (or both)?

d. Are the events “eventually graduates” and “en-
ters as community college transfer” statistically 
independent?

 3.114 A market-research group specializes in providing as-
sessments of the prospects of sites for new children’s 
toy stores in shopping centers. The group assesses 
prospects as good, fair, or poor. The records of assess-
ments made by this group were examined, and it was 
found that for all stores that had annual sales over 
$1,000,000, the assessments were good for 70%, fair 
for 20%, and poor for 10%. For all stores that turned 
out to be unsuccessful, the assessments were good for 
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20%, fair for 30%, and poor for 50%. It is known that 
60% of new clothing stores are successful and 40% are 
unsuccessful.

a. For a randomly chosen store, what is the probabil-
ity that prospects will be assessed as good?

b. If prospects for a store are assessed as good, what 
is the probability that it will be successful?

c. Are the events “prospects assessed as good”  
and “store is successful” statistically 
independent?

d. Suppose that five stores are chosen at random. 
What is the probability that at least one of them 
will be successful?

 3.115 A restaurant manager classifies customers as regu-
lar, occasional, or new, and finds that of all custom-
ers 50%, 40%, and 10%, respectively, fall into these 
categories. The manager found that wine was or-
dered by 70% of the regular customers, by 50% of 
the occasional customers, and by 30% of the new 
customers.

a. What is the probability that a randomly chosen 
customer orders wine?

b. If wine is ordered, what is the probability that the 
person ordering is a regular customer?

c. If wine is ordered, what is the probability that the 
person ordering is an occasional customer?

 3.116 A record-store owner assesses customers entering the 
store as high school age, college age, or older, and 
finds that of all customers 30%, 50%, and 20%, respec-
tively, fall into these categories. The owner also found 
that purchases were made by 20% of high school age 
customers, by 60% of college age customers, and by 
80% of older customers.

a. What is the probability that a randomly  
chosen customer entering the store will make a 
purchase?

b. If a randomly chosen customer makes a purchase, 
what is the probability that this customer is high 
school age?

 3.117 Note that this exercise represents a completely imagi-
nary situation. Suppose that a statistics class contained 
exactly 8 men and 8 women. You have discovered that 
the teacher decided to assign 5 Fs on an exam by ran-
domly selecting names from a hat. He concluded that 
this would be easier than actually grading all those 
papers and that his students are all equally skilled in 
statistics—but someone has to get an F. What is the 
probability that all 5 Fs were given to male students?

 3.118 A survey on the best Asian tourist destinations 
showed that, out of 70 people, 23 ranked Singapore 
as first, whereas 15 put Hong Kong in first place, 11 
put Shanghai first, 7 put Beijing first, and the rest of 
them chose Tokyo. On the basis of this data, calcu-
late the following.

a. The probability of the preferred destination being 
a city in China. (In this specific case, Hong Kong is 
not considered part of China.)

b. The probability of the preferred destination not 
being a Chinese city. (In this case, Hong Kong is 
considered a Chinese city, even if outside China.)

c. The probability of the preferred destination 
 being Tokyo.

d. The probability of the preferred destination not 
 being Singapore.

 3.119 You are responsible for detecting the source of the er-
ror when a computer system fails. From your analysis 
you know that the source of error is the disk drive, 
the computer memory, or the operating system. You 
know that 50% of the errors are disk drive errors, 30% 
are computer memory errors, and the remainder are 
operating system errors. From the component perfor-
mance standards, you know that when a disk drive 
error occurs, the probability of failure is 0.60; when a 
computer memory error occurs, the probability of fail-
ure is 0.7; and when an operating system error occurs, 
the probability of failure is 0.3. Given the information 
from the component performance standards, what is 
the probability of a disk drive error, given that a failure 
occurred?

 3.120 After meeting with the regional sales managers, 
Lauretta Anderson, president of Cowpie Computers, 
Inc., you find that she believes that the probability 
that sales will grow by 10% in the next year is 0.70. 
After coming to this conclusion, she receives a report 
that John Cadariu of Minihard Software, Inc., has just 
announced a new operating system that will be avail-
able for customers in 8 months. From past history 
she knows that in situations where growth has even-
tually occurred, new operating systems have been 
announced 30% of the time. However, in situations 
where growth has not eventually occurred, new oper-
ating systems have been announced 10% of the time. 
Based on all these facts, what is the probability that 
sales will grow by 10%?

 3.121 Sally Firefly purchases hardwood lumber for a cus-
tom furniture-building shop. She uses three suppliers, 
Northern Hardwoods, Mountain Top, and Spring Val-
ley. Lumber is classified as either clear or has defects, 
which includes 20% of the pile. A recent analysis of 
the defect lumber pile showed that 30% came from 
Northern Hardwoods and 50% came from Mountain 
Top. Analysis of the clear pile indicates that 40% came 
from Northern and 40% came from Spring Valley. 
What is the percent of clear lumber from each of the 
three suppliers? What is the percent of lumber from 
each of the three suppliers?

 3.122 Robert Smith uses either regular plowing or minimal 
plowing to prepare the cornfields on his Minnesota 
farm. Regular plowing was used for 40% of the field 
acreage. Analysis after the crop was harvested showed 
that 50% of the high-yield acres were from minimal-
plowing fields and 40% of the low yield fields were 
from fields with regular plowing. What is the prob-
ability of a high yield if regular plowing is used? What 
is the probability that a field with high yield had been 
prepared using regular plowing?
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Appendix: Unions and Intersections  
of Events

The Venn diagrams in Figures 3.10, 3.11, and 3.12 illustrate three results involving unions 
and intersections of events.

Result 1
Let A and B be two events. Then the events A > B and A > B are mutually exclusive, 
and their union is B, as illustrated in the Venn diagram in Figure 3.10. Clearly,1A > B2 < 1A > B2 = B              (3.16)

Figure 3.10 Venn Diagram for Result 1: 1A > B2< 1A > B2 = B

A B

A>B A>B

S

Result 2
Let A and B be two events. The events A and A > B are mutually exclusive, and 
their union is A < B, as illustrated in the Venn diagram in Figure 3.11—that is,

A < 1A > B2 = A < B               (3.17)

Figure 3.11 Venn Diagram for Result 2: A < 1A > B2 = A < B

A

S

B

A A>B

Result 3
Let E1, E2, . . . , EK be K mutually exclusive and collectively exhaustive events, 
and let A be some other event. Then the K events E1 > A, E2 > A,g, EK > A are 
mutually exclusive, and their union is A—that is,1E1 > A2< 1E2 > A2< g < 1EK > A2 = A          (3.18)

We can better understand the third statement by examining the Venn diagram in Fig-
ure 3.12. The large rectangle indicates the entire sample space and is divided into smaller 
rectangles depicting K mutually exclusive and collectively exhaustive events E1, E2, . . . , 
EK. The event A is represented by the closed figure. We see that the events composed of 
the intersection of A and each of the E events are indeed mutually exclusive and that their 
union is simply the event A. We can, therefore, write the following:1E1 > A2< 1E2 > A2< g < 1EK > A2 = A



Figure 3.12 
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Example 3.27 Single Die (Results 1 and 2)

Consider a die-rolling experiment with A = 32, 4, 64  and B = 34, 5, 64 . Show the 
following:

a. 1A > B2 < 1A > B2 = B

b. A < 1A > B2 = A < B

Solution We know that

A = 31, 3, 54
It follows that

A > B = 34, 64  and A > B = 354
a.  Then, A > B and A > B are mutually exclusive, and their union is B = 34, 5, 64—

that is, 1A > B2 < 1A > B2 = 34, 5, 64 = B

b. Also, A and A > B are mutually exclusive, and their union is

A < 1A > B2 = 32, 4, 5, 64 = A < B

Example 3.28 Single Die (Result 3)

Consider a die-rolling experiment with events A, E1, E2, and E3 given by the following:

A = 32, 4, 64 E1 = 31, 24 E2 = 33, 44 E3 = 35, 64
Show that E1 > A, E2 > A, and E3 > A are mutually exclusive and that their union is A.

Solution First, we notice that E1, E2, and E3 are mutually exclusive and collectively 
exhaustive. Then,

E1 > A = 324 E2 > A = 344 E3 > A = 364
Clearly, these three events are mutually exclusive, and their union is as follows:1E1 > A2 < 1E2 > A2 < 1E3 > A2 = 32, 4, 64 = A
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Introduction

In Chapter 3 we began our development of probability to represent situations 
with uncertain outcomes. In this chapter we use those ideas to develop prob-
ability models with an emphasis on discrete random variables. In Chapter 5 we 
develop probability models for continuous random variables.

Probability models have extensive application to a number of business prob-
lems, and many of these applications are developed here. Suppose that you have 
a business that rents a variety of equipment. From past experience—relative fre-
quency—you know that 30% of the people who enter your store want to rent a 
trailer. Today you have three trailers available. Five completely unrelated people en-
ter your store (the probability of one of them renting a trailer is independent of that 
of the others). What is the probability that these five people are seeking to rent a 
total of four or five trailers? If that happens, rental opportunities will be missed and 
customers will be disappointed. The probability of the events (number of trailers de-
sired) can be computed using the binomial model that is developed in this chapter.

4
C H A P T E R 

Discrete Probability 
Distributions

146
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The preceding trailer problem is an example of a problem whose proba-
bility can be computed using a standard probability model, which simplifies 
problem solving and the computation of probabilities. However, in order to 
use a standard model certain important assumptions must be satisfied. We 
begin with some important definitions and then move to developing sev-
eral important models that are used extensively in business and economic 
applications.

4.1 RANDOM VARIABLES

Probabilities can be conveniently summarized by using the notion of a random variable.

Random Variable
A random variable is a variable that takes on numerical values realized by the 
outcomes in the sample space generated by a random experiment.

Discrete Random Variable
A random variable is a discrete random variable if it can take on no more than 
a countable number of values.

It is important to distinguish between a random variable and the possible values that 
it can take. Using notation, this is done with capital letters, such as X, to denote the ran-
dom variable and the corresponding lowercase letter, x, to denote a possible value. For 
example, a store has five computers on the shelf. From past experience we know that the 
probabilities of selling one through five computers are equal and at least one computer 
will be sold. We can use the random variable X to denote the outcome. This random vari-
able can take the specific values x = 1, x = 2, . . . , x = 5, each with probability 0.2 and 
the random variable X as a discrete random variable.

It follows from the definition that any random variable that can take on only a finite 
number of values is discrete. For example, the number of sales resulting from 10 customer 
contacts is a discrete random variable. Even if the number of possible outcomes is infinite 
but countable, the random variable is discrete. An example is the number of customer 
contacts needed before the first sale occurs. The possible outcomes are 1, 2, 3, . . . , and a 
probability can be attached to each. (A discrete random variable that can take a countably 
infinite number of values is discussed in Section 4.5, “Poisson Distribution.”) Some other 
examples of discrete random variables are as follows:

 1. The number of defective items in a sample of 20 items from a large shipment
 2. The number of customers arriving at a checkout counter in an hour
 3. The number of errors detected in a corporation’s accounts
 4. The number of claims on a medical insurance policy in a particular year

By contrast, suppose that we are interested in the day’s high temperature. The ran-
dom variable, temperature, is measured on a continuum and so is said to be continuous.

Continuous Random Variable
A random variable is a continuous random variable if it can take any value in 
an interval.
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For continuous random variables we can assign probabilities only to a range of  values. 
The probabilities can be determined for ranges, using a mathematical function, so that one 
could compute the probability for the event “today’s high temperature will be between 
75° and 76°.”

Some other examples of continuous random variables include the following:

 1. The yearly income for a family
 2. The amount of oil imported into the United States in a particular month
 3. The change in the price of a share of IBM common stock in a month
 4. The time that elapses between the installation of a new component and its failure
 5. The percentage of impurity in a batch of chemicals

We develop continuous random variables and their associated methodology in Chapter 5.
The distinction that we have made between discrete and continuous random variables 

may appear rather artificial. After all, rarely is anything actually measured on a continuum. 
For example, we cannot report today’s high temperature more precisely than the measuring 
instrument allows. Moreover, a family’s income in a year will be some integer number of 
cents. However, we will find that it is convenient to act as if measurements had truly been 
made on a continuum when the differences between adjacent values are of no importance. 
The difference between families’ incomes of $35,276.21 and $35,276.22 is not important, and 
the attachment of probabilities to each would be a tedious and worthless exercise.

For practical purposes we treat random variables as discrete when probability state-
ments about the individual possible outcomes have worthwhile meaning; all other ran-
dom variables are regarded as continuous. We treat these two types separately, and useful 
models have been developed for each type. Discrete random variables are developed in 
this chapter and continuous random variables are developed in Chapter 5.

EXERCISES

Basic Exercises
 4.1 A store sells from 0 to 12 computers per day. Is the 

amount of daily computer sales a discrete or continu-
ous random variable?

 4.2 A factory production process produces a small num-
ber of defective parts in its daily production. Is the 
number of defective parts a discrete or continuous 
random variable?

 4.3 For each of the following, indicate if a discrete or a con-
tinuous random variable provides the best definition:

a. The number of cars that arrive each day for repair 
in a two-person repair shop

b. The number of cars produced annually by General 
Motors

c. Total daily e-commerce sales in dollars
d. The number of passengers that are bumped from a 

specific airline flight 3 days before Christmas

 4.4 An equity actor auditions 100 times a year and obtains 
a contract for a play 8% of the time. Is her work sched-
ule (number of plays) a discrete or random variable?

Application Exercises
 4.5 List four examples of discrete random variables that 

could be observed in a new consulting business.
 4.6 Define three continuous random variables that a mar-

keting vice president should regularly examine.
 4.7 A presidential election poll contacts 2,000 randomly  

selected people. Should the number of people that 
support candidate A be analyzed using discrete or 
continuous probability models?

 4.8 A salesperson contacts 20 people each day and re-
quests that they purchase a specific product. Should 
the number of daily purchases be analyzed using dis-
crete or continuous probability models?

4.2  PROBABILITY DISTRIBUTIONS FOR DISCRETE  
RANDOM VARIABLES

Suppose that X is a discrete random variable and that x is one of its possible values. The 
probability that random variable X takes specific value x is denoted P1X = x2 . The prob-
ability distribution function of a random variable is a representation of the probabilities for 
all the possible outcomes. This representation might be algebraic, graphical, or tabular. 
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Once the probabilities have been calculated, the probability distribution function can 
be graphed.

For discrete random variables, one simple procedure is to list the probabilities of all pos-
sible outcomes according to the values of x.

Probability Distribution Function
The probability distribution function, P1x2, of a discrete random variable X 
represents the probability that X takes the value x, as a function of x. That is,

P1x2 = P1X = x2, for all values of x

We use the term probability distribution to represent probability distribution 
functions in this book, following the common practice.

Example 4.1 Number of Product Sales  
(Probability Distribution Graph)

Define and graph the probability distribution function for the number of sandwiches 
sold by a sandwich shop. This shop offers sandwiches that have a price of $3.00 each.

Solution Let the random variable X denote the number of sales during a single hour 
of business from 3 to 5 p.m. The probability distribution of sales is given by Table 4.1, 
and Figure 4.1 is a graphical picture of the distribution.
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Figure 4.1 Graph of Probability Distribution for Example 4.1

Table 4.1 Probability Distribution for Example 4.1

x P(x)

0 0.10

1 0.20

2 0.40

3 0.30

From the probability distribution function, we see that, for example, the prob-
ability of selling one sandwich is 0.20 and the probability of selling two or more is 
0.7010.40 + 0.302.
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Property 1 merely states that probabilities cannot be negative or exceed 1. Property 2  
follows from the fact that the events “X = x,” for all possible values of x, are mutually 
exclusive and collectively exhaustive. The probabilities for these events must, therefore, 
sum to 1. It is simply a way of saying that when a random experiment is to be carried out, 
something must happen.

Another representation of discrete probability distributions is also useful.

The probability distribution function of a discrete random variable must satisfy the 
following two properties.

Required Properties of Probability Distribution  
for Discrete Random Variables
Let X be a discrete random variable with probability distribution P1x2. Then,

1. 0 … P1x2 … 1 for any value x, and
2. the individual probabilities sum to 1, that is,

 a
x

P1x2 = 1 (4.1)

where the notation indicates summation over all possible values of x.

Cumulative Probability distribution
The cumulative probability distribution, F1x02, of a random variable X, repre-
sents the probability that X does not exceed the value x0, as a function of x0. 
That is,

 F1x02 = P1X … x02 (4.2)

where the function is evaluated at all values of x0.

Example 4.2 Automobile Sales (Probabilities)

Olaf Motors, Inc., is a car dealer in a small southern town. Based on an analysis of its 
sales history, the managers know that on any single day the number of Prius cars sold 
can vary from 0 to 5. How can the probability distribution function shown in Table 4.2 
be used for inventory planning?

Table 4.2 Probability Distribution Function for Automobile Sales

x P(x) F(x)

0 0.15 0.15

1 0.30 0.45

2 0.20 0.65

3 0.20 0.85

4 0.10 0.95

5 0.05 1.00

Solution The random variable, X, takes on the values of x indicated in the first 
column, and the probability distribution, P1x2, is defined in the second column. The 
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The result in Equation 4.3 follows, since the event “X … x0” is the union of the mu-
tually exclusive events “X = x,” for all possible values of x less than or equal to x0. The 
probability of the union is then the sum of these individual event probabilities.

It can be seen from the definition that as x0 increases, the cumulative probability dis-
tribution will change values only at those points x0 that can be taken by the random vari-
able with positive probability. Its evaluation at these points can be carried out in terms of 
the probability distribution.

third column contains the cumulative distribution, F1x2. This model could be used for 
planning the inventory of cars. For example, if there are only four cars in stock, Olaf 
Motors could satisfy customers’ needs for a car 95% of the time. But if only two cars are 
in stock, then 35% 311 - 0.652 * 1004  of the customers would not have their needs 
satisfied.

Derived Relationship Between Probability Distribution 
and Cumulative Probability Distribution
Let X be a random variable with probability distribution P1x2 and cumulative 
probability distribution F1x02. Then we can show that

 F1x02 = a
x …x0

P1x2  (4.3)

where the notation implies that summation is over all possible values of x that 
are less than or equal to x0.

Derived Properties of Cumulative Probability 
Distributions for Discrete Random Variables
Let X be a discrete random variable with cumulative probability distribution 
F1x02. Then we can show that

1. 0 … F1x02 … 1 for every number x0; and
2. if x0 and x1 are two numbers with x0 6 x1, then F1x02 … F1x12.

Property 1 simply states that a probability cannot be less than 0 or greater than 1. For 
example, note the probabilities for automobile sales in Table 4.2. Property 2 implies that 
the probability that a random variable does not exceed some number cannot be more than 
the probability that it does not exceed any larger number.

EXERCISES

Basic Exercises
 4.9 What is the probability distribution function of the 

number of heads when a fair coin is tossed once?
 4.10 Show the probability distribution function of the face 

values of a single die when a fair die is rolled.
 4.11 Show the probability distribution function of the 

number of heads when three fair coins are tossed 
independently.

 4.12 Let the random variable represent the number of times 
that you will miss class this semester. Prepare a table 
that shows the probability distribution and the cumu-
lative probability distribution.

Application Exercises
 4.13 The number of computers sold per day at Dan’s Com-

puter Works is defined by the following probability 
distribution:

x 0 1 2 3 4 5 6
P(x) 0.05 0.10 0.20 0.20 0.20 0.15 0.10

a. P13 … x 6 62 = ?
b. P1x 7 32 = ?
c. P1x … 42 = ?
d. P12 6 x … 52 = ?
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4.3 PROPERTIES OF DISCRETE RANDOM VARIABLES

The probability distribution contains all the information about the probability proper-
ties of a random variable, and graphical inspection of this distribution can certainly be 
valuable. However, it is desirable to have some summary measures of the distribution’s 
characteristics.

Expected Value of a Discrete Random Variable

In order to obtain a measure of the center of a probability distribution, we introduce the 
notion of the expectation of a random variable. In Chapter 2 we computed the sample mean 
as a measure of central location for sample data. The expected value is the corresponding 
measure of central location for a random variable. Before introducing its definition, we 
show the fallacy of a superficially attractive alternative measure.

Consider the following example: A review of textbooks in a segment of the business 
area found that 81% of all pages of texts were error free, 17% of all pages contained one er-
ror, and the remaining 2% contained two errors. We use the random variable X to denote 
the number of errors on a page chosen at random from one of these books, with possible 
values of 0, 1, and 2, and the probability distribution function

P102 = 0.81 P112 = 0.17 P122 = 0.02

We could consider using the simple average of the values as the central location of a 
random variable. In this example the possible numbers of errors on a page are 0, 1, and 2. 
Their average is, then, one error. However, a moment’s reflection will convince the reader 
that this is an absurd measure of central location. In calculating this average, we paid no 
attention to the fact that 81% of all pages contain no errors, while only 2% contain two 
errors. In order to obtain a sensible measure of central location, we weight the various pos-
sible outcomes by the probabilities of their occurrence.

 4.14 In a geography assignment the grade obtained is the 
random variable X. It has been found that students 
have these probabilities of getting a specific grade:

A: 0.18 D: 0.07
B: 0.32 E: 0.03
C: 0.25 F: 0.15

  Based on this, calculate the following.

a. The cumulative probability distribution of  X.
b. The probability of getting a higher grade than B.
c. The probability of getting a lower grade than C.

Expected Value
The expected value, E3X4 , of a discrete random variable X is defined as

 E3X4 = m = a
x

xP1x2 (4.4)

where the notation indicates that the summation extends over all possible val-
ues of x.

The expected value of a random variable is also called its mean and is 
 denoted m.

We can express expected value in terms of long-run relative frequencies. Suppose that 
a random experiment is repeated N times and that the event “X = x” occurs in Nx of these 
trials. The average of the values taken by the random variable over all N trials will then 
be the sum of xNx>N over all possible values of x. Now, as the number of replications, N, 
becomes infinitely large, the ratio Nx>N tends to the probability of the occurrence of the 
event “X = x”—that is, to P1x2. Hence, the quantity xNx>N tends to xP1x2. Thus, we can 



 4.3 Properties of Discrete Random Variables 153

Variance of a Discrete Random Variable

In Chapter 2 we found that the sample variance was one useful measure of the dispersion of 
a set of numerical observations. The sample variance is the average of the squared discrepan-
cies of the observations from their mean. We use this same idea to measure dispersion in the 
probability distribution of a random variable. We define the variance of a random variable as 
the weighted average of the squares of its possible deviations, 1x - m2, from the mean; the 
weight associated with 1x - m22 is the probability that the random variable takes the value x. 
The variance can then be viewed as the average value that will be taken by the function 1X - m22 over a very large number of repeated trials, as defined by Equation 4.5.

view the expected value as the long-run average value that a random variable takes over 
a large number of trials. Recall that in Chapter 2 we used the mean for the average of a set 
of numerical observations. We use the same term for the expectation of a random variable.

Example 4.3 Errors in Textbooks (Expected Value)

Suppose that the probability distribution for the number of errors, X, on pages from 
business textbooks is as follows:

P102 = 0.81 P112 = 0.17 P122 = 0.02

Find the mean number of errors per page.

Solution We have

mx = E3X4 = a
x

xP1x2 = 10210.812 + 11210.172 + 12210.022 = 0.21

From this result we conclude that over a large number of pages, the expectation would 
be to find an average of 0.21 error per page. Figure 4.2 shows the probability distribu-
tion, with the location of the mean indicated.

Figure 4.2 Probability Distribution for Number of Errors per Page in Business 
Textbooks for Example 4.3

x0 1 2

0.8

0.4

μ = 0.21

P(x)

Variance and Standard Deviation of a Discrete  
Random Variable
Let X be a discrete random variable. The expectation of the squared deviations 
about the mean, 1X - m22, is called the variance, denoted as s2 and given by

 s2 = E 31X - m224 = a
x
1x - m22P1x2 (4.5)

The variance of a discrete random variable X can also be expressed as

 s2 = E3X24 - m2 = a
x

x2P1x2 - m2 (4.6)

The standard deviation, s, is the positive square root of the variance.
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In some practical applications the alternative, but equivalent, formula for the vari-
ance is preferable for computational purposes. That alternative formula is defined by 
Equation 4.6, which can be verified algebraically (see the chapter appendix).

The concept of variance can be very useful in comparing the dispersions of probabil-
ity distributions. Consider, for example, viewing as a random variable the daily return 
over a year on an investment. Two investments may have the same expected returns but 
will still differ in an important way if the variances of these returns are substantially dif-
ferent. A higher variance indicates that returns substantially different from the mean are 
more likely than if the variance of returns amount is small. In this context, then, variance 
of the return can be associated with the concept of the risk of an investment—the higher 
the variance, the greater the risk.

Taking the square root of the variance to obtain the standard deviation yields a quan-
tity in the original units of measurement, as noted in Chapter 2.

Example 4.4 Expected Value and Variance of 
Automobile Sales (Expected Value and Variance)

In Example 4.2 Olaf Motors, Inc., determined that the number of Prius cars sold daily 
could vary from 0 to 5, with the probabilities given in Table 4.2. Find the expected value 
and variance for this probability distribution.

Solution Using Equation 4.4, the expected value is as follows:

mX = E3X4 = a
x

xP1x2 = 010.152 + 110.302 + g + 510.052 = 1.95

Using Equation 4.5, the variance is as follows:

s2
X = 10 - 1.952210.152 + 11 - 1.952210.32 + g +  15 - 1.952210.052 = 1.9475

For more complex probability distributions, Excel, Minitab, SPSS, or another statistical 
package can be used for these computations.

Table 4.3 contains an alternative probability distribution function for car sales. We 
will examine the effect of this alternative probability distribution on the mean and vari-
ance. Note the higher probabilities for 0 and 5 cars sold and smaller probabilities for 
intermediate daily sales. In Table 4.3 we see the detailed calculations that are used to 
compute the mean and variance of sales.

Table 4.3 Probability Distribution Function for Olaf Motors Automobile Sales

x P(x) MEAN VARIANCE

0 0.30 10.302102 10.30210 - 2.1522

1 0.20 10.202112 10.20211 - 2.1522

2 0.10 10.102122 10.10212 - 2.1522

3 0.05 10.052132 10.05213 - 2.1522

4 0.15 10.152142 10.15214 - 2.1522

5 0.20 10.202152 10.20215 - 2.1522

1.0 2.15 3.83

COMMENTS

•  In Table 4.3 there is a higher probability of 0 sales (0.30 rather than 0.15 in 
Table 4.2). Also there is a higher probability of selling all 5 cars (0.20 rather 
than 0.05 from Table 4.2).
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We define the expectation of a function of a random variable X by Equation 4.7. That 
is, the expectation can be thought of as the average value that g1X2  would take over a 
very large number of repeated trials. In general

 E3g1x24 ? g1mx2  (4.8)

as shown in the chapter appendix. However, if g1x2  is a linear function of x, there are 
some simple results for the mean and variance. These results are very useful for business 
and economics because many applications can be approximated by a linear function.

We now consider the expected value and variance for linear functions of a random 
variable using the linear function a + bX, where a and b are constant fixed numbers. Let 
X be a random variable that takes the value x with probability P1x2 , and consider a new 
random variable Y, defined by the following:

Y = a + bX

When random variable X takes the specific value x, Y must take the value a + bx. The 
mean and variance of such variables are frequently required. The mean, variance, and 
standard deviation for a linear function of a random variable are derived in the chapter 
appendix. The results are summarized in Equations 4.9 and 4.10.

Mean and Variance of Linear Functions of a Random Variable

The notion of expectation is not restricted to the random variable itself but can be applied 
to any function of the random variable. For example, a contractor may be uncertain of the 
time required to complete a contract. This uncertainty could be represented by a random 
variable whose possible values are the number of days elapsing from the beginning to the 
completion of work on the contract. However, the contractor’s primary concern is not with 
the time taken but rather with the cost of fulfilling the contract. This cost will be a func-
tion of the time taken, so in determining expected value of the random variable “cost,” we 
need to find the expectation of a function of the random variable “time to completion.”

•  We expect a larger variance because the probabilities of extreme values 0 and 
5 are larger. Note that the mean has increased from 1.95 to 2.15, while the vari-
ance has increased from 1.95 to 3.83, reflecting the higher probabilities of more 
extreme values of X.

Expected Value of Functions of Random Variables
Let X be a discrete random variable with probability distribution P1x2, and let 
g1X2 be some function of X. Then the expected value, E3g1X24 , of that func-
tion is defined as follows:

 E3g1X24 = a
x

g1x2P1x2  (4.7)

Summary of Properties for Linear Functions  
of a Random Variable
Let X be a random variable with mean mX and variance s2

X, and let a and b be 
any constant fixed numbers. Define the random variable Y as a + bX. Then, 
the mean and variance of Y are

 mY = E3a + bX4 = a + bmX (4.9)
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and

 s2
Y = Var1a + bX2 = b2s2

X (4.10)

so that the standard deviation of Y  is

sY = u b usX

Example 4.5 Total Project Cost (Computations  
for Functions of Random Variables)

A contractor is interested in the total cost of a project on which she intends to bid. She 
estimates that materials will cost $25,000 and that her labor will be $900 per day. If the 
project takes X days to complete, the total labor cost will be 900X dollars, and the total 
cost of the project (in dollars) will be as follows:

C = 25,000 + 900X

Using her experience the contractor forms probabilities (Table 4.4) of likely comple-
tion times for the project.

a. Find the mean and variance for completion time X.
b. Find the mean, variance, and standard deviation for total cost C.

Table 4.4 Probability Distribution for Completion Times

COMPLETION TIME x (DAYS) 10 11 12 13  14

Probability 0.1 0.3 0.3 0.2 0.1

Solution

a.  The mean and variance for completion time X can be found using Equations 4.4 
and 4.5.

 mX = E3X4 = a
x

xP1x2
 = 110210.12 + 111210.32 + 112210.32 + 113210.22 + 114210.12 = 11.9 days

And

 s2
x = E31X - mx224 = a

x
1x - mx22P1x2

 = 110 - 11.92210.12 + 111 - 11.92210.32 + g + 114 - 11.92210.12 = 1.29

b.  The mean, variance, and standard deviation of total cost, C, are obtained using 
Equations 4.9 and 4.10.

The mean is as follows:

mC = E325,000 + 900X4 = 125,000 + 900mX2 = 25,000 + 19002111.92 = +35,710

The variance is as follows:

s2
C = Var125,000 + 900X2 = 190022s2

X = 1810,000211.292 = 1,044,900

The standard deviation is as follows:

sC = 2s2
C = +1,022.20
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Three special examples of the linear function W = a + bX are important. The first ex-
ample considers a constant function, W = a, for any constant a. In this situation the coef-
ficient b = 0. In the second example a = 0, giving W = bX. The expected value and the 
variance for these functions are defined by Equations 4.11 and 4.12. The third example is sig-
nificant in later chapters. The mean and variance of this special linear function are defined 
by Equations 4.13 and 4.14. Thus, subtracting its mean from a random variable and dividing 
by its standard deviation yields a random variable with mean 0 and standard deviation 1.

Summary Results for the Mean and Variance  
of Special Linear Functions

a.  Let b = 0 in the linear function W = a + bX. Then let W = a (for any con-
stant a).

 E3a4 = a and Var1a2 = 0 (4.11)

 If a random variable always takes the value a, it will have a mean a and a 
variance 0.

b. Let a = 0 in the linear function W = a + bX. Then let W = bX.

 E3bX4 = bmX and Var1bX2 = b2s2
X (4.12)

c. To find the mean and variance of

Z =
X - mX

sX

 let a = -mX>sX and b = 1>sX in the linear function Z = a + bX. Then

Z = a + bX =
X - mX

sX
=

X
sX

-
mX

sX

so that

 E cX - mX

sX
d = mX

sX
-

1
sX
mX = 0 (4.13)

and

 VaraX - mX

sX
b =

1
s2

X

 s2
X = 1 (4.14)

EXERCISES

Basic Exercises
 4.15 Consider the probability distribution function.

x   0   1
Probability 0.40 0.60

a. Graph the probability distribution function.
b. Calculate and graph the cumulative probability 

distribution.
c. Find the mean of the random variable X.
d. Find the variance of X.

 4.16 Given the probability distribution function:

x   0   1   2
Probability 0.25 0.50 0.25

a. Graph the probability distribution function.
b. Calculate and graph the cumulative probability 

distribution.
c. Find the mean of the random variable X.
d. Find the variance of X.

 4.17 Consider the probability distribution function

x   0   1
Probability 0.50 0.50

a. Graph the probability distribution function.
b. Calculate and graph the cumulative probability 

distribution.
c. Find the mean of the random variable X.
d. Find the variance of X.
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 4.18 An automobile dealer calculates the proportion of 
new cars sold that have been returned a various num-
bers of times for the correction of defects during the 
warranty period. The results are shown in the follow-
ing table.

Number of returns   0   1   2   3   4
Proportion 0.28 0.36 0.23 0.09 0.04

a. Graph the probability distribution function.
b. Calculate and graph the cumulative probability 

distribution.
c. Find the mean of the number of returns of an  

automobile for corrections for defects during the 
warranty period.

d. Find the variance of the number of returns of an au-
tomobile for corrections for defects during the war-
ranty period.

 4.19 A company specializes in installing and servicing 
central-heating furnaces. In the prewinter period, ser-
vice calls may result in an order for a new furnace. The 
following table shows estimated probabilities for the 
numbers of new furnace orders generated in this way 
in the last two weeks of September.

Number of orders   0   1   2   3   4   5
Probability 0.10 0.14 0.26 0.28 0.15 0.07

a. Graph the probability distribution function.
b. Calculate and graph the cumulative probability 

distribution.
c. Find the probability that at least 3 orders will be 

generated in this period.
d. Find the mean of the number of orders for new 

furnaces in this 2-week period.
e. Find the standard deviation of the number of orders 

for new furnaces in this 2-week period.

Application Exercises
 4.20 Forest Green Brown, Inc., produces bags of cypress 

mulch. The weight in pounds per bag varies, as indi-
cated in the accompanying table.

Weight in pounds   44   45   46   47   48   49   50
Proportion of bags 0.04 0.13 0.21 0.29 0.20 0.10 0.03

a. Graph the probability distribution.
b. Calculate and graph the cumulative probability 

distribution.
c. What is the probability that a randomly chosen bag 

will contain more than 45 and less than 49 pounds 
of mulch (inclusive)?

d. Two packages are chosen at random. What is the 
probability that at least one of them contains at 
least 47 pounds?

e. Compute—using a computer—the mean and stan-
dard deviation of the weight per bag.

f.  The cost (in cents) of producing a bag of mulch is 
75 + 2X, where X is the number of pounds per 
bag. The revenue from selling the bag, regardless of 

weight, is $2.50. If profit is defined as the difference 
between revenue and cost, find the mean and stan-
dard deviation of profit per bag.

 4.21 A municipal bus company has started operations in a 
new subdivision. Records were kept on the numbers 
of riders on one bus route during the early-morning 
weekday service. The accompanying table shows pro-
portions over all weekdays.

Number of riders   20   21   22   23   24   25   26   27
Proportion 0.02 0.12 0.23 0.31 0.19 0.08 0.03 0.02

a. Graph the probability distribution.
b. Calculate and graph the cumulative probability 

distribution.
c. What is the probability that on a randomly chosen 

weekday there will be at least 24 riders from the 
subdivision on this service?

d. Two weekdays are chosen at random. What is the 
probability that on both of these days there will be 
fewer than 23 riders from the subdivision on this 
service?

e. Find the mean and standard deviation of the num-
ber of riders from this subdivision on this service 
on a weekday.

f.  If the cost of a ride is $1.50, find the mean and stan-
dard deviation of the total payments of riders from 
this subdivision on this service on a weekday.

 4.22 a.  A very large shipment of parts contains 10% de-
fectives. Two parts are chosen at random from 
the shipment and checked. Let the random vari-
able X denote the number of defectives found. 
Find the probability distribution of this random 
variable.

b. A shipment of 20 parts contains 2 defectives. Two 
parts are chosen at random from the shipment and 
checked. Let the random variable Y denote the 
number of defectives found. Find the probability 
distribution of this random variable. Explain why 
your answer is different from that for part (a).

c. Find the mean and variance of the random variable 
X in part (a).

d. Find the mean and variance of the random variable 
Y in part (b).

 4.23 A student needs to know details of a class assign-
ment that is due the next day and decides to call fel-
low class members for this information. She believes 
that for any particular call, the probability of obtain-
ing the necessary information is 0.40. She decides 
to continue calling class members until the infor-
mation is obtained. But her cell phone battery will 
not allow more than 8 calls. Let the random variable 
X denote the number of calls needed to obtain the 
information.

a. Find the probability distribution of X.
b. Find the cumulative probability distribution of X.
c. Find the probability that at least three calls are 

required.
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4.4 BINOMIAL DISTRIBUTION

We now develop the binomial probability distribution, which is used extensively in many 
applied business and economic problems. Our approach begins with the Bernoulli model, 
which is a building block for the binomial. Consider a random experiment that can give 
rise to just two possible mutually exclusive and collectively exhaustive outcomes, which 
for convenience we label “success” and “failure.” Let P denote the probability of success, 
and, the probability of failure 11 - P2 . Then, define the random variable X so that X 
takes the value 1 if the outcome of the experiment is success and 0 otherwise. The prob-
ability distribution of this random variable is then

P102 = 11 - P2 and P112 = P

This distribution is known as the Bernoulli distribution. Its mean and variance can be found 
by direct application of the equations in Section 4.3.

 4.24 Your school Ping-Pong team is not performing very 
well this season. After some rough calculations, you 
found out that your team’s probability of winning a 
game is about 0.45. A fellow team member wants 
to know more and asked you also to determine the 
following.

a. The probability of the team winning 2 games out of 5.
b. The probability of winning 10 times out of 25.

 4.25 A professor teaches a large class and has scheduled an 
examination for 7:00 p.m. in a different classroom. She 
estimates the probabilities in the table for the number 
of students who will call her at home in the hour before 
the examination asking where the exam will be held.

Number of calls   0   1   2   3   4 5
Probability 0.10 0.15 0.19 0.26 0.19 0.11

  Find the mean and standard deviation of the number 
of calls.

 4.26 Students in a large accounting class were asked to rate 
the course by assigning a score of 1, 2, 3, 4, or 5 to the 
course. A higher score indicates that the students re-
ceived greater value from the course. The accompa-
nying table shows proportions of students rating the 
course in each category.

Rating   1   2   3   4 5
Proportion 0.07 0.19 0.28 0.30 0.16

  Find the mean and standard deviation of the ratings.
 4.27 A store owner stocks an out-of-town newspaper that 

is sometimes requested by a small number of custom-
ers. Each copy of this newspaper costs her 70 cents, 
and she sells them for 90 cents each. Any copies left 
over at the end of the day have no value and are de-
stroyed. Any requests for copies that cannot be met 
because stocks have been exhausted are considered by 
the store owner as a loss of 5 cents in goodwill. The 
probability distribution of the number of requests for 

the newspaper in a day is shown in the accompany-
ing table. If the store owner defines total daily profit as 
total revenue from newspaper sales, less total cost of 
newspapers ordered, less goodwill loss from unsatis-
fied demand, what is the expected profit if four news-
papers are order?

Number of requests   0   1   2   3   4   5

Probability 0.12 0.16 0.18 0.32 0.14 0.08

 4.28 A factory manager is considering whether to replace 
a temperamental machine. A review of past records 
indicates the following probability distribution 
for the number of breakdowns of this machine in a 
week.

Number of breakdowns   0   1   2   3 4
Probability 0.10 0.26 0.42 0.16 0.06

a. Find the mean and standard deviation of the num-
ber of weekly breakdowns.

b. It is estimated that each breakdown costs the com-
pany $1,500 in lost output. Find the mean and stan-
dard deviation of the weekly cost to the company 
from breakdowns of this machine.

 4.29 An investor is considering three strategies for a $1,000 
investment. The probable returns are estimated as 
follows:

  •  Strategy 1: A profit of $10,000 with probability 0.15 
and a loss of $1,000 with probability 0.85

  •  Strategy 2: A profit of $1,000 with probability 0.50, 
a profit of $500 with probability 0.30, and a loss of 
$500 with probability 0.20

  • Strategy 3: A certain profit of $400

  Which strategy has the highest expected profit? Ex-
plain why you would or would not advise the investor 
to adopt this strategy.
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Developing the Binomial Distribution

An important generalization of the Bernoulli distribution concerns the case where a ran-
dom experiment with two possible outcomes is repeated several times and the repetitions 
are independent. We can determine these probabilities by using the binomial probability 
distribution. Suppose again that the probability of a success in a single trial is P and that 
n independent trials are carried out, so that the result of any one trial has no influence on 
the outcome of any other. The number of successes, X, resulting from these n trials could 
be any whole number from 0 to n, and we are interested in the probability of obtaining 
exactly X = x successes in n trials.

Suppose that Shirley in Example 4.6 seeks a total of, x = 3 sales and to do this she 
contacts four n = 4 potential customers. She would like to know the probability of ex-
actly 3 sales out of the 4 contacts. If we label a sale as (S) and a nonsale as (F), one possible 
sequence that results in 3 sales would be [S, S, S, F]. Given that each customer contact is 
independent, the probability of this particular event is as follows:10.40 * 0.40 * 0.40 * 0.602 = 0.4030.601 = 0.0384

The sequences of S and F can be arranged in combinations of 4 outcomes taken 3 at a time, 
as developed in Chapter 3, and thus there are

C4
3 =

4!
3!14 - 32! = 4

possible ways that she can obtain 3 sales, and thus the probability of exactly 3 sales would 
be 4 times 0.0384, or 0.1536; expressed in equation form,

C4
30.4030.601 = 4 * 0.0384 = 0.1536

Continuing from this specific example we develop the result in two stages. First, 
 observe that the n trials will result in a sequence of n outcomes, each of which must be 

Derivation of the Mean and Variance of a Bernoulli 
Random Variable
The mean is

  mX = E3X4 = a
x

xP1x2 = 10211 - P2 + 112P = P (4.15)

and the variance is

  s2
X = E31X - mX224 = a

x
1x - mX22P1x2

  = 10 - P2211 - P2 + 11 - P22P = P11 - P2 (4.16)

Example 4.6 Contract Sale (Compute Bernoulli  
Mean and Variance)

Shirley Ferguson, an insurance broker, believes that for a particular contact the prob-
ability of making a sale is 0.4. If the random variable X is defined to take the value 1 if 
a sale is made and 0 otherwise, then X has a Bernoulli distribution with probability of 
success P equal to 0.4. Find the mean and the variance of the distribution.

Solution The probability distribution of X is P102 = 0.6 and P112 = 0.4. The mean 
of the distribution is P = 0.40, and the variance is s2 = P11 - P2 = 10.4210.62 = 0.24.
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The event “x successes resulting from n trials” can occur in Cn
x  mutually exclusive 

ways, each with probability Px11 - P2n -x. Therefore, by the addition rule of probabilities 
(Chapter 3) the probability required is the sum of these Cn

x individual probabilities. The 
result is given by Equation 4.18.

either success (S) or failure (F). One sequence with x successes and 1n - x2 failures is as 
follows:

S, S,c, S    F, F, . . . , F
 1x times)    1n - x times2

In other words, the first x trials result in success, while the remainder result in fail-
ure. Now, the probability of success in a single trial is P, and the probability of failure is 11 - P2 . Since the n trials are independent of one another, the probability of any particu-
lar sequence of outcomes is, by the multiplication rule of probabilities (Chapter 3), equal 
to the product of the probabilities for the individual outcomes. Thus, the probability of 
observing the specific sequence of outcomes just described is as follows:3P * P *  g * P4 * 311 - P2 * 11 - P2 *  g * 11 - P24 = Px 11 - P21n- x2

 1x times2  1n - x times2
This line of argument establishes that the probability of observing any specific sequence 

involving x successes and 1n - x2 failures is Px11 - P2n -x. For example, suppose that 
there are 5 independent trials, each with probability of success P = 0.60, and the prob-
ability of exactly 3 successes is required. Using + to designate a success and 0 to indicate 
a nonsuccess, the desired outcomes could be designated as follows:

+++00 or +0+0+

The probability of either of these specific outcomes is 10.62310.422 = 0.03456.
The original problem concerned the determination not of the probability of occur-

rence of a particular sequence, but of the probability of precisely x successes, regardless of 
the order of the outcomes. There are several sequences in which x successes could be ar-
ranged among 1n - x2 failures. In fact, the number of such possibilities is just the number 
of combinations of x objects chosen from n, since any x locations can be selected from a to-
tal of n in which to place the successes and the total number of successes can be computed 
using Equation 4.17. Returning to the example of three successes in five trials 1P = 0.602, 
the number of different sequences with three successes would be as follows:

C5
3 =

5!
3!15 - 32! = 10

The probability of 3 successes in 5 independent Bernoulli trials is, therefore, 10 times the 
probability of each of the sequences that has 3 successes; thus,

P1X = 32 = 110210.034562 = 0.3456

Next, we generalize this result for any combination of n and x.

Number of Sequences with x Successes in n Trials
The number of sequences with x successes in n independent trials is

 Cn
x =

n!
x!1n - x2! (4.17)

where n! = n * 1n - 12 * 1n - 22 *  g * 1 and  0! = 1.
These Cn

x sequences are mutually exclusive, since no two of them can oc-
cur at the same time. This result was developed in Chapter 3.



162 Chapter 4 Discrete Probability Distributions

The binomial distribution is widely used in business and economic applications in-
volving the probability of discrete occurrences. Before using the binomial, the specific 
situation must be analyzed to determine if the following occur:

 1. The application involves several trials, each of which has only two outcomes: yes or 
no, on or off, success or failure.

 2. The probability of the outcome is the same for each trial.
 3. The probability of the outcome on one trial does not affect the probability on other 

trials.

In the following examples typical applications are provided.
Binomial distribution probabilities can be obtained using the following:

 1. Equation 4.18 (good for small values of n); see Example 4.7
 2. Tables in the appendix (good for selected values of n and P); see Example 4.8
 3. Computer-generated probabilities (Example 4.9}

The mean and variance are derived in the chapter appendix, and the results are given 
by Equations 4.19 and 4.20.

The Binomial Distribution
Suppose that a random experiment can result in two possible mutually ex-
clusive and collectively exhaustive outcomes, “success” and “failure,” and 
that P is the probability of a success in a single trial. If n independent trials are 
carried out, the distribution of the number of resulting successes, x, is called 
the binomial distribution. Its probability distribution function for the binomial 
random variable X = x is as follows:

 P1x successes in n independent trials2
 = P1x2 = n!

x!1n - x2! Px11 - P21n- x2  for x = 0, 1, 2, . . .  , n (4.18)

Mean and Variance of a Binomial Probability 
Distribution
Let X be the number of successes in n independent trials, each with probabil-
ity of success P. Then X follows a binomial distribution with mean

 m = E3X4 = nP (4.19)

and variance

 s2
X = E31X - mX224 = nP11 - P2 (4.20)

The derivation of the mean and variance of the binomial is shown in Section 4 
of the chapter appendix.

Example 4.7 Multiple Contract Sales

Suppose that a real estate agent, Jeanette Nelson, has 5 contacts, and she believes that 
for each contact the probability of making a sale is 0.40. Using Equation 4.18, do the 
following:

a. Find the probability that she makes at most 1 sale.
b. Find the probability that she makes between 2 and 4 sales (inclusive).
c. Graph the probability distribution function.
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Unless the number of trials n is very small, the calculation of binomial probabilities, 
using Equation 4.18, is likely to be extremely cumbersome. Therefore, binomial probabili-
ties can also be obtained from tables in the appendix.

Solution

a.  P1at most 1 sale2 = P1X … 12 = P1X = 02 + P1X = 12
= 0.078 + 0.259 = 0.337 since

 P10 sales2 = P102 = 5!
0!5!

 10.42010.625 = 10.625 = 0.078

P11 sale2 = P112 = 5!
1!4!

 10.42110.624 = 510.4210.624 = 0.259

b.  P12 … X … 42 = P122 + P132 + P142 = 0.346 + 0.230 + 0.077 = 0.653, 
since

 P122 = 5!
2!3!

 10.42210.623 = 1010.42210.623 = 0.346

 P132 = 5!
3!2!

 10.42310.622 = 1010.42310.622 = 0.230

 P142 = 5!
4!1!

 10.42410.621 = 510.42410.621 = 0.077

c. The probability distribution function is shown in Figure 4.3.

Figure 4.3 Graph of Binomial Probability Distribution for Example 4.7
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binomial probabilities when
P is neither very large nor very
small.
At the extremes (0 or 5 sales),
the probabilities are quite small.

Example 4.8 College Admissions

Early in August an undergraduate college discovers that it can accommodate a few ex-
tra students. Enrolling those additional students would provide a substantial increase 
in revenue without increasing the operating costs of the college; that is, no new classes 
would have to be added. From past experience the college knows that the frequency of 
enrollment given admission for all students is 40%.

a.  What is the probability that at most 6 students will enroll if the college offers 
 admission to 10 more students?

b.  What is the probability that more than 12 will actually enroll if admission is 
 offered to 20 students?

c.  If the frequency of enrollment given admission for all students was 70%, what is 
the probability that at least 12 out of 15 students will actually enroll?

Solution

a.  We assume that the additional students admitted have the same probability of 
enrolling as the previously admitted students.
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Most good computer packages can compute binomial and other probabilities for vari-
ous probability distribution functions. Example 4.9 presents a probability table computed 
using Minitab, but other packages have similar capabilities.

b.  The probability can be obtained using the cumulative binomial probability 
 distribution from Table 3 in the appendix. The probability of at most 6 students 
enrolling if n = 10 and P = 0.40 is as follows:

P1X … 6 un = 10, P = 0.402 = 0.945

c. P1X 7 12 un = 20, P = 0.402 = 1 - P1X … 122 = 1 - 0.979 = 0.021
d.  The probability that at least 12 out of 15 students enroll is the same as the prob-

ability that at most 3 out of 15 students do not enroll (the probability of a student 
not enrolling is 1 - 0.70 = 0.30).

P1X Ú 12 un = 15, P = 0.702 = P1X … 3 un = 15, P = 0.302 = 0.297

Example 4.9 Sales of Airline Seats

Have you ever agreed to give up your airplane ticket in return for a free ticket? Have 
you ever searched for the cheapest flight so that you could visit a special friend? This 
example provides some of the analysis that leads to results such as overbooked flights 
and reduced fares on certain flights.

Suppose that you are in charge of marketing airline seats for a major carrier. Four 
days before the flight date you have 16 seats remaining on the plane. You know from 
past experience data that 80% of the people that purchase tickets in this time period 
will actually show up for the flight.

a.  If you sell 20 extra tickets, what is the probability that you will overbook the 
flight or have at least 1 empty seat?

b.  If you sell 18 extra tickets, what is the probability that you will overbook the 
flight or have at least 1 empty seat?

Solution

a.  To find P1X 7 162 , given n = 20 and P = 0.80, use the cumulative probability 
distribution in Table 4.5 that was computed using Minitab. You will find that 
all quality statistical packages have a capability to computer similar cumulative 
probability distributions.

Table 4.5 Cumulative Binomial Probabilities Obtained from Minitab for n = 20, P = 0.80.

   x P1X … x2
10 0.0026

11 0.0100

12 0.0321

13 0.0867

14 0.1958

15 0.3704

16 0.5886

17 0.7939

18 0.9308

19 0.9885

20 1.0000
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The probability of overbooking is

P1X 7 162 = 1 - P1X … 162 = 1 - 0.589 = 0.411

and we see that the probability of overbooking when 20 seats are sold is 41.1%. If 20 
tickets are sold, this also means that the probability that 15 or fewer people will arrive is

P1X … 152 = 0.37

so there is a 37% chance that selling 20 tickets results in at least one empty seat.

b.  To find the chance that you overbook the flight by selling 18 tickets, compute the 
cumulative probability distribution using n = 18. The chance that you overbook 
the flight will be only 10%, but the probability of at least one empty seat will in-
crease to 72.9%.

The airline management then must evaluate the cost of overbooking (providing 
free tickets) versus the cost of empty seats that generate no revenue. Airlines analyze 
data to determine the number of seats that should be sold at reduced rates to maximize 
the ticket revenue from each flight. This analysis is complex, but it has its starting point 
in analyses such as the example presented here.

EXERCISES

Basic Exercises
 4.30 For a Bernoulli random variable with probability of 

success P = 0.5, compute the mean and variance.
 4.31 For a binomial probability distribution with P = 0.5 

and n = 12, find the probability that the number of 
successes is equal to 7 and the probability that the 
number of successes is fewer than 6.

 4.32 For a binomial probability distribution with P = 0.3 
and n = 14, find the probability that the number of 
successes is equal to 7 and the probability that the 
number of successes is fewer than 6.

 4.33 For a binomial probability distribution with P = 0.4 
and n = 20, find the probability that the number of 
successes is equal to 9 and the probability that the 
number of successes is fewer than 7.

 4.34 For a binomial probability distribution with P = 0.7 
and n = 18, find the probability that the number of 
successes is equal to 12 and the probability that the 
number of successes is fewer than 6.

Application Exercises
 4.35 A production manager knows that 5% of components 

produced by a particular manufacturing process have 
some defect. Six of these components, whose charac-
teristics can be assumed to be independent of each 
other, are examined.

a. What is the probability that none of these compo-
nents has a defect?

b. What is the probability that one of these compo-
nents has a defect?

c. What is the probability that at least two of these 
components have a defect?

 4.36 A state senator believes that 25% of all senators on the 
Finance Committee will strongly support the tax pro-
posal she wishes to advance. Suppose that this belief is 
correct and that 5 senators are approached at random.

a. What is the probability that at least 1 of the 5 will 
strongly support the proposal?

b. What is the probability that a majority of the 5 will 
strongly support the proposal?

 4.37 A public interest group hires students to solicit dona-
tions by telephone. After a brief training period stu-
dents make calls to potential donors and are paid on a 
commission basis. Experience indicates that early on, 
these students tend to have only modest success and 
that 70% of them give up their jobs in their first two 
weeks of employment. The group hires 6 students, 
which can be viewed as a random sample.

a. What is the probability that at least 2 of the 6 will 
give up in the first two weeks?

b. What is the probability that at least 2 of the 6 will not 
give up in the first two weeks?

 4.38 In a Godiva shop, 40% of the cookies are plain truffles, 
20% are black truffles, 10% are cherry cookies, and 30% 
are a mix of all the others. Suppose you pick one at ran-
dom from a prepacked bag that reflects this composition.

a. What is the probability of picking a plain truffle?
b. What is the probability of picking truffle of any kind?
c. If you instead pick three cookies in a row, what is 

the probability that all three are black truffles?

 4.39 A company installs new central-heating furnaces and 
has found that for 15% of all installations, a return 



166 Chapter 4 Discrete Probability Distributions

a. Find the mean and standard deviation of the  number 
of these computers that will be returned for refunds.

b. Find the mean and standard deviation of the 
total refund costs that will accrue as a result of 
these 50 purchases.

 4.44 A family of mutual funds maintains a service that 
allows clients to switch money among accounts 
through a telephone call. It was estimated that 3.2% 
of callers either get a busy signal or are kept on hold 
so long that they may hang up. Fund management 
assesses any failure of this sort as a $10 goodwill loss. 
Suppose that 2,000 calls are attempted over a particu-
lar period.

a. Find the mean and standard deviation of the num-
ber of callers who will either get a busy signal or 
may hang up after being kept on hold.

b. Find the mean and standard deviation of the total 
goodwill loss to the mutual fund company from 
these 2,000 calls.

 4.45 We have seen that, for a binomial distribution with n 
trials, each with probability of success P, the mean is 
as follows:

mX = E3X4 = nP

  Verify this result for the data of Example 4.7 by calcu-
lating the mean directly from

mX = a xP1x2
  showing that for the binomial distribution, the two 

formulas produce the same answer.
 4.46 A campus finance officer finds that, for all parking 

tickets issued, fines are paid for 78% of the tickets. The 
fine is $2. In the most recent week, 620 parking tickets 
have been issued.

a. Find the mean and standard deviation of the 
number of these tickets for which the fines will 
be paid.

b. Find the mean and standard deviation of the amount 
of money that will be obtained from the payment of 
these fines.

 4.47 A company receives a very large shipment of compo-
nents. A random sample of 16 of these components 
will be checked, and the shipment will be accepted if 
fewer than 2 of these components are defective. What 
is the probability of accepting a shipment containing 
each number of defectives?

a. 5%
b. 15%
c. 25%

 4.48 The following two acceptance rules are being consid-
ered for determining whether to take delivery of a 
large shipment of components:

 • A random sample of 10 components is checked, 
and the shipment is accepted only if none of them 
is defective.

 • A random sample of 20 components is checked, 
and the shipment is accepted only if no more than 
1 of them is defective.

visit is needed to make some modifications. Six instal-
lations were made in a particular week. Assume inde-
pendence of outcomes for these installations.

a. What is the probability that a return visit will be 
needed in all these cases?

b. What is the probability that a return visit will be 
needed in none of these cases?

c. What is the probability that a return visit will be 
needed in more than 1 of these cases?

 4.40 In a scuba-diving center in Sipadan (Malaysia), the dive 
master has tried calculating the probability of encoun-
tering some very rare fish underwater. The following 
are the probabilities of encountering several fish.

  Leopard shark: 0.05
  Barracuda: 0.41
  Lemon shark: 0.04
  Scorpion fish: 0.27
  Mandarin fish: 0.07

Using these statistics, calculate each likelihood.

a. Of not encountering a shark
b. Of encountering a shark
c. Of not encountering a scorpion fish

 4.41 A small commuter airline flies planes that can seat up 
to 8 passengers. The airline has determined that the 
probability that a ticketed passenger will not show up 
for a flight is 0.2. For each flight the airline sells tickets 
to the first 10 people placing orders. The probability 
distribution for the number of tickets sold per flight is 
shown in the accompanying table. For what propor-
tion of the airline’s flights does the number of ticketed 
passengers showing up exceed the number of avail-
able seats? (Assume independence between the num-
ber of tickets sold and the probability that a ticketed 
passenger will show up.)

Number of tickets   6   7   8   9   10
Probability 0.25 0.35 0.25 0.10 0.05

 4.42 You are investigating the punctuality of the airlines in 
Asia. Your survey tells you that, out of 15 airlines, 80% 
of them are likely to be late at least once a month. As-
sume the punctuality random variable follows a bino-
mial distribution. Determine the following.

a. Which assumptions do you need to make in order 
to be correct in considering a binomial distribution 
for your variable?

b. How many airlines will be late in one month?
c. What is the standard deviation of this random 

variable (i.e., the risk of being late)?
d. What is the probability that they all will be late?

 4.43 A notebook computer dealer mounts a new pro-
motional campaign. Purchasers of new comput-
ers may, if dissatisfied for any reason, return them 
within 2 days of purchase and receive a full refund. 
The cost to the dealer of such a refund is $100. The 
dealer estimates that 15% of all purchasers will, in-
deed, return computers and obtain refunds. Sup-
pose that 50 computers are purchased during the 
campaign period.
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whose shipments typically contain 20% defectives. A 
manager receives a shipment but does not know the 
source. A random sample of 20 items from this ship-
ment is tested, and 1 of the parts is found to be defec-
tive. What is the probability that this shipment came 
from the more reliable supplier? (Hint: Use Bayes’ 
theorem.)

  Which of these acceptance rules has the smaller 
probability of accepting a shipment containing 20% 
defectives?

 4.49 A company receives large shipments of parts from two 
sources. Seventy percent of the shipments come from 
a supplier whose shipments typically contain 10% 
defectives, while the remainder are from a  supplier 

4.5 POISSON DISTRIBUTION

The Poisson probability distribution was first proposed by Simeon Poisson (1781–1840) 
in a book published in 1837. The number of applications began to increase early in the 
20th century, and the availability of the computer has brought about further applications. 
The Poisson distribution is an important discrete probability distribution for a number of 
applications, including the following:

 1. The number of failures in a large computer system during a given day
 2. The number of replacement orders for a part received by a firm in a given month
 3. The number of ships arriving at a loading facility during a 6-hour loading period
 4. The number of delivery trucks to arrive at a central warehouse in an hour
 5. The number of dents, scratches, or other defects in a large roll of sheet metal used to 

manufacture various component parts
 6. The number of customers to arrive for flights during each 10-minute time interval 

from 3:00 p.m. to 6:00 p.m. on weekdays
 7. The number of customers to arrive at a checkout aisle in your local grocery store dur-

ing a particular time interval

We can use the Poisson distribution to determine the probability of each of these ran-
dom variables, which are characterized as the number of occurrences or successes of a 
certain event in a given continuous interval (such as time, surface area, or length).

A Poisson distribution is modeled according to certain assumptions.

Assumptions of the Poisson Distribution
Assume that an interval is divided into a very large number of equal 
 subintervals so that the probability of the occurrence of an event in any  
subinterval is very small. The assumptions of a Poisson distribution are as 
follows:

1. The probability of the occurrence of an event is constant for all 
subintervals.

2. There can be no more than one occurrence in each subinterval.
3. Occurrences are independent; that is, an occurrence in one interval does 

not influence the probability of an occurrence in another interval.

We can derive the equation for computing Poisson probabilities directly from the bi-
nomial probability distribution by taking the mathematical limits as P S 0 and n S `. 
With these limits, the parameter l = nP is a constant that specifies the average number of 
occurrences (successes) for a particular time and/or space. We can see intuitively that the 
Poisson is a special case of the binomial obtained by extending these limits. However, the 
mathematical derivation is beyond the scope of this book. The interested reader is referred 
to page 244 of Hogg and Craig (1995). The Poisson probability distribution function is 
given in Equation 4.21.
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The sum of Poisson random variables is also a Poisson random variable. Thus, the 
sum of K Poisson random variables, each with mean l, is a Poisson random variable with 
mean Kl.

Two important applications of the Poisson distribution in the modern global economy 
are the probability of failures in complex systems and the probability of defective products 
in large production runs of several hundred thousand to a million units. A large world-
wide shipping company such as Federal Express has a complex and extensive pickup, 
classification, shipping, and delivery system for millions of packages each day. There is a 
very small probability of handling failure at each step for each of the millions of packages 
handled every day. The company is interested in the probability of various numbers of 
failed deliveries each day when the system is operating properly. If the number of actual 
failed deliveries observed on a particular day has a small probability of occurring, given 
proper targeted operations, then the management begins a systematic checking process to 
identify and correct the reason for excessive failures.

The Poisson Distribution Function, Mean, and Variance
The random variable X is said to follow the Poisson distribution if it has the 
probability distribution

 P1x2 = e -llx

x!
, for x = 0, 1, 2, . . . (4.21)

where

 P1x2 = the probability of x successes over a given time or space, given l

 l = the expected number of successes per time or space unit, l 7 0

 e > 2.71828 1the base for natural logarithms2
The mean and variance of the Poisson distribution are

mx = E3X4 = l and s2
x = E 31X - mx224 = l

Example 4.10 System Component Failure  
(Poisson Probabilities)

Andrew Whittaker, computer center manager, reports that his computer system expe-
rienced three component failures during the past 100 days.

a. What is the probability of no failures in a given day?
b. What is the probability of one or more component failures in a given day?
c. What is the probability of at least two failures in a 3-day period?

Solution A modern computer system has a very large number of components, 
each of which could fail and thus result in a computer system failure. To compute the 
probability of failures using the Poisson distribution, assume that each of the millions 
of components has the same very small probability of failure. Also assume that the 
first failure does not affect the probability of a second failure (in some cases, these 
assumptions may not hold, and more complex distributions would be used). In par-
ticular, for this problem we assume that the past 100 days have been a good standard 
performance for the computer system and that this standard will continue into the 
future.

From past experience the expected number of failures per day is 3/100, or l = 0.03.

a.  P1no failures in a given day2 = P1X = 0 ul = 0.032 = e -0.03l0

0!
= 0.970446
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The Poisson distribution has been found to be particularly useful in waiting line, or 
queuing, problems. These important applications include the probability of various num-
bers of customers waiting for a phone line or waiting to check out of a large retail store. 
These queuing problems are an important management issue for firms that draw custom-
ers from large populations. If the queue becomes too long, customers might quit the line 
or might not return for a future shopping visit. If a store has too many checkout lines, 
then there will be personnel idle waiting for customers, resulting in lower productivity. 
By knowing the probability of various numbers of customers in the line, management can 
balance the trade-off between long lines and idle customer service associates. In this way 
the firm can implement its strategy for the desired customer service level—shorter wait 
times imply higher customer-service levels but have a cost of more idle time for checkout 
workers.

b.  The probability of at least one failure is the complement of the probability of  
0 failures:

 P1X Ú 12 = 1 - P1X = 02 = 1 - c e -llx

x!
d = 1 - c e -0.03l0

0!
d

 = 1 - e -0.03 = 1 - 0.970446 = 0.029554

c.  P1at least two failures in a 3@day period2 = P1X Ú 2 ul = 0.092, where the 
 average over a 3-day period is l = 310.032 = 0.09 :

 P1X Ú 2 ul = 0.092 = 1 - P1X … 12 = 1 - 3P1X = 02 + P1X = 124
 = 1 - 30.913931 + 0.0822544

and, thus,

P1X Ú 2 ul = 0.092 = 1 - 0.996185 = 0.003815

Example 4.11 Customers at a Photocopying 
Machine (Poisson Probability)

Customers arrive at a photocopying machine at an average rate of 2 every five minutes. 
Assume that these arrivals are independent, with a constant arrival rate, and that this 
problem follows a Poisson model, with X denoting the number of arriving customers 
in a 5-minute period and mean l = 2. Find the probability that more than two custom-
ers arrive in a 5-minute period.

Solution Since the mean number of arrivals in five minutes is 2, then l = 2. To find 
the probability that more than 2 customers arrive, first compute the probability of at 
most 2 arrivals in a five-minute period, and then use the complement rule.

These probabilities can be found in Table 5 in the appendix or by using a computer:

 P1X = 02 = e -220

0!
= e -2 = 0.135335

 P1X = 12 = e -221

1!
= 2e -2 = 0.27067

 P1X = 22 = e -222

2!
= 2e -2 = 0.27067

Thus, the probability of more than 2 arrivals in a five-minute period is as follows:

P1X 7 22 = 1 - P1X … 22 = 1 - 30.135335 + 0.27067 + 0.270674 = 0.323325
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Example 4.12 Ship Arrivals at a Dock

The Canadian government has built a large grain-shipping port at Churchill, Manitoba, 
on the Hudson Bay. Grain grown in southern Manitoba is carried by rail to Churchill 
during the open-water shipping season. Unfortunately the port is open only 50 days 
per year during July and August. This leads to some critical crew staffing decisions by 
management. The port has the capacity to load up to 7 ships simultaneously, provided 
that each loading bay has an assigned crew. The remote location and short shipping 
season results in a very high labor cost for each crew assigned, and management would 
like to minimize the number of crews. Ships arrive in a random pattern that can be 
modeled using the Poisson probability model. If a ship arrives and all available loading 
bays are filled, the ship will be delayed, resulting in a large cost that must be paid to the 
owner of the ship. This penalty was negotiated to encourage ship owners to send their 
ships to Churchill.

Results of an initial analysis indicate that each ship requires six hours for loading 
by a single crew. The port can remain open only 50 days per year, and 500 ships must 
be loaded during this time. Each additional crew costs $180,000, and each boat delay 
costs $10,000. How many crews should be scheduled?

Solution The final decision is based on the probability of ship arrivals during a 
6-hour period and the cost of additional crews versus the penalty cost for delayed 
ships. The first step is to compute the probabilities of various numbers of ships arriving 
during a 6-hour period and then the cost of ship delays. Then, we compute the cost of 
crews and the cost of ship delays for various levels of crew assignment.

Ship arrivals can be modeled by assuming that there are thousands of ships in the 
world and each has a small probability of arriving during a 6-hour loading period. 
An alternative model assumption is that during six hours there are a large number 
of small time intervals—say, 0.1 second—in this case, 216,000 such intervals. We also 
need to assume that ships do not travel in convoys. With 500 ships arriving over 50 
days, we have a mean of 10 ships per day, or l = 2.5 ship arrivals during a 6-hour 
period. The probability of x arrivals during a 6-hour period is computed using the 
following:

P1X = x ul = 2.52 = e -2.52.5x

x!

If four crews are scheduled, the probabilities of delaying ships are as follows:

 P1delay 1 ship2 = P15 ships arrive2 = e -2.52.55

5!
= 0.0668

 P1delay 2 ships2 = P16 ships arrive2 = e -2.52.56

6!
= 0.0278

 P1delay 3 ships2 = P17 ships arrive2 = e -2.52.57

7!
= 0.0099

The probabilities of idle crews are as follows:

 P11 crew idle2 = P13 ships arrive2 = e -2.52.53

3!
= 0.2138

 P12 crews idle2 = P12 ships arrive2 = e -2.52.52

2!
= 0.2565

 P13 crews idle2 = P11 ship arrive2 = e -2.52.51

1!
= 0.2052

 P14 crews idle2 = P10 ship arrive2 = e -2.52.50

0!
= 0.0821
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Poisson Approximation to the Binomial Distribution

Previously, we noted that the Poisson distribution is obtained by starting with the bino-
mial probability distribution with P approaching 0 and n becoming very large. Thus, it 
follows that the Poisson distribution can be used to approximate the binomial probabili-
ties when the number of trials, n, is large and at the same time the probability, P, is small 
(generally such that l = nP … 7). Examples of situations that would satisfy these condi-
tions include the following:

• An insurance company will hold a large number of life policies on individuals of any 
particular age, and the probability that a single policy will result in a claim during 
the year is very low. Here, we have a binomial distribution with large n and small P.

• A company may have a large number of machines working on a process simultaneously. 
If the probability that any one of them will break down in a single day is small, the dis-
tribution of the number of daily breakdowns is binomial with large n and small P.

With four crews scheduled, the expected number of boats delayed during a 6-hour pe-
riod would be as follows:11 * 0.0668 + 2 * 0.0278 + 3 * 0.00992 = 0.1521

With a 50-day shipping season there are 200 6-hour periods, and thus the delay cost is 
as follows: 10.1521212002110,0002 = +304,200

Following the same computational form, we would find that with 5 crews scheduled, 
the expected cost of delays would be $95,200 and, thus, the extra crew would save 
$209,000. Since the cost of an extra crew is $180,000 the scheduling of 5 crews would be 
the correct decision.

We note that scheduling an additional crew would also lead to increased crew idle 
time. However, the higher service level makes it economically sensible to have crews 
idle in order to reduce ship delays.

Poisson Approximation to the Binomial Distribution
Let X be the number of successes resulting from n independent trials, each 
with probability of success P. The distribution of the number of successes, X, 
is binomial, with mean nP. If the number of trials, n, is large and nP is of only 
moderate size (preferably nP … 7), this distribution can be approximated by 
the Poisson distribution with l = Np. The probability distribution of the ap-
proximating distribution is then

 P1x2 =
e - nP1nP2x

x!
 for x = 0, 1, 2, c  (4.22)

Example 4.13 Probability of Bankruptcy (Poisson 
Probability)

An analyst predicted that 3.5% of all small corporations would file for bankruptcy in 
the coming year. For a random sample of 100 small corporations, estimate the probabil-
ity that at least 3 will file for bankruptcy in the next year, assuming that the analyst’s 
prediction is correct.

Solution The distribution of X, the number of filings for bankruptcy, is binomial 
with n = 100 and P = 0.035, so that the mean of the distribution is mx = nP = 3.5. 
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Comparison of the Poisson and Binomial Distributions

We should indicate at this point that confusion may exist about the choice of the bino-
mial or the Poisson distribution for particular applications. The choice in many cases can 
be made easier by carefully reviewing the assumptions for the two distributions. For ex-
ample, if the problem uses a small sample of observations, then it is not possible to find 
a limiting probability with n large, and, thus, the binomial is the correct probability dis-
tribution. Further, if we have a small sample and the probability of a success for a single 
trial is between 0.05 and 0.95, then there is further support for choosing the binomial. If 
we knew or could assume that each of 10 randomly selected customers in an automo-
bile showroom had the same probability of purchase (assume 0.05 … P … 0.95), then the 
number of purchases from this group would follow a binomial distribution. However, if 
the set of cases that could be affected is very large—say, several thousand—and the mean 
number of “successes” over that large set of cases is small—say, fewer than 30—then 
there is strong support for choosing the Poisson distribution. If we wanted to compute the 
probability of a certain number of defective parts in a set of 100,000 parts when the mean 
number of 15 defectives per 100,000 parts represented a typical production cycle, then we 
would use the Poisson distribution.

In the previous discussion we noted that, when P is less than 0.05 and n is large, we 
can approximate the binomial distribution by using the Poisson distribution. It can also 
be shown that when n Ú 20, P … 0.05, and the population mean is the same, we will find 
that both the binomial and the Poisson distributions generate approximately the same 
probability values. This result is shown in Exercise 4.63.

Using the Poisson distribution to approximate the probability of at least 3 bankruptcies, 
we find the following:

 P1X Ú 32 = 1 - P1X … 22
 P102 =

e -3.513.520

0!
= e -3.5 = 0.030197

 P112 =
e -3.513.521

1!
= 13.52 10.0301972 = 0.1056895

 P122 =
e -3.513.522

2!
= 16.1252 10.0301972 = 0.1849566

Thus,

 P1X … 22 = P102 + P112 + P122 = 0.030197 + 0.1056895 + 0.1849566 = 0.3208431
 P1X Ú 32 = 1 - 0.3208431 = 0.6791569

Using the binomial distribution we compute the probability of X Ú 3 as:

P1X Ú 32 = 0.684093

Thus the Poisson probability is a close estimate of the actual binomial probability.

EXERCISES

Basic Exercises
 4.50 Determine the probability of exactly four successes for 

a random variable with a Poisson distribution with 
parameter l = 2.4.

 4.51 Determine the probability of more than 7 successes for 
a random variable with a Poisson distribution with 
parameter l = 4.4.
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4.6 HYPERGEOMETRIC DISTRIBUTION

The binomial distribution presented in Section 4.4 assumes that the items are drawn 
independently, with the probability of selecting an item being constant. In many ap-
plied problems these assumptions can be met if a small sample is drawn from a large 
population. But here we consider, for example, a situation where it is necessary to select  
5 employees from a group of 15 equally qualified applicants—a small population. In 
the group of 15 there are 9 women and 6 men. Suppose that, in the group of 5 selected  
employees, 3 are men and 2 are women. What is the probability of selecting that particu-
lar group if the selections are made randomly without bias. In the initial group of 15, the 
probability of selecting a woman is 9/15. If a woman is not selected in the first drawing, 
then the probability of selecting a woman in the second drawing is 9/14. Thus, the prob-
abilities change with each selection. Because the assumptions for the binomial are not met, 
a different probability must be selected. This probability distribution is the hypergeometric 
distribution. The hypergeometric probability distribution is given in Equation 4.23.

 4.52 Determine the probability of fewer than 6 successes 
for a random variable with a Poisson distribution with 
parameter l = 3.4.

 4.53 Determine the probability of fewer than or equal to 9 
successes for a random variable with a Poisson distri-
bution with parameter l = 8.0.

Application Exercises
 4.54 Customers arrive at a busy checkout counter at an av-

erage rate of 3 per minute. If the distribution of arriv-
als is Poisson, find the probability that in any given 
minute there will be 2 or fewer arrivals.

 4.55 The number of accidents in a production facility has a 
Poisson distribution with a mean of 2.6 per month.

a. For a given month what is the probability there 
will be fewer than 2 accidents?

b. For a given month what is the probability there will 
be more than 3 accidents?

 4.56 A customer service center in India receives, on aver-
age, 4.2 telephone calls per minute. If the distribution 
of calls is Poisson, what is the probability of receiving 
at least 3 calls during a particular minute?

 4.57 Records indicate that, on average, 3.2 breakdowns 
per day occur on an urban highway during the 
morning rush hour. Assume that the distribution is 
Poisson.

a. Find the probability that on any given day there 
will be fewer than 2 breakdowns on this highway 
during the morning rush hour.

b. Find the probability that on any given day there will 
be more than 4 breakdowns on this highway during 
the morning rush hour.

 4.58 Blue Cross Health Insurance reported that 4.5% of 
claims forms submitted for payment after a com-
plex surgical procedure contain errors. If 100 of 
these forms are chosen at random, what is the prob-
ability that fewer than 3 of them contain errors? 
Use the Poisson approximation to the binomial 
distribution.

 4.59 A corporation has 250 personal computers. The prob-
ability that any 1 of them will require repair in a given 
week is 0.01. Find the probability that fewer than 4 of 
the personal computers will require repair in a partic-
ular week. Use the Poisson approximation to the bino-
mial distribution.

 4.60 An insurance company holds fraud insurance policies 
on 6,000 firms. In any given year the probability that 
any single policy will result in a claim is 0.001. Find 
the probability that at least 3 claims are made in a 
given year. Use the Poisson approximation to the bi-
nomial distribution.

 4.61 A state has a law requiring motorists to carry insur-
ance. It was estimated that, despite this law, 6.0% of 
all motorists in the state are uninsured. A random 
sample of 100 motorists was taken. Use the Poisson 
approximation to the binomial distribution to esti-
mate the probability that at least 3 of the motorists 
in this sample are uninsured. Also indicate what 
calculations would be needed to find this probabil-
ity exactly if the Poisson approximation was not 
used.

 4.62 A new warehouse is being designed and a deci-
sion concerning the number of loading docks is 
required. There are two models based on truck-
arrival assumptions for the use of this warehouse, 
given that loading a truck requires 1 hour. Using the 
first model, we assume that the warehouse could 
be serviced by one of the many thousands of inde-
pendent truckers who arrive randomly to obtain a 
load for delivery. It is known that, on average, 1 of 
these trucks would arrive each hour. For the second 
model, assume that the company hires a fleet of 10 
trucks that are assigned full time to shipments from 
this warehouse. Under that assumption the trucks 
would arrive randomly, but the probability of any 
truck arriving during a given hour is 0.1. Obtain the 
appropriate probability distribution for each of these 
assumptions and compare the results.
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The preceding example describes a situation of sampling without replacement since 
an item drawn from the small population is not replaced before the second item is se-
lected. Thus the probability of selection changes after each succeeding selection. This 
change is particularly important when the population is small relative to the size of the 
sample.

We can use the binomial distribution in situations that are defined as sampling with re-
placement. If the selected item is replaced in the population, then the probability of select-
ing that type of item remains the same and the binomial assumptions are met. In contrast, if 
the items are not replaced—sampling without replacement—the probabilities change with 
each selection, and, thus, the appropriate probability model is the hypergeometric distribu-
tion. If the population is large 1N 7 10, 0002  and the sample size is small 16 1%2, then 
the change in probability after each draw is very small. In those situations the binomial is a 
very good approximation and is typically used.

Hypergeometric Distribution
Suppose that a random sample of n objects is chosen from a group of N 
objects, S of which are successes. The distribution of the number of suc-
cesses, X, in the sample is called the hypergeometric distribution. Its 
probability distribution is

 P1x2 = C
s
x CN- s

n- x

CN
n

=

S!
x!1S - x2! *

1N - S2!1n - x2!1N - S - n + x2!
N!

n!1N - n2!  (4.23)

where x can take integer values ranging from the larger of 0 and 3n - 1N - S24  to the smaller of n and S.

The logic for the hypergeometric distribution was developed in Section 3.2 using the 
classic definition of probability and the counting formulas for combinations. In Equation 4.23 
the individual components are as follows:

 1. The number of possible ways that x successes can be selected for the sample out of S 
successes contained in the population:

Cs
x =

S!
x!1S - x2!

 2. The number of possible ways that n - x nonsuccesses can be selected from the popu-
lation that contains N - S nonsuccesses:

CN -S
n -x =

1N - S2!1n - x2!1N - S - n + x2!
 3. And, finally, the total number of different samples of size n that can be obtained from 

a population of size N:

CN
n =

N!
n!1N - n2!

When these components are combined using the classical definition of probability, the 
hypergeometric distribution is obtained.

The hypergeometric distribution is used for situations similar to the binomial with the 
important exception that sample observations are not replaced in the population when 
sampling from a “small population.” Therefore, the probability, P, of a success is not con-
stant from one observation to the next.
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Hypergeometric probabilities can also be computed using computer packages fol-
lowing a procedure similar to the procedure in Example 4.9 for the binomial. We would 
strongly recommend that you use computer computation for hypergeometric probabili-
ties because using the equations is very time consuming and easily subject to errors.

Example 4.14 Shipment of Items (Compute 
Hypergeometric Probability)

A company receives a shipment of 20 items. Because inspection of each individual 
item is expensive, it has a policy of checking a random sample of 6 items from such a 
shipment, and if no more than 1 sampled item is defective, the remainder will not be 
checked. What is the probability that a shipment of 5 defective items will not be sub-
jected to additional checking?

Solution If “defective” is identified with “success” in this example, the shipment 
contains N = 20 items and S = 5 of the 20 that are successes. A sample of n = 6 items 
is selected. Then the number of successes, X, in the sample has a hypergeometric 
distribution with the probability distribution

P1x2 = CS
xCN -S

n -x

CN
n

=
C5

xC
15
6 -x

C20
6

=

5!
x!15 - x2! *

15!16 - x2!19 + x2!
20!

6!14!

The shipment is not checked further if the sample contains either 0 or 1 success  
(defective), so that the probability of its acceptance is as follows:

P1shipment accepted2 = P102 + P112
The probability of no defectives in the sample is as follows:

P102 = 5!
0!5!

*
15!
6!9!

20!
6!14!

= 0.129

The probability of 1 defective item in the sample is as follows:

P112 =

5!
1!4!

*
15!

5!10!
20!

6!14!

= 0.387

Therefore, we find that the probability that the shipment of 20 items containing  
5 defectives is not checked further is P1shipment accepted2 = P102 + P112 =
0.129 + 0.387 = 0.516. This is a high error rate, which indicates a need for a new accep-
tance rule that requires total inspection if one or more defectives are found. With this 
new rule, only 12.9% of these shipments would be missed.

Basic Exercises
 4.63 Compute the probability of 7 successes in a random 

sample of size n = 14 obtained from a population of 
size N = 30 that contains 15 successes.

 4.64 Compute the probability of 9 successes in a random 
sample of size n = 20 obtained from a population of 
size N = 80 that contains 42 successes.

 4.65 Compute the probability of 3 successes in a random 
sample of size n = 5 obtained from a population of 
size N = 40 that contains 25 successes.

 4.66 Compute the probability of 8 successes in a random 
sample of size n = 15 obtained from a population of 
size N = 100 that contains 50 successes.

EXERCISES
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4.7 JOINTLY DISTRIBUTED DISCRETE RANDOM VARIABLES

Business and economic applications of statistics are often concerned about the rela-
tionships between variables. Products at different quality levels have different prices. 
Age groups have different preferences for clothing, for automobiles, and for music. 
The percent returns on two different stocks may tend to be related, and the returns 
for both may increase when the market is growing. Alternatively, when the return 
on one stock is growing, the return on the other might be decreasing. When we work 
with probability models for problems involving relationships between variables, it is 
important that the effect of these relationships is included in the probability model. 
For example, assume that a car dealer is selling the following automobiles: (1) a red 
two-door compact, (2) a blue minivan, and (3) a silver full-size sedan; the probability 
distribution for purchasing would not be the same for women in their 20s, 30s, and 
50s. Thus, it is important that probability models reflect the joint effect of variables on 
probabilities.

In Section 3.4 we discussed bivariate probabilities. We now consider the case where 
two or more, possibly related, discrete random variables are examined. With a single 
random variable, the probabilities for all possible outcomes can be summarized in a 
probability distribution. Now we need to define the probabilities that several random 
variables of interest simultaneously take specific values. At this point we will concen-
trate on two random variables, but the concepts apply to more than two. Consider 
the following example involving the use of two jointly distributed discrete random 
variables.

Application Exercises
 4.67 A company receives a shipment of 16 items. A ran-

dom sample of 4 items is selected, and the ship-
ment is rejected if any of these items proves to be 
defective.

a. What is the probability of accepting a shipment 
containing 4 defective items?

b. What is the probability of accepting a shipment 
containing 1 defective item?

c. What is the probability of rejecting a shipment  
containing 1 defective item?

 4.68 A committee of 8 members is to be formed from a 
group of 8 men and 8 women. If the choice of com-
mittee members is made randomly, what is the prob-
ability that precisely half of these members will be 
women?

 4.69 A bond analyst was given a list of 12 corporate bonds. 
From that list she selected 3 whose ratings she felt 
were in danger of being downgraded in the next year. 
In actuality, a total of 4 of the 12 bonds on the list had 
their ratings downgraded in the next year. Suppose 
that the analyst had simply chosen 3 bonds randomly 
from this list. What is the probability that at least 2 of 
the chosen bonds would be among those whose rat-
ings were to be downgraded in the next year?

 4.70 A bank executive is presented with loan applications 
from 10 people. The profiles of the applicants are 
similar, except that 5 are minorities and 5 are not mi-
norities. In the end the executive approves 6 of the ap-
plications. If these 6 approvals are chosen at random 
from the 10 applications, what is the probability that 
fewer than half the approvals will be of applications 
involving minorities?

Example 4.15 Market Research (Joint Probabilities)

Sally Peterson, a marketing analyst, has been asked to develop a probability model 
for the relationship between the sale of luxury cookware and age group. This model 
will be important for developing a marketing campaign for a new line of chef-grade 
cookware. She believes that purchasing patterns for luxury cookware are different for  
different age groups.
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The probability distributions for the individual random variables are frequently  
desired when dealing with jointly distributed random variables.

Joint Probability Distribution
Let X and Y be a pair of discrete random variables. Their joint probability dis-
tribution expresses the probability that simultaneously X takes the specific 
value x, and Y takes the value y, as a function of x and y. We note that the dis-
cussion here is a direct extension of the material in Section 3.4, where we pre-
sented the probability of the intersection of bivariate events, P1Ai > Bj2 Here, 
we use random variables. The notation used is P1x, y2, so

P1x, y2 = P1X = x > Y = y2

Derivation of the Marginal Probability Distribution
Let X and Y be a pair of jointly distributed random variables. In this context 
the probability distribution of the random variable X is called its marginal 
probability distribution and is obtained by summing the joint probabilities 
over all possible values—that is,

P1x2 = a
y

P1x, y2  (4.24)

Similarly, the marginal probability distribution of the random variable Y is as 
follows:

P1y2 = a
x

P1x, y2   (4.25)

An example of these marginal probability distributions is shown in the lower 
row and the right column in Table 4.6.

Joint probability distributions must have the following properties.

Solution To represent the market, Sally proposes to use three age groups—16 to 
25, 26 to 45, and 46 to 65—and two purchasing patterns—buy and not buy. Next, she 
collects a random sample of persons for the age range 16 to 65 and records their age 
group and desire to purchase. The result of this data collection is the joint probability 
distribution contained in Table 4.6. Table 4.6, therefore, provides a summary of the 
probability of purchase and age group that will be a valuable resource for marketing 
analysis.

Table 4.6 Joint Probability Distribution of Age Group (X) versus Purchase Decision (Y)

AGE GROUP (X)

PURCHASE  
DECISION (Y)

1 2 3

(16 to 25) (26 to 45) (46 to 65) P(y)

1 (buy) 0.10 0.20 0.10 0.40

2 (not buy) 0.25 0.25 0.10 0.60

P(x) 0.35 0.45 0.20 1.00
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The conditional probability distribution of one random variable, given specified values 
of another, is the collection of conditional probabilities.

Properties of Joint Probability Distributions of Discrete 
Random Variables
Let X and Y be discrete random variables with joint probability distribution 
P1x, y2. Then,

1. 0 … P1x, y2 … 1 for any pair of values x and y; and
2. the sum of the joint probabilities P1x, y2 over all possible pairs of values 

must be 1.

Conditional Probability Distribution
Let X and Y be a pair of jointly distributed discrete random variables. The 
conditional probability distribution of the random variable Y, given that the 
random variable X takes the value x, expresses the probability that Y takes 
the value y, as a function of y, when the value x is fixed for X. This is denoted 
P1y u x2, and so, by the definition of conditional probability, is as follows:

P1y u x2 =
P1x, y2
P1x2  (4.26)

Similarly, the conditional probability distribution of X, given Y = y, is as 
follows:

P1x u y2 =
P1x, y2
P1y2   (4.27)

For example, using the probabilities in Table 4.6, we can compute the conditional 
probability of purchase 1y = 12 , given age group 26 to 45 1x = 22 , as

P11 u 22 =
P12, 12
P122 =

0.20
0.45

= 0.44

In Chapter 3 we discussed independence of events. This concept extends directly to 
random variables.

Independence of Jointly Distributed  
Random Variables
The jointly distributed random variables X and Y are said to be independent 
if and only if their joint probability distribution is the product of their marginal 
probability distributions—that is, if and only if

P1x, y2 = P1x2P1y2
for all possible pairs of values x and y. And k random variables are indepen-
dent if and only if

 P1x1, x2, c , xK2 = P1x12 P1x22 gP1xK2 (4.28)

From the definition of conditional probability distributions it follows that, if the ran-
dom variables X and Y are independent, then the conditional probability distribution of 
Y, given X, is the same as the marginal probability distribution of Y—that is,

P1y u x2 = P1y2
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Similarly, it follows that

P1x u y2 = P1x2
Example 4.16 considers the possible percent returns for two stocks, A and B, illus-

trates the computation of marginal probabilities and tests for independence, and finds the 
means and variances of two jointly distributed random variables.

Example 4.16 Stock Returns, Marginal Probability, 
Mean, and Variance (Joint Probabilities)

Suppose that Charlotte King has two stocks, A and B. Let X and Y be random variables 
of possible percent returns (0%, 5%, 10%, and 15%) for each of these two stocks, with 
the joint probability distribution given in Table 4.7.

a. Find the marginal probabilities.
b. Determine if X and Y are independent.
c. Find the means and variances of both X and Y.

Table 4.7 Joint Probability Distribution for Random Variables X and Y

Y RETURN

X RETURN 0% 5% 10% 15%

0% 0.0625 0.0625 0.0625 0.0625

5% 0.0625 0.0625 0.0625 0.0625

10% 0.0625 0.0625 0.0625 0.0625

15% 0.0625 0.0625 0.0625 0.0625

Solution

a.  This problem is solved using the definitions developed in this chapter. Note that 
for every combination of values for X and Y, P1x, y2 = 0.0625. That is, there is 
a 6.25% probability for each possible combination of x and y returns. To find the 
marginal probability that X has a 0% return, consider the following:

P1X = 02 = a
y

P10, y2 = 0.0625 + 0.0625 + 0.0625 + 0.0625 = 0.25

Here all the marginal probabilities of X are 25%. Notice that the sum of the mar-
ginal probabilities is 1. Similar results can be found for the marginal probabili-
ties of Y.

b.  To test for independence, we need to check if P1x, y2 = P1x2P1y2  for all pos-
sible pairs of values x and y.

P1x, y2 = 0.0625 for all possible pairs of values x and y
P1x2 = 0.25 and P1y2 = 0.25 for all possible pairs of values x and y
P1x, y2 = 0.0625 = 10.25210.252 = P1x2  P1y2

 Therefore, X and Y are independent.
c. The mean of X is as follows:

mX = E3X4 = a
x

xP1x2 = 010.252 + 0.0510.252 + 0.1010.252 + 0.1510.252 
= 0.075
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Conditional Mean and Variance

The conditional mean is computed using the following:

mYuX = E3Y u X4 = a
y
1y ux2P1y u x2

Using the joint probability distribution in Table 4.6, we can compute the expected value of 
Y given that x = 2 :

E3Y u x = 24 = a
y
1y u x = 22P1y u x = 22 = 1120.20

0.45
+ 1220.25

0.45
=

0.7
0.45

= 1.56

Similarly the conditional variance is computed using the following:

s2
YuX = E31Y - mYuX22 uX4 = a

y
11y - mYuX22 ux2P1y u x2

Using the joint probability distribution in Table 4.6, we can compute the variance of Y 
given that x = 2 :

 s21Y u x = 22 = a
y
11y - 1.5622) u x = 22P1y u x = 22

 = 11 - 1.5622 
0.20
0.45

+ 12 - 1.5622 
0.25
0.45

=
0.111
0.45

= 0.247

Computer Applications

Computation of marginal probabilities, means, and variances for jointly distributed random 
variables can be developed in Excel or other computer packages. For example, we can com-
pute marginal probabilities, means, and variances for the jointly distributed random vari-
ables X and Y, from Table 4.7, using an Excel worksheet in the format shown in Figure 4.4.

Similarly, the mean of Y is mY = E3Y4 = 0.075.
The variance of X is

 s2
X = a

x
1x - mX22P1x2 = a

x
1x - mX22P(x) = a

x
1x - mX22(0.25)

 = 10.252310 - 0.07522 + 10.05 - 0.07522 + 10.10 - 0.07522 + 10.15 - 0.075224
 = 0.003125

and the standard deviation of X is

sX = 10.003125 = 0.0559016, or 5.59%.

Follow similar steps to find the variance and standard deviation of Y.

Figure 4.4 

Marginal  
Probabilities,  
Means, and  
Variances for  
X and Y Computed 
Using Excel

Linear Functions of Random Variables

Previously, the expectation of a function of a single random variable was defined. This 
definition can now be extended to functions of several random variables.
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Of particular interest are numerous applications involving linear combinations of random 
variables that have the general form

W = aX + bY

An important application is the total revenue random variable, W, resulting from monthly 
sales of two products where X and Y are random variables representing the sales of each 
product with the selling prices fixed as a and b. The mean and variance, as developed in 
the chapter appendix, are as follows:

 mW = E3W4 = amX + bmY   (4.30)

 s2
W = a2s2

X + b2s2
Y + 2ab Cov1X, Y2  (4.31)

These results can be extended to the linear combination of many random variables

W = a1X1 + a2X2 + g +  aKXK = a aiXi

mW = E3W4 = a
K

i=1
aimi

s2
w = a

K

i=1
a2

is
2
i + 2a

K -1

i=1
a
K

j7 i
aiaj Cov1Xi, Yj2    (4.32)

The term Cov(X, Y) is the covariance between the two random variables, which is devel-
oped next.

Covariance

The covariance is a measure of linear association between two random variables. The 
covariance represents the joint variability of two random variables and is used with the 
variances of each random variable to compute the variance of the linear combination, as 
shown in Equations 4.31 and 4.32. In addition, the covariance is used to compute a stan-
dardized measure of joint variability called the correlation. We first develop the definition 
of the covariance in Equation 4.33 and then present some important applications.

Suppose that X and Y are a pair of random variables that are not statistically independent. 
We would like some measure of the nature and strength of the relationship between them. 
This is rather difficult to achieve, since the random variables could conceivably be related in 
any number of ways. To simplify matters, attention is restricted to the possibility of linear as-
sociation. For example, a high value of X might be associated, on average, with a high value of 
Y, and a low value of X, with a low value of Y, in such a way that, to a good approximation, a 
straight line might be drawn through the associated values when plotted on a graph.

Suppose that the random variable X has mean mX and Y has mean mY, and consider the 
product 1X - mX21Y - mY2. If high values of X tend to be associated with high values of Y 
and low values of X, with low values of Y, we would expect this product to be positive, and 
the stronger the association, the larger the expectation of 1X - mX21Y - mY2 , to be defined 
as E31X - mX21Y - mY24 . By contrast, if high values of X are associated with low values of 
Y and low X, with high Y, the expected value for this product, E31X - mX21Y - mY24 , would 
be negative. An expectation that E31X - mX21Y - mY24  equals 0 would imply an absence of 
linear association between X and Y. Thus, the expected value, E31X - mX21Y - mY24 , will 
be used as a measure of linear association in the population.

Expected Values of Functions of Jointly Distributed 
Random Variables
Let X and Y be a pair of discrete random variables with joint probability distri-
bution P1x, y2. The expectation of any function g1X, Y2 of these random vari-
ables is defined as follows:

E 3g1X, Y24 = a
x

a
y

g1x, y2P1x, y2   (4.29)
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Covariance
Let X be a random variable with mean mX, and let Y be a random variable with 
mean mY. The expected value of 1X - mX21Y - mY2 is called the covariance be-
tween X and Y, denoted as Cov1X, Y2. For discrete random variables

Cov1X, Y2 = E31X - mX21Y - mY24 = a
x

a
y
1x - mX21y - mY2P1x, y2 (4.33)

An equivalent expression is as follows:

Cov1X, Y2 = E3XY4 - mX mY = a
x

a
y

xyP1x, y2 - mX mY

Correlation

Although the covariance provides an indication of the direction of the relationship be-
tween random variables, the covariance does not have an upper or lower bound, and its 
size is greatly influenced by the scaling of the numbers. A strong linear relationship is 
defined as a condition where the individual observation points are close to a straight line. 
It is difficult to use the covariance to provide a measure of the strength of a linear relation-
ship because it is unbounded. A related measure, the correlation coefficient, provides a 
measure of the strength of the linear relationship between two random variables, with the 
measure being limited to the range from -1 to +1.

Correlation
Let X and Y be jointly distributed random variables. The correlation between 
X and Y is as follows:

r = Corr1X, Y2 = Cov1X, Y2
sXsY

  (4.34)

The correlation is the covariance divided by the standard deviations of the two ran-
dom variables. This results in a standardized measure of relationship that varies from -1 
to +1. The following interpretations are important:

 1. A correlation of 0 indicates that there is no linear relationship between the two random 
variables. If the two random variables are independent, the correlation is equal to 0.

 2. A positive correlation indicates that if one random variable is high (low), then the 
other random variable has a higher probability of being high (low), and we say that 
the variables are positively dependent. Perfect positive linear dependency is indi-
cated by a correlation of +1.0.

 3. A negative correlation indicates that if one random variable is high (low), then the 
other random variable has a higher probability of being low (high), and we say that 
the variables are negatively dependent. Perfect negative linear dependency is indi-
cated by a correlation of -1.0.

The correlation is more useful for describing relationships than the covariance. With a cor-
relation of +1 the two random variables have a perfect positive linear relationship, and, there-
fore, a specific value of one variable, X, predicts the other variable, Y, exactly. A correlation of 
-1 indicates a perfect negative linear relationship between two variables, with one variable, X, 
predicting the negative of the other variable, Y. A correlation of 0 indicates no linear relation-
ship between the two variables. Intermediate values indicate that variables tend to be related, 
with stronger relationships occurring as the absolute value of the correlation approaches 1.

We also know that correlation is a term that has moved into common usage. In many 
cases correlation is used to indicate that a relationship exists. However, variables that have 
nonlinear relationships will not have a correlation coefficient close to 1.0. This distinction 
is important for us in order to avoid confusion between correlated random variables and 
those with nonlinear relationships.
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Example 4.17 Joint Distribution of Stock Prices 
(Compute Covariance and Correlation)

Find the covariance and correlation for the stocks A and B from Example 4.16 with the 
joint probability distribution in Table 4.7.

Solution The computation of covariance is tedious for even a problem such as this, 
which is simplified so that all of the joint probabilities, P1x, y2 , are 0.0625 for all pairs 
of values x and y. By definition, you need to find the following:

 Cov1X, Y2 = a
x

a
y

xyP1x, y2 - mXmY

 = 0310210.06252 + 10.05210.06252 + 10.10210.06252 + 10.15210.062524
+ 0.05310210.06252 + 10.05210.06252 + 10.10210.06252 + 10.15210.062524
+ 0.10310210.06252 + 10.05210.06252 + 10.10210.06252 + 10.15210.062524
+ 0.15310210.06252 + 10.05210.06252 + 10.10210.06252 + 10.15210.062524
- 10.0752 10.0752

 = 0.005625 - 0.005625 = 0

Thus,

r = Corr1X, Y2 = Cov1X, Y2
sXsY

= 0

Microsoft Excel can be used for these computations by carefully following the example 
in Figure 4.5.

Figure 4.5 Covariance Calculation Using Microsoft Excel

Joint Probability Distribution of X and Y
Y Return %

X Return % 0 0.05 0.1 0.15             P(x) E(X)

0 0.0625 0.0625 0.0625 0.25

0.05 0.0625 0.0625 0.0625 0.25

0.1 0.0625 0.0625 0.0625 0.25

0.15 0.0625 0.0625 0.0625 0.25

0.25 0.25 0.25 0.075

0.075E(Y)

Calculation of Covariance
xyP(x,y)

xyP(x,y)

xyP(x,y)

xyP(x,y)

xyP(x,y)

xyP(x,y) xyP(x,y) xyP(x,y)

0 0 0

0 0.000156 0.000313

0 0.000313 0.000625

0 0.000469 0.000938

Sum xyP(x,y) 0 0.000938 0.001875

0.0625

0.0625

0.0625

0.0625

0.25

0

0.000469

0.000938

0.001406

0.002813 0.005625

Covariance

Sum xyP(x,y) 2 E(X)E(Y) 5 0.005625 2 0.005625 0
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The reason a covariance of 0 does not necessarily imply statistical independence is 
that covariance is designed to measure linear association, and it is possible that this quan-
tity may not detect other types of dependency, as we see in the following illustration.

Suppose that the random variable X has probability distribution

P1 -12 = 1>4 P102 = 1>2 P112 = 1>4
Let the rand om variable Y be defined as follows:

Y = X2

Thus, knowledge of the value taken by X implies knowledge of the value taken by Y, and, 
therefore, these two random variables are certainly not independent. Whenever X = 0, 
then Y = 0, and if X is either -1 or 1, then Y = 1. The joint probability distribution of X 
and Y is

P1 -1, 12 = 1>4 P10, 02 = 1>2 P11, 12 = 1>4
with the probability of any other combination of values being equal to 0. It is then straight-
forward to verify that

E3X4 = 0 E3Y4 = 1>2 E3XY4 = 0

The covariance between X and Y is 0. Thus we see that random variables that are not inde-
pendent can have a covariance equal to 0.

To conclude the discussion of joint distributions, consider the mean and variance of a 
random variable that can be written as the sum or difference of other random variables. 
These results are summarized below and can be derived using Equations 4.30, 4.31, and 4.32.

Covariance and Statistical Independence
If two random variables are statistically independent, the covariance between 
them is 0. However, the converse is not necessarily true.

Summary Results for Linear Sums and Differences  
of Random Variables
Let X and Y be a pair of random variables with means mX and mY and vari-
ances s2

X and s2
Y . The following properties hold:

1. The expected value of their sum is the sum of their expected values:

E3X + Y4 = mX + mY (4.35)

2. The expected value of their difference is the difference between their 
expected values:

E3X - Y4 = mX - mY (4.36)

3. If the covariance between X and Y is 0, the variance of their sum is the 
sum of their variances:

Var1X + Y2 = s2
X + s2

Y (4.37)

But if the covariance is not 0, then

Var1X + Y2 = s2
X + s2

Y + 2 Cov1X, Y2
4. If the covariance between X and Y is 0, the variance of their difference is 

the sum of their variances:

Var1X - Y2 = s2
X + s2

Y (4.38)
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But if the covariance is not 0, then

Var1X - Y2 = s2
X + s2

Y - 2 Cov1X, Y2
Let X1, X2, c, XK be K random variables with means m1, m2, c , mK and 
variances s2

1, s
2
2,c, sK

2 . The following properties hold:
5. The expected value of their sum is as follows:

E3X1 + X2 + g + XK4 = m1 + m2 + g + mK  (4.39)

6. If the covariance between every pair of these random variables is 0, the 
variance of their sum is as follows:

Var1X1 + X2 + g +  XK2 = s2
1 + s2

2 + g +  s2
K  (4.40)

7. If the covariance between every pair of these random variables is not 0, 
the variance of their sum is as follows:

Var1X1 + X2 + g +  XK2 = a
K

i=1
s2

i + 2a
K- 1

i=1
a
K

j7 i
Cov1Xi, Yj2   (4.41)

Example 4.18 Simple Investment Portfolio (Means 
and Variances, Functions of Random Variables)

An investor has $1,000 to invest and two investment opportunities, each requiring a 
minimum of $500. The profit per $100 from the first can be represented by a random 
variable X, having the following probability distributions:

P1X = -52 = 0.4 and P1X = 202 = 0.6

The profit per $100 from the second is given by the random variable Y, whose probabil-
ity distributions are as follows:

P1Y = 02 = 0.6 and P1Y = 252 = 0.4

Random variables X and Y are independent. The investor has the following possible 
strategies:

a. $1,000 in the first investment
b. $1,000 in the second investment
c. $500 in each investment

Find the mean and variance of the profit from each strategy.

Solution Random variable X has mean

mX = E3X4 = a
x

xP1x2 = 1 -5210.42 + 120210.62 = +10

and variance

s2
X = E31X - mx224 = a

x
1x - mx22P1x2 = 1 -5 - 102210.42 + 120 - 102210.62 = 150

Random variable Y has mean

mY = E3Y4 = a
y

yP1y2 = 10210.62 + 125210.42 = +10

and variance

s2
Y = E3(Y - mY224 = a

y
1y - mY22P1y2 = 10 - 102210.62 + 125 - 102210.42 = 150
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Portfolio Analysis

Investment managers spend considerable effort developing investment portfolios that 
consist of a set of financial instruments that each have returns defined by a probability 
distribution. Portfolios are used to obtain a combined investment that has a given ex-
pected return and risk. Stock portfolios with a high risk can be constructed by combining 
several individual stocks whose values tend to increase or decrease together. With such 
a portfolio an investor will have either large gains or large losses. Stocks whose values 
move in opposite directions could be combined to create a portfolio with a more stable 
value, implying less risk. Decreases in one stock price would be balanced by increases in 
another stock price.

This process of portfolio analysis and construction is conducted using probability 
distributions. The mean value of the portfolio is the linear combination of the mean val-
ues of the stocks in the portfolio. The variance of the portfolio value is computed using 
the sum of the variances and the covariance of the joint distribution of the stock values. 
We will develop the method using an example with a portfolio consisting of two stocks.

Consider a portfolio that consists of a shares of stock A and b shares of stock B. We 
want to use the mean and variance for the market value, W, of a portfolio, where W is 
the linear function W = aX + bY. The mean and variance are derived in the chapter 
appendix.

Strategy (a) has mean profit of E310X4 = 10E3X4 = +100 and variance of

Var110X2 = 100Var1X2 = 15,000

Strategy (b) has mean profit E310Y4 = 10E3Y4 = +100 and variance of

Var110Y2 = 100Var1Y2 = 15,000

Now consider strategy (c): $500 in each investment. The return from strategy (c) is 
5X + 5Y, which has mean

E35X + 5Y4 = E35X4 + E35Y4 = 5E3X4 + 5E3Y4 = +100

Thus, all three strategies have the same expected profit. However, since X and Y are 
independent and the covariance is 0, the variance of the return from strategy (c) is as 
follows:

Var15X + 5Y2 = Var15X2 + Var15Y2 = 25Var1X2 + 25Var1Y2 = 7,500

This is smaller than the variances of the other strategies, reflecting the decrease in 
risk that follows from diversification in an investment portfolio. Most investors would 
prefer strategy (c), since it yields the same expected return as the other two, but with 
lower risk.

The Mean and Variance for the  
Market Value of a Portfolio
The random variable X is the price for stock A, and the random variable Y is the 
price for stock B. The portfolio market value, W, is given by the linear function

W = aX + bY

where a is the number of shares of stock A, and b is the number of shares of 
stock B.

The mean value for W is as follows:

mW = E3W4 = E3aX + bY4 = amX + bmY   (4.42)
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Portfolio analysis developed using discrete random variables is expanded in Chapter 5 
using continuous random variables. The development here using discrete random vari-
ables is more intuitive compared to using continuous random variables. However, the 
results for means, variances, covariances, and linear combinations of random variables 
also apply directly to continuous random variables. Since portfolios involve prices that 
are continuous random variables, the development in Chapter 5 is more realistic. In ad-
dition, the normal distribution developed in Chapter 5 provides important analysis tools.

The variance for W is

s2
W = a2s2

X + b2s2
Y + 2abCov1X, Y2  (4.43)

or, using the correlation, is

s2
W = a2s2

X + b2s2
Y + 2abCorr1X, Y2sXsY

Example 4.19 Analysis of Stock Portfolios (Means 
and Variances, Functions of Random Variables)

George Tiao has 5 shares of stock A and 10 shares of stock B, whose price variations are 
modeled by the probability distribution in Table 4.8. Find the mean and variance of the 
portfolio.

Table 4.8 Joint Probability Distribution for Stock A and Stock B Prices

STOCK A  
PRICE

STOCK B PRICE

$40 $50 $60 $70

$45 0.24 0.003333 0.003333 0.003333

$50 0.003333 0.24 0.003333 0.003333

$55 0.003333 0.003333 0.24 0.003333

$60 0.003333 0.003333 0.003333 0.24

Solution The value, W, of the portfolio can be represented by the linear combination

W = 5X + 10Y

Using the probability distribution in Table 4.8 we can compute the means, variances, 
and covariances for the two stock prices. The mean and variance for stock A are $53 
and 31.3, respectively, while for stock B they are $55 and 125. The covariance is 59.17 
and the correlation is 0.947.

The mean value for the portfolio is as follows:

mW = E3W4 = E35X + 10Y4 = 51532 + 11021552 = $815

The variance for the portfolio value is as follows:

 s2
W = 52s2

X + 102s2
Y + 2 * 5 * 10 * Cov1X, Y2

 = 52 * 31.3 + 102 * 125 + 2 * 5 * 10 * 59.17 = 19,199.5

George knows that high variance implies high risk. He believes that the risk for this 
portfolio is too high. Thus, he asks you to prepare a portfolio that has lower risk. After 
some investigation you discover a different pair of stocks whose prices follow the prob-
ability distribution in Table 4.9. By comparing Tables 4.8 and 4.9 we note that the stock 
prices tend to change directly with each other in Table 4.8, while they move in opposite 
directions in Table 4.9.
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Table 4.9 Probability Distribution for New Portfolio of Stock C and Stock D

STOCK C  
PRICE

STOCK D PRICE

$40 $50 $60 $70

$45 0.003333 0.003333 0.003333 0.24

$50 0.003333 0.003333 0.24 0.003333

$55 0.003333 0.24 0.003333 0.003333

$60 0.24 0.003333 0.003333 0.003333

Using the probability distribution in Table 4.9 we computed the means, variances, and 
covariance for the new stock portfolio. The mean for stock C is $53, the same as for 
stock A. Similarly, the mean for stock D is $55, the same as for stock B. Thus, the mean 
value of the portfolio is not changed. The variance for each stock is also the same, but 
the covariance is now –59.17. Thus, the variance for the new portfolio includes a nega-
tive covariance term and is as follows:

 s2
W = 52s2

X + 102s2
Y + 2 * 5 * 10 * Cov1X, Y2

 = 52 * 31.3 + 102 * 125 + 2 * 5 * 10 * 1 -59.172 = 7,365.5

We see that the effect of the negative covariance is to reduce the variance and, hence, to 
reduce the risk of the portfolio.

Figure 4.6 shows how portfolio variance—and, hence, risk—changes with different 
correlations between stock prices. Note that the portfolio variance is linearly related to 
the correlation. To help control risk, designers of stock portfolios select stocks based on 
the correlation between prices.

Figure 4.6 Portfolio Variance Versus Correlation of Stock Prices

As we saw in Example 4.19, the correlation between stock prices, or between any two 
random variables, has important effects on the portfolio value random variable. A posi-
tive correlation indicates that both prices, X and Y, increase or decrease together. Thus, 
large or small values of the portfolio are magnified, resulting in greater range and vari-
ance compared to a zero correlation. Conversely, a negative correlation leads to price in-
creases for X matched by price decreases for Y. As a result, the range and variance of the 
portfolio are decreased compared to a zero correlation. By selecting stocks with particu-
lar combinations of correlations, fund managers can control the variance and the risk for 
portfolios.
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Basic Exercises
 4.71 A call center in Perth, Australia receives an average of 

1.3 calls per minute. By looking at the date, a Poisson 
discrete distribution is assumed for this variable. Cal-
culate each of the following.

a. The probability of receiving no calls in the first 
minute of its office hours.

b. The probability of receiving 1 call in the first minute.
c. The probability of receiving 3 calls in the first minute.

 4.72 Consider the joint probability distribution:

X
1 2

Y 0 0.25 0.25
1 0.25 0.25

a. Compute the marginal probability distributions  
for X and Y.

b. Compute the covariance and correlation for X and Y.
c. Compute the mean and variance for the linear  

function W = X + Y.

 4.73 Consider the joint probability distribution:

X
1 2

Y 0 0.30 0.20
1 0.25 0.25

a. Compute the marginal probability distributions  
for X and Y.

b. Compute the covariance and correlation for X and Y.
c. Compute the mean and variance for the linear  

function W = 2X + Y.

 4.74 Consider the joint probability distribution:

X
1 2

Y 0 0.70 0.0
1 0.0 0.30

a. Compute the marginal probability distributions  
for X and Y.

b. Compute the covariance and correlation for X and Y.
c. Compute the mean and variance for the linear  

function W = 3X + 4Y.

 4.75 Consider the joint probability distribution:

X
1 2

Y 0 0.0 0.60
1 0.40 0.0

a. Compute the marginal probability distributions  
for X and Y.

b. Compute the covariance and correlation for X and Y.
c. Compute the mean and variance for the linear  

function W = 2X - 4Y.

 4.76 Consider the joint probability distribution:

X
1 2

Y 0 0.70 0.0
1 0.0 0.30

a. Compute the marginal probability distributions  
for X and Y.

b. Compute the covariance and correlation for  
X and Y.

c. Compute the mean and variance for the linear  
function W = 10X - 8Y.

Application Exercises
 4.77 A researcher suspected that the number of between-

meal snacks eaten by students in a day during final 
examinations might depend on the number of tests 
a student had to take on that day. The accompany-
ing table shows joint probabilities, estimated from a 
survey.

Number of  
Snacks (Y)

Number of Tests (X)
  0 1 2 3

0 0.07 0.09 0.06 0.01
1 0.07 0.06 0.07 0.01
2 0.06 0.07 0.14 0.03
3 0.02 0.04 0.16 0.04

a. Find the probability distribution of X and compute 
the mean number of tests taken by students on that 
day.

b. Find the probability distribution of Y and, hence, 
the mean number of snacks eaten by students on 
that day.

c. Find and interpret the conditional probability dis-
tribution of Y, given that X = 3.

d. Find the covariance between X and Y.
e. Are number of snacks and number of tests indepen-

dent of each other?

 4.78 A real estate agent is interested in the relationship be-
tween the number of lines in a newspaper advertise-
ment for an apartment and the volume of inquiries 
from potential renters. Let volume of inquiries be de-
noted by the random variable X, with the value 0 for 
little interest, 1 for moderate interest, and 2 for strong 
interest. The real estate agent used historical records 
to compute the joint probability distribution shown in 
the accompanying table.

  Number 
of Lines (Y)

Number of Inquiries (X)
0 1 2

3 0.09 0.14 0.07
4 0.07 0.23 0.16
5 0.03 0.10 0.11

EXERCISES
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a. Find the joint cumulative probability at 
X = 1, Y = 4, and interpret your result.

b. Find and interpret the conditional probability  
distribution for Y, given X = 0.

c. Find and interpret the conditional probability  
distribution for X, given Y = 4.

d. Find and interpret the covariance between X and Y.
e. Are number of lines in the advertisement and  

volume of inquiries independent of one another?

 4.79 The accompanying table shows, for credit-card hold-
ers with one to three cards, the joint probabilities for 
number of cards owned (X) and number of credit pur-
chases made in a week (Y).

Number of  
 Cards (X)

Number of Purchases in Week (Y)
0 1 2 3 4

1 0.08 0.13 0.09 0.06 0.03
2 0.03 0.08 0.08 0.09 0.07
3 0.01 0.03 0.06 0.08 0.08

a. For a randomly chosen person from this group, 
what is the probability distribution for number  
of purchases made in a week?

b. For a person in this group who has three cards, 
what is the probability distribution for number  
of purchases made in a week?

c. Are number of cards owned and number of  
purchases made statistically independent?

 4.80 A market researcher wants to determine whether a 
new model of a personal computer that had been ad-
vertised on a late-night talk show had achieved more 
brand-name recognition among people who watched 
the show regularly than among people who did not. 
After conducting a survey, it was found that 15% of 
all people both watched the show regularly and could 
correctly identify the product. Also, 16% of all people 
regularly watched the show and 45% of all people 
could correctly identify the product. Define a pair of 
random variables as follows:

X = 1 if regularly watch the show X = 0 otherwise
Y = 1 if product correctly identified Y = 0 otherwise

a. Find the joint probability distribution of X and Y.
b. Find the conditional probability distribution of Y, 

given X = 1.
c. Find and interpret the covariance between X and Y.

 4.81 A college bookseller makes calls at the offices of profes-
sors and forms the impression that professors are more 
likely to be away from their offices on Friday than any 
other working day. A review of the records of calls, 
1/5 of which are on Fridays, indicates that for 16% 
of Friday calls, the professor is away from the office, 
while this occurs for only 12% of calls on every other 
working day. Define the random variables as follows:

X = 1 if call is made on a Friday X = 0 otherwise
Y = 1 if professor is away from the office Y = 0 otherwise

a. Find the joint probability distribution of  
X and Y.

b. Find the conditional probability distribution  
of Y, given X = 0.

c. Find the marginal probability distributions of  
X and Y.

d. Find and interpret the covariance between  
X and Y.

 4.82 A restaurant manager receives occasional complaints 
about the quality of both the food and the service. The 
marginal probability distributions for the number of 
weekly complaints in each category are shown in the 
accompanying table. If complaints about food and ser-
vice are independent of each other, find the joint prob-
ability distribution.

Number 
of Food 

Complaints

 
 

Probability

Number 
of Service 

Complaints

 
 

Probability
0 0.12 0 0.18
1 0.29 1 0.38
2 0.42 2 0.34
3 0.17 3 0.10

 4.83 Refer to the information in the previous exercise. 
Find the mean and standard deviation of the to-
tal number of complaints received in a week. Hav-
ing reached this point, you are concerned that the 
numbers of food and service complaints may not be 
independent of each other. However, you have no 
information about the nature of their dependence. 
What can you now say about the mean and standard 
deviation of the total number of complaints received 
in a week?

 4.84 A company has 5 representatives covering large ter-
ritories and 10 representatives covering smaller ter-
ritories. The probability distributions for the numbers 
of orders received by each of these types of represen-
tatives in a day are shown in the accompanying table. 
Assuming that the number of orders received by any 
representative is independent of the number received 
by any other, find the mean and standard deviation 
of the total number of orders received by the com-
pany in a day.

 
Numbers of 

Orders (Large 
Territories)

 
 
 

Probability

Numbers 
of Orders 
(Smaller 

Territories)

 
 
 

Probability
0 0.08 0 0.18
1 0.16 1 0.26
2 0.28 2 0.36
3 0.32 3 0.13
4 0.10 4 0.07
5 0.06
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CHAPTER EXERCISES AND APPLICATIONS

 4.85 As an investment advisor, you tell a client that an in-
vestment in a mutual fund has (over the next year) a 
higher expected return than an investment in the money 
market. The client then asks the following questions:

a. Does that imply that the mutual fund will certainly 
yield a higher return than the money market?

b. Does it follow that I should invest in the mutual 
fund rather than in the money market? How 
would you reply?

 4.86 A contractor estimates the probabilities for the num-
ber of days required to complete a certain type of con-
struction project as follows:

Time (days)   1   2   3   4   5
Probability 0.05 0.20 0.35 0.30 0.10

a. What is the probability that a randomly chosen 
project will take less than 3 days to complete?

b. Find the expected time to complete a project.
c. Find the standard deviation of time required to 

complete a project.
d. The contractor’s project cost is made up of two 

parts—a fixed cost of $20,000, plus $2,000 for each 
day taken to complete the project. Find the mean 
and standard deviation of total project cost.

e. If three projects are undertaken, what is the prob-
ability that at least two of them will take at least 4 
days to complete, assuming independence of indi-
vidual project completion times?

 4.87 A car salesperson estimates the following probabilities 
for the number of cars that she will sell in the next week:

Number of cars   0   1   2   3   4   5
Probability 0.10 0.20 0.35 0.16 0.12 0.07

a. Find the expected number of cars that will be sold 
in the week.

b. Find the standard deviation of the number of cars 
that will be sold in the week.

c. The salesperson receives a salary of $250 for the 
week, plus an additional $300 for each car sold. 
Find the mean and standard deviation of her total 
salary for the week.

d. What is the probability that the salesperson’s sal-
ary for the week will be more than $1,000?

 4.88 A multiple-choice test has nine questions. For each 
question there are four possible answers from which to 
select. One point is awarded for each correct answer, 
and points are not subtracted for incorrect answers. 
The instructor awards a bonus point if the students 
spell their name correctly. A student who has not stud-
ied for this test decides to choose an answer for each 
question at random.

a. Find the expected number of correct answers for 
the student on these nine questions.

b. Find the standard deviation of the number of 
correct answers for the student on these nine 
questions.

c. The student spells his name correctly:

 i   Find the expected total score on the test for this 
student.

 ii  Find the standard deviation of his total score on 
the test.

 4.89 Develop realistic examples of pairs of random vari-
ables for which you would expect to find the following:

a. Positive covariance
b. Negative covariance
c. Zero covariance

 4.90 A long-distance taxi service owns four vehicles. These 
are of different ages and have different repair records. 
The probabilities that, on any given day, each vehicle 
will be available for use are 0.95, 0.90, 0.90, and 0.80. 
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Whether one vehicle is available is independent of 
whether any other vehicle is available.

a. Find the probability distribution for the number of 
vehicles available for use on a given day.

b. Find the expected number of vehicles available for 
use on a given day.

c. Find the standard deviation of the number of ve-
hicles available for use on a given day.

 4.91 Students in a college were classified according to years 
in school (X) and number of visits to a museum in the 
last year (Y = 0 for no visits, 1 for one visit, 2 for more 
than one visit). The joint probabilities in the accompa-
nying table were estimated for these random variables.

Number of  
   Visits (Y)

Years in School (X)
1 2 3 4

0 0.07 0.05 0.03 0.02
1 0.13 0.11 0.17 0.15
2 0.04 0.04 0.09 0.10

a. Find the probability that a randomly chosen stu-
dent has not visited a museum in the last year.

b. Find the means of the random variables X and Y.
c. Find and interpret the covariance between the ran-

dom variables X and Y.

 4.92 A basketball team’s star 3-point shooter takes six 
3-point shots in a game. Historically, she makes 40% 
of all 3-point shots taken in a game. State at the outset 
what assumptions you have made.

a. Find the probability that she will make at least two 
shots.

b. Find the probability that she will make exactly 
three shots.

c. Find the mean and standard deviation of the num-
ber of shots she made.

d. Find the mean and standard deviation of the total 
number of points she scored as a result of these shots.

 4.93 It is estimated that 55% of the freshmen entering a 
particular college will graduate from that college in  
four years.

a. For a random sample of 5 entering freshmen, what 
is the probability that exactly 3 will graduate in 
four years?

b. For a random sample of 5 entering freshmen, what 
is the probability that a majority will graduate in 
four years?

c. 80 entering freshmen are chosen at random. Find 
the mean and standard deviation of the proportion 
of these 80 that will graduate in four years.

 4.94 The World Series of baseball is to be played by team A 
and team B. The first team to win four games wins the 
series. Suppose that team A is the better team, in the 
sense that the probability is 0.6 that team A will win 
any specific game. Assume also that the result of any 
game is independent of that of any other.

a. What is the probability that team A will win the 
series?

b. What is the probability that a seventh game will be 
needed to determine the winner?

c. Suppose that, in fact, each team wins two of the 
first four games.

 i   What is the probability that team A will win the 
series?

 ii  What is the probability that a seventh game will 
be needed to determine the winner?

 4.95 Using detailed cash-flow information, a financial ana-
lyst claims to be able to spot companies that are likely 
candidates for bankruptcy. The analyst is presented 
with information on the past records of 15 companies 
and told that, in fact, 5 of these have failed. He selects 
as candidates for failure 5 companies from the group 
of 15. In fact, 3 of the 5 companies selected by the ana-
lyst were among those that failed. Evaluate the finan-
cial analyst’s performance on this test of his ability to 
detect failed companies.

 4.96 A team of 5 analysts is about to examine the earnings 
prospects of 20 corporations. Each of the 5 analysts 
will study 4 of the corporations. These analysts are 
not equally competent. In fact, one of them is a star, 
having an excellent record of anticipating changing 
trends. Ideally, management would like to allocate 
the 4 corporations whose earnings will deviate most 
from past trends to this analyst. However, lacking 
this information, management allocates corporations 
to analysts randomly. What is the probability that at 
least 2 of the 4 corporations whose earnings will de-
viate most from past trends are allocated to the star 
analyst?

 4.97 A new brand of pizza is going to be sold in Park & 
Shop, and a market-research company in Admiralty 
(Hong Kong) has forecast that successful new brands 
normally obtain a 10% market share for the product 
in the first year. However, top management wants 
to achieve 12%. You may assume a normal distribu-
tion with a standard deviation of 3% (risk on the esti-
mates). Determine each of the following.

a. The probability that the new pizza will actually 
achieve the target.

b. The probability of failure.
c. The probability of being even more successful, 

with 18% of market share in the first year.

 4.98 A recent estimate suggested that, of all individuals 
and couples reporting income in excess of $200,000, 
6.5% either paid no federal tax or paid tax at an ef-
fective rate of less than 15%. A random sample of 100 
of those reporting income in excess of $200,000 was 
taken. What is the probability that more than 2 of the 
sample members either paid no federal tax or paid tax 
at an effective rate of less than 15%?

 4.99 Your computer is in serious need of repair. You have 
estimated that the breakdowns occur on average 
3.5 times per week. If you are right and the break-
down variable is a Poisson distribution, calculate the 
following.

a. The probability that for an entire week your com-
puter runs with no problems.

b. The probability of getting only 1 shutdown.
c. The probability of getting 5 shutdowns.
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 4.100 George Allen has asked you to analyze his stock port-
folio, which contains 10 shares of stock D and 5 shares 
of stock C. The joint probability distribution of the 
stock prices is shown in Table 4.10. Compute the mean 
and variance for the total value of his stock portfolio.

Table 4.10 Joint Probability Distribution for 
Stock Prices

Stock D Price
Stock C  
 Price

 
 $40

 
 $50

 
 $60

 
$70

$45 0.00 0.00 0.05 0.20
$50 0.05 0.00 0.05 0.10
$55 0.10 0.05 0.00 0.05
$60 0.20 0.10 0.05 0.00

 4.101 Consider a country that imports steel and exports au-
tomobiles. The value per unit of cars exported is mea-
sured in units of thousands of dollars per car by the 
random variable X. The value per unit of steel imported 
is measured in units of thousands of dollars per ton of 
steel by the random variable Y. Suppose that the coun-
try annually exports 10 cars and imports 5 tons of steel. 
Compute the mean and variance of the trade balance, 
where the trade balance is the total dollars received for 
all cars exported minus the total dollars spent for all 
steel imported. The joint probability distribution for the 
prices of cars and steel is shown in Table 4.11.

Table 4.11 Joint Distribution of Automobile 
and Steel Prices

Price of Automobiles (X)
 Price of  
Steel (Y)

 
 $3

 
 $4

 
$5

$4 0.10 0.15 0.05
$6 0.10 0.20 0.10
$8 0.05 0.15 0.10

 4.102 Delta International delivers approximately one mil-
lion packages a day between East Asia and the United 
States. A random sample of the daily number of pack-
age delivery failures over the past six months pro-
vided the following results: 15, 10, 8, 16, 12, 11, 9, 8, 
12, 9, 10, 8, 7, 16, 14, 12, 10, 9, 8, 11. There was nothing 
unusual about the operations during these days and, 
thus, the results can be considered typical. Using these 
data and your understanding of the delivery process 
answer the following:

a. What probability model should be used and why?
b. What is the probability of 10 or more failed deliv-

eries on a typical future day?
c. What is the probability of less than 6 failed deliveries?
d. Find the number of failures such that the probabil-

ity of exceeding this number is 10% or less.

 4.103 Bright Star Financial Advisers receives a mean of 19.5 
applications per week for a personal financial review. 
Each review requires one day of an analyst’s time 
to prepare a review. Assume that requests received 

 during any week are assigned to an analyst for com-
pletion during the following week. If the analysis is 
not completed during the second week the customer 
will cancel.

a. How many analysts should be hired so that the 
company can claim that 90% of the reviews will be 
completed during the second week?

b. What is the probability that two of the analysts 
hired for part a would have no clients for an entire 
week?

c. Suppose that they decided to hire one less analyst 
than determined in part (a). What is the probability 
that customers would cancel given this staffing 
level?

d. Given the number of analysts hired in part c, what 
is the probability that two analysts would be idle 
for an entire week?

 4.104 Federated South Insurance Company has developed 
a new screening program for selecting new sales 
agents. Their past experience indicates that 20% of 
the new agents hired fail to produce the minimum 
sales in their first year and are dismissed. Their ex-
pectation is that this new screening program will 
reduce the percentage of failed new agents to 15% 
or less. If that occurs, they would save $1,000,000 in 
recruiting and training costs each year. At the end 
of the first year they want to develop an evaluation 
to determine if the new program is successful. The 
following questions are an important part of their re-
search design.

A total of 20 new agents were selected. 

a. If this group performs at the same level as past 
groups, what is the probability 17 or more success-
fully meet their minimum sales goals in the first 
year?

b. What is the probability 19 or more reach their min-
imum sales goals given performance at the same 
level?

c. If the program has actually increased the prob-
ability of success to 0.85 for each new agent, what 
is the probability that 17 or more meet their mini-
mum sales goals?

d. Given the expected improvement, what is the 
probability that 19 or more reach their minimum 
sales goals?

 4.105 Yoshida Toimi is a candidate for the mayor of a 
medium-sized Midwestern city. If he receives more 
than 50% of the votes, he will win the election. Prior 
to the election, his campaign staff is planning to 
ask 100 randomly selected voters if they support 
Yoshida.

a. How many positive responses from this sample 
of 100 is required so that the probability of 50% or 
more voters supporting him is 0.95 or more?

b. Carefully state the assumptions required for your 
answer in part (a).

c. Suppose the campaign is able to ask 400 randomly 
selected voters. Now what is your answer to the 
question in part (a)?
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 4.106 Faschip, Ltd., is a new African manufacturer of note-
book computers. Their quality target is that 99.999% 
of the computers they produce will perform exactly 
as promised in the descriptive literature. In order to 
monitor their quality performance they include with 
each computer a large piece of paper that includes a 
direct—toll-free—phone number to the Senior Vice 
President of Manufacturing that can be used if the 
computer does not perform as promised. In the first 
year Faschip sells 1,000,000 computers.

a. If they are achieving their quality target, what 
is the probability that they will receive fewer 
than 5 calls? If this occurs what would be a 
reasonable conclusion about their quality 
program?

b. If they are achieving their quality target, what 
is the probability that they will receive more 
than 15 calls? If this occurs, what would be 
a reasonable conclusion about their quality 
program?

Appendix: Verifications
1  VERIFICATION OF AN ALTERNATIVE FORMULA 

FOR THE VARIANCE OF A DISCRETE RANDOM 
VARIABLE (EQUATION 4.6)

Begin with the original definition of variance:

 s2
X = a

x
1x - mX22P1x2 = a

x
1x2 - 2mXx + m2

X
2P1x2

 = a
x

x2P1x2 - 2mXa
x

xP1x2 + m2
Xa

x
P1x2

But we have seen that

a
x

xP1x2 = mX and a
x

P1x2 = 1

Thus,

s2
X = a

x
x2P1x2 - 2m2

X + m2
X

and, finally,

s2
X = a

x
x2P1x2 - m2

X

2  VERIFICATION OF THE MEAN AND VARIANCE 
OF A LINEAR FUNCTION OF A RANDOM 
VARIABLE (EQUATIONS 4.9 AND 4.10)

It follows from the definition of expectation that if Y takes the values a + bx with prob-
abilities PX1x2, its mean is as follows:

E3Y4 = mY = a
x
1a + bx2P1x2 = aa

x
P1x2 + ba

x
xP1x2

Then, since the first summation on the right-hand side of this equation is 1 and the second 
summation is the mean of X, we have

E3Y4 = a + bmX as in Equation 4.9.

Further, the variance of Y is, by definition,

s2
Y = E31Y - mY224 = a

X
31a + bx2 - mY42P1x2
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Substituting a + bmX for mY then gives

s2
Y = a

x
1bx - bmX22P1x2 = b2a

x
1x - mX22P1x2

Since the summation on the right-hand side of this equation is, by definition, the variance 
of X, the result in Equation 4.10 follows:

s2
W = Var1a + bX2 = b2s2

X

3 EXAMPLE TO DEMONSTRATE EQUATION 4.8

Show that in general

E3g1x24 ? g1mx2
Using the results in Table 4.12, we show this result for the nonlinear function

g1x2 = bx2

Where b is a constant and we see that

E3bX24 = 1.2b ? b1E3X422 = b10.822 = 0.64b

when

E3g1x24 ? g1mx2
Table 4.12 

x bx2 P(x) E[X] E[bX2]

0 0 0.40 0 0

1 b 0.40 0.40 0.4b

2 4b 0.20 0.40 0.8b

0.80 1.2b

4  VERIFICATION OF THE MEAN AND VARIANCE 
OF THE BINOMIAL DISTRIBUTION  
(EQUATIONS 4.19 AND 4.20)

To find the mean and variance of the binomial distribution, it is convenient to return to 
the Bernoulli distribution. Consider n independent trials, each with probability of success 
P, and let Xi = 1 if the ith trial results in success and 0 otherwise. The random variables X1, 
X2, . . . , Xn are, therefore, n independent Bernoulli variables, each with probability of suc-
cess P. Moreover, the total number of successes X is as follows:

X = X1 + X2 + g + Xn

Thus, the binomial random variable can be expressed as the sum of independent Bernoulli 
random variables.

The mean and the variance for Bernoulli random variables can be used to find the mean 
and variance of the binomial distribution. Using Equations 4.15 and 4.16, we know that

E3Xi4 = P and s 2
Xi

= P11 - P2 for all i = 1, 2, . . . , n
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Then, for the binomial distribution

E3X4 = E3X1 + X2 + g + Xn4 = E3X14 + E3X24 + g + E3Xn4 = np

Since the Bernoulli random variables are independent, the covariance between any pair of 
them is zero, and

 s2
X = s21X1 + X2 + gXn2

 s2
X = s2

X1
+ s2

X2
+ g + s2

Xn

 s2
X = nP11 - P2

5  VERIFICATION OF THE MEAN AND VARIANCE 
OF THE MARKET VALUE, W, OF JOINTLY 
DISTRIBUTED RANDOM VARIABLES AND OF A  
PORTFOLIO (EQUATIONS 4.30 AND 4.31)

You are given a linear combination, W, of random variables X and Y, where W = aX + bY 
and a and b are constants. The mean of W is

mW = E3W4 = E3aX + bY4 = amX + bmY

and the variance of W is

 s2
W = E31W - mW224

 = E31aX + bY - 1amX + bmY))24
 = E31a1X - mX2 + b1Y - mY))24
 = E3a21X - mX22 + b21Y - mY22 + 2ab1X - mX21Y - mY24
 = a2E31X - mX224 + b2E3 1Y - mY224 + 2abE31X - mX21Y - mY24
 = a2s2

x + b2s2
Y + 2abCov1X, Y2
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 5.1 Continuous Random Variables
The Uniform Distribution

 5.2 Expectations for Continuous Random Variables
 5.3 The Normal Distribution

Normal Probability Plots
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Cautions Concerning Finance Models

Introduction

In Chapter 4 we developed discrete random variables and probability dis-
tributions. Here, we extend the probability concepts to continuous random 
variables and probability distributions. The concepts and insights for dis-
crete random variables also apply to continuous random variables, so we are 
building directly on the previous chapter. Many economic and business mea-
sures such as sales, investment, consumption, costs, and revenues can be 
represented by continuous random variables. In addition, measures of time, 
distance, temperature, and weight fit into this category. Probability state-
ments for continuous random variables are specified over ranges. The prob-
ability that sales are between 140 and 190 or greater than 200 is a typical 
example.

Mathematical theory leads us to conclude that, in reality, random variables 
for all applied problems are discrete because measurements are rounded to 
some value. But, for us, the important idea is that continuous random variables 
and probability distributions provide good approximations for many applied 
problems. Thus, these models are very important and provide excellent tools 
for business and economic applications.
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5.1 CONTINUOUS RANDOM VARIABLES

We define X as a random variable and x as a specific value of the random variable. Our 
first step is to define the cumulative distribution function. Then we will define the probabil-
ity density function, which is analogous to the probability distribution function used for 
discrete random variables.

Cumulative Distribution Function
The cumulative distribution function, F1x2, for a continuous random variable 
X expresses the probability that X does not exceed the value of x, as a func-
tion of x:

 F1x2 = P1X … x2 (5.1)

The cumulative distribution function can be illustrated by using a simple probability 
structure. Consider a gasoline station that has a 1,000-gallon storage tank that is filled 
each morning at the start of the business day. Analysis of past history indicates that it is 
not possible to predict the amount of gasoline sold on any particular day, but the lower 
limit is 0 and the upper limit is, of course, 1,000 gallons, the size of the tank. In addition, 
past history indicates that any demand in the interval from 1 to 1,000 gallons is equally 
likely. The random variable X indicates the gasoline sales in gallons for a particular day. 
We are concerned with the probability of various levels of daily gasoline sales, where the 
probability of a specific number of gallons sold is the same over the range from 0 to 1,000 
gallons. The distribution of X is said to follow a uniform probability distribution, and 
the cumulative distribution is as follows:

F1x2 = • 0    if x 6 0
0.001x if 0 … x … 1,000
1     if x 7 1,000

This function is graphed as a straight line between 0 and 1,000, as shown in Figure 5.1. 
From this we see that the probability of sales between 0 and 400 gallons is as follows:

P1X … 4002 = F14002 = 10.001214002 = 0.40

f(x)
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0 1000750500250 400 x

Figure 5.1  

Cumulative 
Distribution Function 
for a Random 
Variable Over 0  
to 1,000
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To obtain the probability that a continuous random variable X falls in a specified 
range, we find the difference between the cumulative probability at the upper end of the 
range and the cumulative probability at the lower end of the range.

Probability of a Range Using a Cumulative  
Distribution Function
Let X be a continuous random variable with a cumulative distribution  function 
F1x2, and let a and b be two possible values of X, with a 6 b. The probability 
that X lies between a and b is as follows:

 P1a 6 X 6 b2 = F1b2 - F1a2 (5.2)

For continuous random variables, it does not matter whether we write “less than” or “less 
than or equal to” because the probability that X is precisely equal to b is 0.

For the random variable that is distributed uniformly in the range 0 to 1,000, the cu-
mulative distribution function in that range is F1x2 = 0.001x. Therefore, if a and b are two 
numbers between 0 and 1,000 with a 6 b,

P1a 6 X 6 b2 = F1b2 - F1a2 = 0.0011b - a2
For example, the probability of sales between 250 and 750 gallons is

P1250 6 X 6 7502 = 10.001217502 - 10.001212502 = 0.75 - 0.25 = 0.50

as shown in Figure 5.1.
We have seen that the probability that a continuous random variable lies between any 

two values can be expressed in terms of its cumulative distribution function. This func-
tion, therefore, contains all the information about the probability structure of the random 
variable. However, for many purposes a different function is more useful. In Chapter 4 we 
discussed the probability distribution for discrete random variables, which expresses the 
probability that a discrete random variable takes any specific value. Since the probability 
of a specific value is 0 for continuous random variables, that concept is not directly rel-
evant here. However, a related function, called the probability density function, can be con-
structed for continuous random variables, allowing for graphical interpretation of their 
probability structure.

Probability Density Function
Let X be a continuous random variable, and let x be any number lying in the 
range of values for the random variable. The probability density function, 
f1x2,  of the random variable is a function with the following properties:

1. f1x2 7 0 for all values of x.
2. The area under the probability density function, f1x2, over all values of 

the random variable, X within its range, is equal to 1.0.
3. Suppose that this density function is graphed. Let a and b be two pos-

sible values of random variable X, with a 6 b. Then, the probability that 
X lies between a and b is the area under the probability density function 
between these points.

P1a … X … b2 = L
b

a

f1x2dx
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The probability density function can be approximated by a discrete probability distri-
bution with many discrete values close together, as seen in Figure 5.2.

4. The cumulative distribution function, F1x02, is the area under the prob-
ability density function, f1x2, up to x0,

F1x02 = L
x0

xm

f1x2dx

where xm is the minimum value of the random variable X.

f (x)f (x)

x x

Figure 5.2 

Approximation of a 
Probability Density 
Function by a 
Discrete Probability 
Distribution

Figure 5.3 shows the plot of a probability density function for a continuous random 
variable. Two possible values, a and b, are shown, and the shaded area under the curve 
between these points is the probability that the random variable lies in the interval be-
tween them, as shown in the chapter appendix.

a b x

Figure 5.3 

Shaded Area Is the 
Probability That X is 
Between a and b

These results are shown in Figure 5.4, with Figure 5.4(a) showing that the entire area 
under the probability density function is equal to 1 and Figure 5.4(b) indicating the area 
to the left of x0.

Areas Under Continuous Probability Density Functions
Let X be a continuous random variable with probability density function 
f1x2 and cumulative distribution function F1x2. Then, consider the following 
properties:

1. The total area under the curve f1x2 is 1.
2. The area under the curve f1x2 to the left of x0 is F1x02, where x0 is any 

value that the random variable can take.
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The Uniform Distribution

Now, we consider a probability density function that represents a probability distribution 
over the range of 0 to 1. Figure 5.5 is a graph of the uniform probability density function 
over the range from 0 to 1. The probability density function for the gasoline sales example 
is shown in Figure 5.6. Since the probability is the same for any interval of the sales range 
from 0 to 1,000, the probability density function is the uniform probability density func-
tion, which can be written as follows:

f1x2 = e 0.001 0 … x … 1,000
0    otherwise

x x0 1x01
0

1

f(x) f(x)

0

1

0

(a) (b)

Figure 5.4 

Properties of the 
Probability Density 
Function

f(x)

x0 1

1

Figure 5.5 Probability Density 
Function for a Uniform 0 to 1 
Random Variable

f(x)

x0 250 750 1000
0

0.001

Figure 5.6 Density Function 
Showing the Probability That X is 
Between 250 and 750

For any uniform random variable defined over the range from a to b, the probability den-
sity function is as follows:

f1x2 = • 1
b - a

 a … x … b

0   otherwise

This probability density function can be used to find the probability that the random 
variable falls within a specific range. For example, the probability that sales are between 
250 gallons and 750 gallons is shown in Figure 5.6. Since the height of the density function 
is f1x2 = 0.001, the area under the curve between 250 and 750 is equal to 0.50, which is 
the required probability. Note that this is the same result obtained previously using the 
cumulative probability function.

We have seen that the probability that a random variable lies between a pair of val-
ues is the area under the probability density function between these two values. There 
are two important results worth noting. The area under the entire probability density 
function is 1, and the cumulative probability, F1x02, is the area under the density func-
tion to the left of x0.
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Example 5.1 Probability of Pipeline Failure 
(Cumulative Distribution Function)

A repair team is responsible for a stretch of oil pipeline 2 miles long. The distance (in 
miles) at which any fracture occurs can be represented by a uniformly distributed ran-
dom variable, with probability density function

f1x2 = 0.5

Find the cumulative distribution function and the probability that any given fracture 
occurs between 0.5 mile and 1.5 miles along this stretch of pipeline.

Solution Figure 5.7 shows a plot of the probability density function, with the shaded 
area indicating F1x02, the cumulative distribution function evaluated at x0. Thus, we 
see that

F1x02 = 0.5x0 for 0 6 x0 … 2

f(x)

xx00 2
0

.5

Figure 5.7 Probability Density Function for Example 5.1

The probability that a fracture occurs between 0.5 mile and 1.5 miles along the pipe is 
as follows:

P10.5 6 X 6 1.52 = F11.52 - F10.52 = 10.5211.52 - 10.5210.52 = 0.5

This is the area under the probability density function from x = 0.5 to x = 1.5.

EXERCISES

Basic Exercises
 5.1 Using the uniform probability density function shown 

in Figure 5.7, find the probability that the random 
variable X is between 1.4 and 1.8.

 5.2 Using the uniform probability density function shown 
in Figure 5.7, find the probability that the random 
variable X is between 1.0 and 1.9.

 5.3 Using the uniform probability density function shown 
in Figure 5.7, find the probability that the random 
variable X is less than 1.4.

 5.4 Using the uniform probability density function shown 
in Figure 5.7, find the probability that the random 
variable X is greater than 1.3.

Application Exercises
 5.5 An analyst has available two forecasts, F1 and F2, of 

earnings per share of a corporation next year. He in-
tends to form a compromise forecast as a weighted 
average of the two individual forecasts. In forming 
the compromise forecast, weight X will be given to 
the first forecast and weight 11 - X2, to the second, 

so that the compromise forecast is XF1 + 11 - X2F2. 
The analyst wants to choose a value between 0 and 
1 for the weight X, but he is quite uncertain of what 
will be the best choice. Suppose that what eventu-
ally emerges as the best possible choice of the weight 
X can be viewed as a random variable uniformly 
distributed between 0 and 1, having the probability 
density function

f1x2 = e 1 for 0 … x … 1
0 for all other x

a. Graph the probability density function.
b. Find and graph the cumulative distribution 

function.
c. Find the probability that the best choice of the 

weight X is less than 0.25.
d. Find the probability that the best choice of the 

weight X is more than 0.75.
e. Find the probability that the best choice of the 

weight X is between 0.2 and 0.8.
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 5.6 The jurisdiction of a rescue team includes emergencies 
occurring on a stretch of river that is 4 miles long. Ex-
perience has shown that the distance along this stretch, 
measured in miles from its northernmost point, at 
which an emergency occurs can be represented by a 
uniformly distributed random variable over the range 
0 to 4 miles. Then, if X denotes the distance (in miles) 
of an emergency from the northernmost point of this 
stretch of river, its probability density function is as 
follows:

f1x2 = e 0.25 for 0 6 x 6 4
0 for all other x

a. Graph the probability density function.
b. Find and graph the cumulative distribution 

function.
c. Find the probability that a given emergency arises 

within 1 mile of the northernmost point of this 
stretch of river.

d. The rescue team’s base is at the midpoint of this 
stretch of river. Find the probability that a given 
emergency arises more than 1.5 miles from this 
base.

 5.7 The incomes of all families in a particular sub-
urb can be represented by a continuous random 
variable. It is known that the median income for 
all families in this suburb is $60,000 and that 40% 
of all families in the suburb have incomes above 
$72,000.

a. For a randomly chosen family, what is the prob-
ability that its income will be between $60,000 and 
$72,000?

b. Given no further information, what can be said 
about the probability that a randomly chosen family 
has an income below $65,000?

 5.8 At the beginning of winter, a homeowner estimates 
that the probability is 0.4 that his total heating bill for 
the three winter months will be less than $380. He also 
estimates that the probability is 0.6 that the total bill 
will be less than $460.

a. What is the probability that the total bill will be 
between $380 and $460?

b. Given no further information, what can be said 
about the probability that the total bill will be less 
than $400?

5.2 EXPECTATIONS FOR CONTINUOUS RANDOM VARIABLES

In Section 4.2 we presented the concepts of expected value of a discrete random variable 
and the expected value of a function of that random variable. Here, we extend those ideas 
to continuous random variables. Because the probability of any specific value is 0 for a 
continuous random variable, the expected values for continuous random variables are 
computed using integral calculus, as shown in Equation 5.3.

Rationale for Expectations of Continuous  
Random Variables
Suppose that a random experiment leads to an outcome that can be repre-
sented by a continuous random variable. If N independent replications of this 
experiment are carried out, then the expected value of the random variable 
is the average of the values taken as the number of replications becomes infi-
nitely large. The expected value of a random variable is denoted by E3X4 .

Similarly, if g1X2 is any function of the random variable X, then the expected value 
of this function is the average value taken by the function over repeated independent 
trials as the number of trials becomes infinitely large. This expectation is denoted 
E3g1X24 .

By using calculus we can define expected values for continuous random variables 
similar to those used for discrete random variables:

 E3g1x24 = L
x

g1x2f1x2dx (5.3)

These concepts can be clearly presented if one understands integral calculus, as 
shown in the chapter appendix. Using Equation 5.3, we can obtain the mean and variance 
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for continuous random variables. Equations 5.4 and 5.5 present the mean and variance 
for continuous random variables (Hogg & Craig, 1995). If you do not understand integral 
calculus, then merely extend your understanding from discrete random variables as de-
veloped in Chapter 4.

Mean, Variance, and Standard Deviation  
for Continuous Random Variables
Let X be a continuous random variable. There are two important 
expected  values that are used routinely to define continuous probability 
distributions.

1. The mean of X, denoted by mX, is defined as the expected value 
of X:

 mX = E3X4  (5.4)

2. The variance of X, denoted by s 2
X is defined as the expectation of the 

squared deviation, 1X - mX22, of the random variable from its 
mean:

 s 2
X = E31X - mX224  (5.5)

 An alternative expression can be derived:

 s 2
X = E3X24 - m 2

X (5.6)

The standard deviation of X, sX, is the square root of the variance.

The mean and variance provide two important pieces of summary information 
about a probability distribution. The mean provides a measure of the center of the dis-
tribution. Consider a physical interpretation as follows: Cut out the graph of a prob-
ability density function. The point along the x-axis at which the figure exactly balances 
on one’s finger is the mean of the distribution. For example, in Figure 5.4 the uniform 
distribution will balance at x = 0.5, and, thus, mX = 0.5 is the mean of the random 
variable.

The variance—or its square root, the standard deviation—provides a measure of the 
dispersion or spread of a distribution. Thus, if we compare two uniform distributions 
with the same mean, mX = 1—one over the range 0.5 to 1.5 and the other over the range 
0 to 2—we will find that the latter has a larger variance because it is spread over a greater 
range.

For a uniform distribution defined over the range from a to b, we have the following 
results:

 f1x2 = 1
b - a

 a … X … b

 mX = E3X4 =
a + b

2

 s2
X = E31X - mX224 =

1b - a22
12

The mean and the variance are also called the first and second moments.
In Section 4.3 we showed how to obtain the means and variances for linear functions 

of discrete random variables. The results are the same for continuous random variables 
because the derivations make use of the expected value operator. The summary results 
from Chapter 4 are repeated here.
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Linear functions of random variables have many applications in business and eco-
nomics. Suppose that the number of units sold during a week is a random variable and 
the selling price is fixed. Thus, the total revenue is a random variable that is a function of 
the random variable units sold. Quantity demanded is a linear function of price that can 
be a random variable. Thus, quantity demanded is a random variable. The total number of 
cars sold per month in a dealership is a linear function of the random variable number of 
cars sold per sales person multiplied by the number of sales persons. Thus, total sales is a 
random variable.

Linear Functions of Random Variables
Let X be a continuous random variable with mean mX and variance s2

X and 
let a and b be any constant fixed numbers. Define the random variable W as 
follows:

W = a + bX

Then the mean and variance of W are

 mW = E3a + bX4 = a + bmX (5.7)

and

 s 2
W = Var3a + bX4 = b2s 2

X (5.8)

and the standard deviation of W is

 sW = u b usX (5.9)

An important special case of these results is the standardized random variable

 Z =
X - mX

sX
 (5.10)

which has mean 0 and variance 1.

Example 5.2 Home Heating Costs (Mean  
and Standard Deviation)

A homeowner estimates that within the range of likely temperatures his January heat-
ing bill, Y, in dollars, will be

Y = 290 - 5T

where T is the average temperature for the month, in degrees Fahrenheit. If the average 
January temperature can be represented by a random variable with a mean of 24 and 
a standard deviation of 4, find the mean and standard deviation of this homeowner’s 
January heating bill.

Solution The random variable T has mean mT = 24 and standard deviation sT = 4. 
Therefore, the expected heating bill is

 mY = 290 - 5mT

 = 290 - 1521242 = +170

and the standard deviation is

sY = u -5 u  sT = 152142 = +20
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5.3 THE NORMAL DISTRIBUTION

In this section we present the normal probability distribution, which is the continuous 
probability distribution used most often for economics and business applications. An ex-
ample of the normal probability density function is shown in Figure 5.8.

EXERCISES

Basic Exercises
 5.9 The total cost for a production process is equal to 

$1,000 plus two times the number of units produced. 
The mean and variance for the number of units pro-
duced are 500 and 900, respectively. Find the mean 
and variance of the total cost.

 5.10 The profit for a production process is equal to $1,000 
minus two times the number of units produced. The 
mean and variance for the number of units produced 
are 50 and 90, respectively. Find the mean and vari-
ance of the profit.

 5.11 The profit for a production process is equal to $2,000 
minus two times the number of units produced. The 
mean and variance for the number of units produced 
are 500 and 900, respectively. Find the mean and vari-
ance of the profit.

 5.12 The profit for a production process is equal to $6,000 
minus three times the number of units produced. The 
mean and variance for the number of units produced 
are 1,000 and 900, respectively. Find the mean and 
variance of the profit.

Application Exercises
 5.13 An author receives a contract from a publisher, ac-

cording to which she is to be paid a fixed sum of 
$10,000 plus $1.50 for each copy of her book sold. Her 
uncertainty about total sales of the book can be rep-
resented by a random variable with a mean of 30,000 

and a standard deviation of 8,000. Find the mean and 
standard deviation of the total payments she will 
receive.

 5.14 A contractor submits a bid on a project for which more 
research and development work needs to be done. It 
is estimated that the total cost of satisfying the project 
specifications will be $20 million plus the cost of the 
further research and development work. The contrac-
tor views the cost of this additional work as a random 
variable with a mean of $4 million and a standard de-
viation of $1 million. The contractor wishes to submit 
a bid such that his expected profit will be 10% of his 
expected costs. What should be the bid? If this bid is 
accepted, what will be the standard deviation of the 
profit made by the project?

 5.15 A charitable organization solicits donations by tele-
phone. Employees are paid $60 plus 20% of the money 
their calls generate each week. The amount of money 
generated in a week can be viewed as a random vari-
able with a mean of $700 and a standard deviation of 
$130. Find the mean and standard deviation of an em-
ployee’s total pay in a week.

 5.16 A salesperson receives an annual salary of $6,000 plus 
8% of the value of the orders she takes. The annual 
value of these orders can be represented by a random 
variable with a mean of $600,000 and a standard de-
viation of $180,000. Find the mean and standard de-
viation of the salesperson’s annual income.

There are many reasons for its wide application.

 1. The normal distribution closely approximates the probability distributions of a 
wide range of random variables. For example, the dimensions of parts and the 
weights of food packages often follow a normal distribution. This leads to  
quality-control applications. Total sales or production often follows a normal 
 distribution, which leads us to a large family of applications in marketing and  

Figure 5.8 

Probability Density 
Function for a 
Normal Distribution

xμ
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in production management. The patterns of stock and bond prices are often 
 modeled using the normal distribution in large computer-based financial trading 
models. Economic models use the normal distribution for a number of economic 
measures.

 2. Distributions of sample means approach a normal distribution, given a “large” 
 sample size, as is shown in Section 6.2.

 3. Computation of probabilities is direct and elegant.
 4. The most important reason is that the normal probability distribution has led to good 

business decisions for a number of applications.

A formal definition of the normal probability density function is given by Equation 5.11.

Probability Density Function of the Normal Distribution
The probability density function for a normally distributed random 
variable X is

 f1x2 = 122ps2
 e -1x -m22>2s2

 for - ` 6 x 6 `  (5.11)

where m and s2 are any numbers such that - ` 6 m 6 ` and 0 6 s2 6 `  
and where e and p are physical constants, e = 2.71828 . . . , and p = 3.14159. . . .

The normal probability distribution represents a large family of distributions, each 
with a unique specification for the parameters m and s2. These parameters have a very 
convenient interpretation.

Properties of the Normal Distribution
Suppose that the random variable X follows a normal distribution with param-
eters m and s2. Then, consider the following properties:

1. The mean of the random variable is m:

E3X4 = m

2. The variance of the random variable is s2:

Var1X2 = E31X - m224 = s2

3. The shape of the probability density function is a symmetric bell-shaped 
curve centered on the mean, m, as shown in Figure 5.8.

4. If we know the mean and variance, we can define the normal distribution 
by using the following notation:

X | N1m, s22
For our applied statistical analyses, the normal distribution has a number of impor-

tant characteristics. It is symmetric. Central tendencies are indicated by m. In contrast, s2 
indicates the distribution width. By selecting values for m and s2, we can define a large 
family of normal probability density functions.

The parameters m and s2 have different effects on the probability density function 
of a normal random variable. Figure 5.9(a) shows probability density functions for two 
normal distributions with a common variance and different means. We see that increases 
in the mean shift the distribution without changing its shape. In Figure 5.9(b) the two den-
sity functions have the same mean but different variances. Each is symmetric about the 
common mean, but the larger variance results in a wider distribution.
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Our next task is to learn how to obtain probabilities for a specified normal distribu-
tion. First, we introduce the cumulative distribution function.

Cumulative Distribution Function of the Normal 
Distribution
Suppose that X is a normal random variable with mean m and variance 
s2—that is, X | N1m, s22. Then the cumulative distribution function of the nor-
mal distribution is as follows:

F1x02 = P1X … x02
This is the area under the normal probability density function to the left of x0, 
as illustrated in Figure 5.10. As for any proper density function, the total area 
under the curve is 1—that is,

F1`2 = 1

We do not have a simple algebraic expression for calculating the cumulative distribu-
tion function for a normally distributed random variable (see the chapter appendix). The 
general shape of the cumulative distribution function is shown in Figure 5.11.

Figure 5.10 The Shaded Area Is the Probability That X Does Not Exceed x0 for 
a Normal Random Variable

μ x0 x

Figure 5.11 

Cumulative Distribu-
tion for a Normal 
Random Variable
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 Random Variable
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Any probability can be obtained from the cumulative distribution function. How-
ever, we do not have a convenient way to directly compute the probability for any nor-
mal distribution with a specific mean and variance. We could use numerical integration 
procedures with a computer, but that approach would be tedious and cumbersome. For-
tunately, we can convert any normal distribution to a standard normal distribution with 
mean 0 and variance 1. Tables that indicate the probability for various intervals under the 
standard normal distribution have been computed and are shown inside the front cover 
and in Appendix Table 1.

Range Probabilities for Normal Random Variables
Let X be a normal random variable with cumulative distribution 
function F1x2, and let a and b be two possible values of X, with a 6 b. 
Then,

 P1a 6 X 6 b2 = F1b2 - F1a2 (5.12)

The probability is the area under the corresponding probability density func-
tion between a and b, as shown in Figure 5.12.

Figure 5.12 Normal Density Function with the Shaded Area Indicating the 
 Probability That X Is Between a and b

a b xμ

The Standard Normal Distribution
Let Z be a normal random variable with mean 0 and variance 1—that is,

Z | N10, 12
We say that Z follows the standard normal distribution.

Denote the cumulative distribution function as F(x) and a and b as two pos-
sible values of Z with a 6 b; then,

 P1a 6 Z 6 b2 = F1b2 - F1a2 (5.13)

We can obtain probabilities for any normally distributed random variable by first 
converting the random variable to the standard normally distributed random variable, Z. 
There is always a direct relationship between any normally distributed random variable 
and Z. That relationship uses the transformation

Z =
X - m
s

where X is a normally distributed random variable:

X | N1m, s22
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This important result allows us to use the standard normal table to compute probabilities 
associated with any normally distributed random variable. Now let us see how probabili-
ties can be computed for the standard normal Z.

The cumulative distribution function of the standard normal distribution is tabulated 
in Appendix Table 1 (also inside the front cover). This table gives values of

F1z2 = P1Z … z2
for nonnegative values of z. For example, the cumulative probability for a Z value of 1.25 
from Appendix Table 1 is as follows:

F11.252 = 0.8944

This is the area, designated in Figure 5.13, for Z less than 1.25. Because of the symmetry of 
the normal distribution, the probability that Z 7 -1.25 is also equal to 0.8944. In general, 
values of the cumulative distribution function for negative values of Z can be inferred us-
ing the symmetry of the probability density function.

To find the cumulative probability for a negative Z (for example, Z = -1.0), defined as

F1 -Z02 = P1Z … -z02 = F1 -1.02
we use the complement of the probability for Z = +1, as shown in Figure 5.14.

From the symmetry we can state that

 F1 -z2 = 1 - P1Z … +z2 = 1 - F1z2
 F1 -12 = 1 - P1Z … +12 = 1 - F112

Figure 5.15 indicates the symmetry for the corresponding positive values of Z.

Figure 5.13 

Standard Normal 
Distribution with 
Probability for 
Z 6 1.25

1.25

0.8944
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Figure 5.14 

Standard Normal 
Distribution for 
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1 – F(z) = 1 – 0.1587 = 0.8413

F(–1) = 0.1587

–3 –2 –1 0 z1 2 3
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Figure 5.15 

Normal Distribution 
for Positive

In Figure 5.16 we can see that the area under the curve to the left of Z = -1 is equal 
to the area to the right of Z = +1 because of the symmetry of the normal distribution. The 
area substantially below -Z is often called the lower tail, and the area substantially above 
+Z is called the upper tail.

We can also use normal tables that provide probabilities for just the upper-half, or 
positive Z, values from the normal distribution. An example of this type of table is shown 
inside the front cover of this textbook. This form of the normal table is used to find prob-
abilities, the same as those previously shown. With positive Z values we add 0.50 to the 
values given in the table inside the front cover of the textbook. With negative values of Z 
we utilize the symmetry of the normal to obtain the desired probabilities.

Example 5.3 Investment Portfolio Value  
Probabilities (Normal Probabilities)

A client has an investment portfolio whose mean value is equal to $1,000,000 with a 
standard deviation of $30,000. He has asked you to determine the probability that the 
value of his portfolio is between $970,000 and $1,060,000.

Solution The problem is illustrated in Figure 5.17. To solve the problem, we must 
first determine the corresponding Z values for the portfolio limits. For $970,000 the 
corresponding Z value is as follows:

z970,000 =
970,000 - 1,000,000

30,000
= -1.0

And for the upper value, $1,060,000, the Z value is as follows:

z1,060,000 =
1,060,000 - 1,000,000

30,000
= +2.0

Figure 5.16 

Normal Density 
Function with Sym-
metric Upper and 
Lower Values

F(–z) = F(–1) = 0.1587

1 – F(+z) = 1 – F(+1) = 0.1587

–3 –2 –1 0 z1 2 3

F(–z) = F(–1) = 1 – F(+z)

F(z) = F(+1) = 0.8413

–3 –2 –1 0 z1 2 3

= 1 – F(1) = 0.1587
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Recall from Chapter 2 that we presented the empirical rule, which states as a rough 
guide that m { s covers about 68% of the range, while m { 2s covers about 95% of the 
range. For all practical purposes, almost none of the range is outside m { 3s. This useful 
approximation tool for interpretations based on descriptive statistics is based on the nor-
mal distribution.

Probabilities can also be computed by using Equation 5.14.

Figure 5.17 Normal Distribution for Example 5.3

–3 –2 –1 0 z
Portfolio
Value x

970,000 1,060,000
1 2 3

F(–1) = 0.1587

P(–1 # Z # +2) = 1 – 0.1587 – 0.0228 = 0.8185

P(Z $ +2) = 1 – F(+2) = 1 – 0.9772 = 0.0228

As shown in Figure 5.17, the probability that the portfolio value, X, is between 
$970,000 and $1,060,000, is equal to the probability that Z is between -1 and +2. To ob-
tain the probability, we first compute the probabilities for the lower and the upper tails 
and subtract these probabilities from 1. Algebraically, the result is as follows:

 P1970,000 … X … 1,060,0002 = P1 -1 … Z … +22 = 1 - P1Z … -12 - P1Z Ú +22
 = 1 - 0.1587 - 0.0228 = 0.8185

The probability for the indicated range is, thus, 0.8185.

Finding Probabilities for Normally Distributed Random 
Variables
Let X be a normally distributed random variable with mean m and variance s2. 
Then random variable Z = 1X - m2>s has a standard normal distribution of 
Z | N10, 12.

It follows that, if a and b are any possible values of X with a 6 b,  then,

  P1a 6 X 6 b2 = Pa a - m
s

6 Z 6
b - m
s
b

  = Fa b - m
s
b - Fa a - m

s
b  (5.14)

where Z is the standard normal random variable and F denotes its cumulative 
distribution function.

Example 5.4 Analysis of Turkey Weights (Normal 
Probabilities)

Whole Life Organic, Inc., produces high-quality organic frozen turkeys for distribution 
in organic food markets in the upper Midwest. The company has developed a range 
feeding program with organic grain supplements to produce their product. The mean 
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weight of its frozen turkeys is 15 pounds with a variance of 4. Historical experience in-
dicates that weights can be approximated by the normal probability distribution. Mar-
ket research indicates that sales for frozen turkeys over 18 pounds are limited. What 
percentage of the company’s turkey units will be over 18 pounds?

Solution In this case the turkey weights can be represented by a random variable, 
X, and, thus, X | N115, 42, and we need to find the probability that X is larger than 18. 
This probability can be computed as follows:

 P1X 7 182 = PaZ 7
18 - m
s

b
 = PaZ 7

18 - 15
2

b
 = P1Z 7 1.52
 = 1 - P1Z 6 1.52
 = 1 - F11.52

From Appendix Table 1, F11.52 is 0.9332, and, therefore,

P1X 7 182 = 1 - 0.9332 = 0.0668

Thus, Whole Life can expect that 6.68% of its turkeys will weigh more than 18 
pounds.

Example 5.5 Lightbulb Life (Normal Probabilities)

A company produces lightbulbs whose life follows a normal distribution, with a mean 
of 1,200 hours and a standard deviation of 250 hours. If we choose a lightbulb at ran-
dom, what is the probability that its lifetime will be between 900 and 1,300 hours?

Solution Let X represent lifetime in hours. Then,

 P1900 6 X 6 1,3002 = Pa 900 - 1,200
250

6 Z 6
1,300 - 1,200

250
b

 = P1 -1.2 6 Z 6 0.42
 = F10.42 - F1 -1.22
 = 0.6554 - 11 - 0.88492 = 0.5403

Hence, the probability is approximately 0.54 that a lightbulb will last between 900 and 
1,300 hours.

Example 5.6 Sales of Cell Phones (Normal 
Probabilities)

Silver Star, Inc., has a number of stores in major metropolitan shopping centers. The 
company’s sales experience indicates that daily cell phone sales in its stores follow a 
normal distribution with a mean of 60 and a standard deviation of 15. The marketing 
department conducts a number of routine analyses of sales data to monitor sales per-
formance. What proportion of store sales days will have sales between 85 and 95 given 
that sales are following the historical experience?
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Solution Let X denote the daily cell phone sales. Then, the probability can be 
computed as follows:

 P185 6 X 6 952 = Pa 85 - 60
15

6 Z 6
95 - 60

15
b

 = P11.67 6 Z 6 2.332
 = F12.332 - F11.672
 = 0.9901 - 0.9525 = 0.0376

That is, 3.76% of the daily sales will be in the range 85 to 95 based on historical sales 
patterns. Note that if actual reported sales in this range for a group of stores were above 
10%, we would have evidence for higher than historical sales.

Example 5.7 Cutoff Points for Daily Cell Phone Sales 
(Normal Random Variables)

For the daily cell phone sales of Example 5.6, find the cutoff point for the top 10% of all 
daily sales.

Solution Define b as the cutoff point. To determine the numerical value of the 
cutoff point, we first note that the probability of exceeding b is 0.10, and, thus, the 
probability of being less than b is 0.90. The upper tail value of 0.10 is shown in 
Figure 5.18. We can now state the probability from the cumulative distribution as 
follows:

 0.90 = PaZ 6
b - 60

15
b

 = Fa b - 60
15

b
Figure 5.18 Normal Distribution with Mean 60 and Standard Deviation 15 
Showing Upper Tail Probability Equal to 0.10

x10 30

0.10

50 70
79.2

90 110

From Appendix Table 1, we find that Z = 1.28 when F1Z2 = 0.90. Therefore, solving 
for b, we have the following:

 
b - 60

15
= 1.28

 b = 79.2

Thus, we conclude that 10% of the daily cell phone sales will be above 79.2, as shown 
in Figure 5.18.
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We note that daily sales, such as those in Examples 5.6 and 5.7, are typically given 
as integer values, and, thus, their distribution is discrete. However, because of the large 
number of possible outcomes, the normal distribution provides a very good approxima-
tion for the discrete distribution. In most applied business and economic problems, we 
are, in fact, using the normal distribution to approximate a discrete distribution that has 
many different outcomes.

Normal Probability Plots

The normal probability model is the most-used probability model for the reasons pre-
viously noted. In applied problems we would like to know if the data have come from 
a distribution that approximates a normal distribution closely enough to ensure a valid 
result. Thus, we are seeking evidence to support the assumption that the normal distribu-
tion is a close approximation to the actual unknown distribution that supplied the data we 
are analyzing. Normal probability plots provide a good way to test this assumption and 
determine if the normal model can be used. Usage is simple. If the data follow a normal 
distribution, the plot will be a straight line. More rigorous tests are also possible, as shown 
in Chapter 14.

Figure 5.19 is a normal probability plot for a random sample of n = 1,000 observa-
tions from a normal distribution with m = 100 and s = 25. The plot was generated using 
Minitab. The horizontal axis indicates the data points ranked in order from the smallest to 
the largest. The vertical axis indicates the cumulative normal probabilities of the ranked 
data values if the sample data were obtained from a population whose random variables 
follow a normal distribution. We see that the vertical axis has a transformed cumulative 
normal scale. The data plots in Figure 5.19 are close to a straight line even at the upper and 
lower limits, and that result provides solid evidence that the data have a normal distribu-
tion. The dotted lines provide an interval within which data points from a normally dis-
tributed random variable would occur in most cases. Thus, if the plotted points are within 
the boundaries established by the dotted lines, we can conclude that the data points repre-
sent a normally distributed random variable.

Next, consider a random sample of n = 1,000 observations drawn from a uniform dis-
tribution with limits 25 to 175. Figure 5.20 shows the normal probability plot. In this case 
the data plot has an S shape that clearly deviates from a straight line, and the sample data 

Figure 5.19 
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do not follow a normal distribution. Large deviations at the extreme high and low values 
are a major concern because statistical inference is often based on small probabilities of 
extreme values.

Figure 5.20 

Normal Probability 
Plot for a Uniform 
Distribution (Minitab  
Output)

Next, let us consider a highly skewed discrete distribution, as shown in Figure 5.21. In 
Figure 5.22 we see the normal probability plot for this highly skewed distribution. Again, 
we see that the data plot is not a straight line but has considerable deviation at the extreme 
high and low values. This plot clearly indicates that the data do not come from a normal 
distribution.

The previous examples provide us with an indication of possible results from a nor-
mal probability plot. If the plot from your problem is similar to Figure 5.19, then you are 
safe in assuming that the normal model is a good approximation. Note, however, that 
if your plot deviates from a straight line, as do those in Figures 5.20 and 5.22, then the 
sample data do not have a normal distribution.

Figure 5.21 
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Figure 5.22 

Normal Probabil-
ity Plot for a Highly 
Skewed Distribution 
(Minitab Output)

EXERCISES

Basic Exercises
 5.17 Let the random variable Z follow a standard normal 

distribution.

a. Find P1Z 6 1.202.
b. Find P1Z 7 1.332.
c. Find P1Z 7 -1.702.
d. Find P1Z 7 -1.002.
e. Find P11.20 6 Z 6 1.332.
f.  Find P1 -1.70 6 Z 6 1.202.
g. Find P1 -1.70 6 Z 6 -1.002.

 5.18 Let the random variable Z follow a standard normal 
distribution.

a. The probability is 0.70 that Z is less than what 
number?

b. The probability is 0.25 that Z is less than what 
number?

c. The probability is 0.2 that Z is greater than what 
number?

d. The probability is 0.6 that Z is greater than what 
number?

 5.19 Let the random variable X follow a normal distribu-
tion with m = 50 and s2 = 64.

a. Find the probability that X is greater than 60.
b. Find the probability that X is greater than 35 and 

less than 62.
c. Find the probability that X is less than 55.
d. The probability is 0.2 that X is greater than what 

number?
e. The probability is 0.05 that X is in the symmet-

ric interval about the mean between which two 
numbers?

 5.20 Let the random variable X follow a normal distribu-
tion with m = 80 and s2 = 100.

a. Find the probability that X is greater than 60.
b. Find the probability that X is greater than 72 and 

less than 82.
c. Find the probability that X is less than 55.
d. The probability is 0.1 that X is greater than what 

number?
e. The probability is 0.6826 that X is in the symmetric 

interval about the mean between which two 
numbers?

 5.21 Let the random variable X follow a normal distribu-
tion with m = 0.2 and s2 = 0.0025.

a. Find the probability that X is greater than 0.4.
b. Find the probability that X is greater than 0.15 and 

less than 0.28.
c. Find the probability that X is less than 0.10.
d. The probability is 0.2 that X is greater than what 

number?
e. The probability is 0.05 that X is in the symmet-

ric interval about the mean between which two 
numbers?

Application Exercises
 5.22 It is known that amounts of money spent on clothing 

in a year by students on a particular campus follow a 
normal distribution with a mean of $380 and a stan-
dard deviation of $50.

a. What is the probability that a randomly chosen 
student will spend less than $400 on clothing in  
a year?
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b. What is the probability that a randomly chosen 
student will spend more than $360 on clothing in  
a year?

c. Draw a graph to illustrate why the answers to 
parts (a) and (b) are the same.

d. What is the probability that a randomly chosen 
student will spend between $300 and $400 on 
clothing in a year?

e. Compute a range of yearly clothing expenditures—
measured in dollars—that includes 80% of all stu-
dents on this campus? Explain why any number  
of such ranges could be found, and find the  
shortest one.

 5.23 Anticipated consumer demand in a restaurant for 
free-range steaks next month can be modeled by a 
normal random variable with mean 1,200 pounds and 
standard deviation 100 pounds.

a. What is the probability that demand will exceed 
1,000 pounds?

b. What is the probability that demand will be 
 between 1,100 and 1,300 pounds?

c. The probability is 0.10 that demand will be more 
than how many pounds?

 5.24 The tread life of Road Stone tires has a normal distri-
bution with a mean of 35,000 miles and a standard de-
viation of 4,000 miles.

a. What proportion of these tires has a tread life of 
more than 38,000 miles?

b. What proportion of these tires has a tread life of 
less than 32,000 miles?

c. What proportion of these tires has a tread life of 
between 32,000 and 38,000 miles?

d. Draw a graph of the probability density function of 
tread lives, illustrating why the answers to parts (a) 
and (b) are the same and why the answers to parts 
(a), (b), and (c) sum to 1.

 5.25 An investment portfolio contains stocks of a large 
number of corporations. Over the last year the rates 
of return on these corporate stocks followed a nor-
mal distribution with mean 12.2% and standard de-
viation 7.2%.

a. For what proportion of these corporations was the 
rate of return higher than 20%?

b. For what proportion of these corporations was the 
rate of return negative?

c. For what proportion of these corporations was the 
rate of return between 5% and 15%?

 5.26 Southwest Co-op produces bags of fertilizer, and it is 
concerned about impurity content. It is believed that the 
weights of impurities per bag are normally distributed 
with a mean of 12.2 grams and a standard deviation of 
2.8 grams. A bag is chosen at random.

a. What is the probability that it contains less than  
10 grams of impurities?

b. What is the probability that it contains more than 
15 grams of impurities?

c. What is the probability that it contains between  
12 and 15 grams of impurities?

d. It is possible, without doing the detailed calcula-
tions, to deduce which of the answers to parts (a) 
and (b) will be the larger. How would you  
do this?

 5.27 A contractor has concluded from his experience that 
the cost of building a luxury home is a normally dis-
tributed random variable with a mean of $500,000 and 
a standard deviation of $50,000.

a. What is the probability that the cost of building a 
home will be between $460,000 and $540,000?

b. The probability is 0.2 that the cost of building will 
be less than what amount?

c. Find the shortest range such that the probability is 
0.95 that the cost of a luxury home will fall in this 
range.

 5.28 Scores on an economics test follow a normal distribu-
tion. What is the probability that a randomly selected 
student will achieve a score that exceeds the mean 
score by more than 1.5 standard deviations?

 5.29 A new television series is to be shown. A broadcast-
ing executive feels that his uncertainty about the rat-
ing that the show will receive in its first month can be 
represented by a normal distribution with a mean of 
18.2 and a standard deviation of 1.5. According to this 
executive, the probability is 0.1 that the rating will be 
less than what number?

 5.30 A broadcasting executive is reviewing the prospects 
for a new television series. According to his judgment, 
the probability is 0.25 that the show will achieve a rat-
ing higher than 17.8, and the probability is 0.15 that 
it will achieve a rating higher than 19.2. If the execu-
tive’s uncertainty about the rating can be represented 
by a normal distribution, what are the mean and vari-
ance of that distribution?

 5.31 The number of hits per day on the Web site of Profes-
sional Tool, Inc., is normally distributed with a mean 
of 700 and a standard deviation of 120.

a. What proportion of days has more than 820 hits 
per day?

b. What proportion of days has between 730 and 820 
hits?

c. Find the number of hits such that only 5% of 
the days will have the number of hits below this 
number.

 5.32 I am considering two alternative investments. In both 
cases I am unsure about the percentage return but 
believe that my uncertainty can be represented by 
normal distributions with the means and standard 
deviations shown in the accompanying table. I want 
to make the investment that is more likely to produce 
a return of at least 10%. Which investment should I 
choose?

Mean Standard Deviation
Investment A 10.4 1.2
Investment B 11.0 4.0

 5.33 Tata Motors, Ltd., purchases computer process chips 
from two suppliers, and the company is concerned 
about the percentage of defective chips. A review 
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of the records for each supplier indicates that the 
percentage defectives in consignments of chips fol-
low normal distributions with the means and stan-
dard deviations given in the following table. The 
company is particularly anxious that the percentage 
of defectives in a consignment not exceed 5% and 
wants to purchase from the supplier that’s more 
likely to meet that specification. Which supplier 
should be chosen?

Mean Standard Deviation

Supplier A 4.4 0.4
Supplier B 4.2 0.6

 5.34 A furniture manufacturer has found that the time 
spent by workers assembling a particular table follows 
a normal distribution with a mean of 150 minutes and 
a standard deviation of 40 minutes.

a. The probability is 0.9 that a randomly chosen 
table requires more than how many minutes to 
assemble?

b. The probability is 0.8 that a randomly chosen 
table can be assembled in fewer than how many 
minutes?

c. Two tables are chosen at random. What is the prob-
ability that at least one of them requires at least  
2 hours to assemble?

 5.35 A company services copiers. A review of its records 
shows that the time taken for a service call can be 
represented by a normal random variable with a 
mean of 75 minutes and a standard deviation of 20 
minutes.

a. What proportion of service calls takes less than  
1 hour?

b. What proportion of service calls takes more than 
90 minutes?

c. Sketch a graph to show why the answers to parts 
(a) and (b) are the same.

d. The probability is 0.1 that a service call takes more 
than how many minutes?

 5.36 Scores on an achievement test are known to be nor-
mally distributed with a mean of 420 and a standard 
deviation of 80.

a. For a randomly chosen person taking this test, 
what is the probability of a score between 400  
and 480?

b. What is the minimum test score needed in  
order to be in the top 10% of all people taking  
the test?

c. For a randomly chosen individual, state, without 
doing the calculations, in which of the follow-
ing ranges his score is most likely to be: 400–439, 
440–479, 480–519, or 520–559.

d. In which of the ranges listed in part (c) is the indi-
vidual’s score least likely to be?

e. Two people taking the test are chosen at random. 
What is the probability that at least one of them 
scores more than 500 points?

 5.37 It is estimated that the time that a well-known rock 
band, the Living Ingrates, spends on stage at its con-
certs follows a normal distribution with a mean of 200 
minutes and a standard deviation of 20 minutes.

a. What proportion of concerts played by this band 
lasts between 180 and 200 minutes?

b. An audience member smuggles a tape recorder 
into a Living Ingrates concert. The reel-to-reel 
tapes have a capacity of 245 minutes. What is the 
probability that this capacity will be insufficient to 
record the entire concert?

c. If the standard deviation of concert time was 
only 15 minutes, state, without doing the calcu-
lations, whether the probability that a concert 
would last more than 245 minutes would be 
larger than, smaller than, or the same as that 
found in part (b). Sketch a graph to illustrate 
your answer.

d. The probability is 0.1 that a Living Ingrates concert 
will last less than how many minutes? (Assume, as 
originally, that the population standard deviation is 
20 minutes.)

 5.38 The amount of time necessary for a student of statistics 
to solve assignments is, on average, 15 minutes. This 
can be modeled as a random normal variable with a 
standard deviation of 2 minutes. Calculate the prob-
ability that an assignment is instead solved between 
14 and 16 minutes.

5.4  NORMAL DISTRIBUTION APPROXIMATION  
FOR BINOMIAL DISTRIBUTION

In this section we show how the normal distribution can be used to approximate the dis-
crete binomial and proportion random variables for larger sample sizes when tables are 
not readily available. The normal distribution approximation of the binomial distribution 
also provides a benefit for applied problem solving. We learn that procedures based on 
the normal distribution can also be applied in problems involving binomial and propor-
tion random variables. Thus, you can reduce the number of different statistical procedures 
that you need to know to solve business problems.
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Let us consider a problem with n independent trials, each with the probability of suc-
cess P = 4. The binomial random variable X can be written as the sum of n independent 
Bernoulli random variables,

X = X1 + X2 + g + Xn

where the random variable Xi takes the value 1 if the outcome of the ith trial is “success” 
and 0 otherwise, with respective probabilities P and 1 - P. The number X of successes 
that result have a binomial distribution with a mean and variance:

 E3X4 = m = nP

 Var1X2 = s2 = nP11 - P2
The plot of a binomial distribution with P = 0.5 and n = 100, in Figure 5.23, shows 

us that this binomial distribution has the same shape as the normal distribution. This vi-
sual evidence that the binomial can be approximated by a normal distribution with the 
same mean and variance is also established in work done by mathematical statisticians. 
This close approximation of the binomial distribution by the normal distribution is an 
example of the central limit theorem that is developed in Chapter 6. A good rule for us is 
that the normal distribution provides a good approximation for the binomial distribution 
when nP11 - P2 7 5. If this value is less than 5, then use the binomial distribution to 
determine the probabilities.

In order to better understand the normal distribution approximation for the binomial 
distribution, consider Figure 5.24(a) and (b). In both (a) and (b), we have shown points 
from a normal probability density function compared to the corresponding probabilities 
from a binomial distribution using graphs prepared using Minitab. In part (a) we note 
that the approximation rule value is

nP11 - P2 = 10010.5211 - 0.52 = 25 7 5

and that the normal distribution provides a very close approximation to the binomial dis-
tribution. In contrast, the example in part (b) has an approximation rule value of

nP11 - P2 = 2510.2211 - 0.22 = 4 6 5

Figure 5.23 
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and the normal distribution does not provide a good approximation for the binomial dis-
tribution. Evidence such as that contained in Figure 5.24 has provided the rationale for 
widespread application of the normal approximation for the binomial. We will now pro-
ceed to develop the procedure for its application.

Figure 5.24 

Comparison of 
Binomial and Normal 
Approximation

(a)

(b)

a. Binomial with P = 0.50 and n = 100, and Normal with m = 50 and s = 5
b. Binomial with P = 0.20 and n = 25, and Normal with m = 5 and s = 2
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By using the mean and the variance from the binomial distribution, we find that, if 
the number of trials n is large—such that nP11 - P2 7 5—then the distribution of the 
random variable

Z =
X - E3X42Var1X2 =

X - nP2nP11 - P2
is approximately a standard normal distribution.

This result is very important because it allows us to find, for large n, the probability 
that the number of successes lies in a given range. If we want to determine the probability 
that the number of successes will be between a and b, inclusive, we have

 P1a … X … b2 = Pa a - nP2nP11 - P2 …
X - nP2nP11 - P2 …

b - nP2nP11 - P2 b
 = Pa a - nP2nP11 - P2 … Z …

b - nP2nP11 - P2 b
With n large, Z is well approximated by the standard normal, and we can find the prob-
ability using the methods from Section 5.3.

Example 5.8 Customer Visits Generated From  
Web Page Contacts (Normal Probabilities)

Mary David makes the initial telephone contact with customers who have responded to 
an advertisement on her company’s Web page in an effort to assess whether a follow-
up visit to their homes is likely to be worthwhile. Her experience suggests that 40% of 
the initial contacts lead to follow-up visits. If she has 100 Web page contacts, what is the 
probability that between 45 and 50 home visits will result?

Solution  Let X be the number of follow-up visits. Then X has a binomial 
distribution with n = 100 and P = 0.40. Approximating the required probability 
gives the following:

 P145 … X … 502 > Pa 45 - 1100210.4221100210.4210.62 … Z …
50 - 1100210.4221100210.4210.62 b

 = P11.02 … Z … 2.042
 = F12.042 - F11.022
 = 0.9793 - 0.8461 = 0.1332

This probability is shown as an area under the standard normal curve in Figure 5.25.

Figure 5.25 Probability of 45 to 50 Successes for a Binomial Distribution with 

n = 100 and P = 0.4

x45
Number of Successes

50
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Proportion Random Variable

In a number of applied problems we need to compute probabilities for proportion or per-
centage intervals. We can do this by using a direct extension of the normal distribution 
approximation for the binomial distribution. A proportion random variable, P, can be 
computed by dividing the number of successes, X, by the sample size, n:

P =
X
n

Then, using the linear transformation of random variables, as shown in the chapter ap-
pendix, the mean and the variance of P can be computed as follows:

 m = P

 s2 =
P11 - P2

n

The resulting mean and variance can be used with the normal distribution to compute the 
desired probability.

Example 5.9 Election Forecasting  
(Proportion Probabilities)

We have often observed the success of television networks in forecasting elections. This 
is a good example of the successful use of probability methods in applied problems. 
Consider how elections can be predicted by using relatively small samples in a simpli-
fied example. An election forecaster has obtained a random sample of 900 voters, in 
which 500 indicate that they will vote for Susan Chung. Should Susan anticipate win-
ning the election?

Solution In this problem we assume only two candidates, and, thus, if more 
than 50% of the population supports Susan, she will win the election. We compute 
the probability that 500 or more voters out of a sample of 900 support Susan under 
the assumption that exactly 50%, P = 0.50,  of the entire population supports 
Susan.

 P1X Ú 5002 u n = 900, P = 0.502 < P1X Ú 500 um = 450, s2 = 2252
 = PaZ Ú

500 - 4501225
b

 = P1Z Ú 3.332
 = 0.0004

The probability of 500 successes out of 900 trials if P = 0.50 is very small, and, there-
fore, we conclude that P must be greater than 0.50. Hence, we predict that Susan Chung 
will win the election.

We could also compute the probability that more than 55.6% (500/900) of the 
sample indicates support for Susan if the population proportion is P = 0.50. Using the 
mean and variance for proportion random variables,

 m = P = 0.50

 s2 =
P11 - P2

n
=

0.5011 - 0.502
900

 s = 0.0167
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 P1P Ú 0.556 u n = 900, P = 0.502 < P1P Ú 0.556 um = 0.50, s = 0.01672
 = PaZ Ú

0.556 - 0.50
0.0167

b
 = P1Z Ú 3.332
 = 0.0004

Note that the probability is exactly the same as that for the corresponding binomial 
random variable. This is always the case because each proportion or percentage value 
is directly related to a specific number of successes. Because percent is a more common 
term than proportion in business and economic language, we will tend to use percent 
more often than proportion in exercises and discussion in this textbook.

EXERCISES

Basic Exercises
 5.39 Given a random sample size of n = 900 from a bi-

nomial probability distribution with P = 0.50 do the 
following:

a. Find the probability that the number of successes 
is greater than 500.

b. Find the probability that the number of successes 
is fewer than 430.

c. Find the probability that the number of successes 
is between 440 and 480.

d. With probability 0.10, the number of successes is 
fewer than how many?

e. With probability 0.08, the number of successes is 
greater than how many?

 5.40 Given a random sample size of n = 1, 600 from a bi-
nomial probability distribution with P = 0.40, do the 
following:

a. Find the probability that the number of successes 
is greater than 1,650.

b. Find the probability that the number of successes 
is fewer than 1,530.

c. Find the probability that the number of successes 
is between 1,550 and 1,650.

d. With probability 0.09, the number of successes is 
fewer than how many?

e. With probability 0.20, the number of successes is 
greater than how many?

 5.41 Given a random sample size of n = 900 from a bi-
nomial probability distribution with P = 0.10 do the 
following:

a. Find the probability that the number of successes 
is greater than 110.

b. Find the probability that the number of successes 
is fewer than 53.

c. Find the probability that the number of successes 
is between 55 and 120.

d. With probability 0.10, the number of successes is 
fewer than how many?

e. With probability 0.08, the number of successes is 
greater than how many?

 5.42 Given a random sample size of n = 1, 600 from a bi-
nomial probability distribution with P = 0.40 do the 
following:

a. Find the probability that the percentage of 
 successes is greater than 0.45.

b. Find the probability that the percentage of 
 successes is less than 0.35.

c. Find the probability that the percentage of 
 successes is between 0.37 and 0.44.

d. With probability 0.20, the percentage of successes 
is less than what percent?

e. With probability 0.09, the percentage of successes is 
greater than what percent?

 5.43 Given a random sample size of n = 400 from a binomial 
probability distribution with P = 0.20 do the following:

a. Find the probability that the percentage of 
 successes is greater than 0.25.

b. Find the probability that the percentage of 
 successes is less than 0.15.

c. Find the probability that the percentage of 
 successes is between 0.17 and 0.24.

d. With probability 0.15, the percentage of successes 
is less than what percent?

e. With probability 0.11, the percentage of successes is 
greater than what percent?

Application Exercises
 5.44 A car-rental company has determined that the proba-

bility a car will need service work in any given month 
is 0.2. The company has 900 cars.

a. What is the probability that more than 200 cars will 
require service work in a particular month?

b. What is the probability that fewer than 175 cars will 
need service work in a given month?

 5.45 It is known that 10% of all the items produced by a 
particular manufacturing process are defective. From 
the very large output of a single day, 400 items are se-
lected at random.

a. What is the probability that at least 35 of the se-
lected items are defective?
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b. What is the probability that between 40 and 50 of 
the selected items are defective?

c. What is the probability that between 34 and 48 of 
the selected items are defective?

d. Without doing the calculations, state which of the 
following ranges of defectives has the highest prob-
ability: 38–39, 40–41, 42–43, 44–45, or 46–47.

 5.46 A random sample of 100 blue-collar employees at a 
large corporation are surveyed to assess their attitudes 
toward a proposed new work schedule. If 60% of all 
blue-collar employees at this corporation favor the 
new schedule, what is the probability that fewer than 
50 in the random sample will be in favor?

 5.47 A hospital finds that 25% of its accounts are at least 
1 month in arrears. A random sample of 450 accounts 
was taken.

a. What is the probability that fewer than 100 accounts 
in the sample were at least 1 month in arrears?

b. What is the probability that the number of accounts 
in the sample at least 1 month in arrears was be-
tween 120 and 150 (inclusive)?

 5.48 The tread life of Stone Soup tires can be modeled by a 
normal distribution with a mean of 35,000 miles and 
a standard deviation of 4,000 miles. A sample of 100 
of these tires is taken. What is the probability that 
more than 25 of them have tread lives of more than 
38,000 miles?

 5.49 Bags of a chemical produced by a company have im-
purity weights that can be represented by a normal 
distribution with a mean of 12.2 grams and a stan-
dard deviation of 2.8 grams. A random sample of 400 
of these bags is taken. What is the probability that 
at least 100 of them contain fewer than 10 grams of 
impurities?

5.5 THE EXPONENTIAL DISTRIBUTION

The exponential distribution has been found to be particularly useful for waiting-line, or 
queuing, problems. In many service-time problems, the service times can be modeled us-
ing the exponential distribution. We should note that the exponential distribution differs 
from the normal in two important ways: It is restricted to random variables with positive 
values, and its distribution is not symmetric.

The Exponential Distribution
The exponential random variable T1t 7 02 has a probability density 
function

 f1t2 = le -lt for t 7 0 (5.15)

where l is the mean number of independent arrivals per time unit, t is the 
number of time units until the next arrival, and e = 2.71828. . . . Then T is 
said to follow an exponential probability distribution. Arrivals are inde-
pendent if an arrival does not affect the probability of waiting time, t, until 
the next arrival. It can be shown that l is the same parameter used for the 
Poisson distribution in Section 4.5 and that the mean time between occur-
rences is 1>l.

The cumulative distribution function is as follows:

 F1t2 = 1 - e -lt for t 7 0 (5.16)

The distribution has a mean of 1>l and a variance of 1>l2.
The probability that the time between arrivals is ta or less is as follows:

P1T … ta2 = 11 - e -lta2
The probability that the time between arrivals is between tb and ta is as 
follows:

 P1tb … T … ta2 = 11 - e -lta2 - 11 - e -ltb2
 = e -ltb - e -lta
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The random variable T can be used to represent the length of time until the end of a 
service time or until the next arrival to a queuing process, beginning at an arbitrary time 0.  
The model assumptions are the same as those for the Poisson distribution. Note that the 
Poisson distribution provides the probability of X successes or arrivals during a time unit. 
In contrast, the exponential distribution provides the probability that a success or arrival 
will occur during an interval of time t. Figure 5.26 shows the probability density function 
for an exponential distribution with l = 0.2. The area to the left of 10 gives the probability 
that a task will be completed before time 10. This area can be obtained by evaluating the 
function 1 - e -lt for the given value of t = 10. The function can be computed by using 
your electronic calculator. The probability that an arrival occurs between time 10 and 20 
can be computed as follows:

Figure 5.26 

Probability Den-
sity Function for an 
Exponential Distribu-
tion with l = 0.2

 P1t10 … T … t202 = 11 - e -0.2t202 - 11 - e -0.2t102
 = e -0.2t10 - e -0.2t20

 = 0.1353 - 0.0183

 = 0.1170

Now let us consider an example problem to demonstrate the application of the expo-
nential distribution.

Example 5.10 Service Time at Library Information 
Desk (Exponential Probabilities)

Service times for customers at a library information desk can be modeled by an expo-
nential distribution with a mean service time of 5 minutes. What is the probability that 
a customer service time will take longer than 10 minutes?

Solution Let t denote the service time in minutes. The service rate is l = 1>5 = 0.2 
per minute, and the probability density function is

f1t2 = le -lt

which is shown in Figure 5.26. The required probability can be computed as follows:

 P1T 7 102 = 1 - P1T 6 102
 = 1 - F1102
 = 1 - 11 - e -10.20211022
 = e -2.0 = 0.1353

Thus, the probability that a service time exceeds 10 minutes is 0.1353.

f(t)

0.2

0.1

0.0
0 10 20 t
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Example 5.11 Time Between Accidents in Typical 
British Industrial Plants (Exponential Probabilities)

An industrial plant in Britain with 2,000 employees has a mean number of lost-time 
 accidents per week equal to l = 0.4, and the number of accidents follows a Poisson 
distribution. What is the probability that the time between accidents is less than 
2 weeks?

Solution In this problem we note that the time interval is measured in weeks and our 
rate is l = 0.4 per week, giving a mean time between accidents of m = 1>10.42 = 2.5 
weeks. Then the probability that the time between accidents is less than 2 weeks is as 
follows:

 P1T 6 22 = F122 = 1 - e -10.42122
 = 1 - e -0.8

 = 1 - 0.4493
 = 0.5507

Thus, the probability of less than 2 weeks between accidents is about 55%.

Example 5.12 Time Between Boat Arrivals  
at a Grain Shipping Dock

In Example 4.12 we showed how to compute the probability of the number of boats 
arriving at a grain shipping dock in Churchill Manitoba using the Poisson probability 
distribution. In this example we compute the probability of a particular time interval 
between boat arrivals using the exponential probability distribution. In the previous 
problem we found that the mean number of arrivals was l = 2.5 per 6-hour period. 
Now we want to compute the probability that a boat will arrive within 3 hours of the 
last boat arrival and also to compute the probability that a boat will arrive between 2 
and 4 hours after the last arrival.

Solution To compute both of these probabilities, we need to adjust the time scale 
to the same form as the arrival rate. The arrival rate is given as 2.5 arrivals per 6-hour 
period. Thus in terms of a 6-hour time unit, 3 hours is 3/6 time units, 2 hours is 2/6 
time units, and 4 hours is 4/6 time units. Thus, the probability of an arrival within 
3 hours is computed as follows:

 PaT …
3
6

ul = 2.5b = 11 - e 1-2.5210.522
 = 0.7135

And the probability that an arrival will occur between 2 and 4 hours is computed as 
follows:

 Pa 2
6

… T …
4
6
b = 11 - e 1-2.5210.6722 - 11 - e 1-2.5210.3322

 = e 1-2.5210.332 - e 1-2.5210.672
 = 0.4382 - 0.1873
 = 0.2509
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5.6 JOINTLY DISTRIBUTED CONTINUOUS RANDOM VARIABLES

In Section 4.7 we introduced jointly distributed discrete random variables. Here, we show 
that many of the concepts and results from discrete random variables also apply for con-
tinuous random variables. Many continuous random variables can be modeled using 
jointly distributed random variables. The market values of various stock prices are regu-
larly modeled as joint random variables. Studies of the production and sales patterns for 
various companies and industries use jointly distributed continuous random variables. 
The number of units sold by a large retail store during a particular week and the price per 
unit can be modeled by joint random variables. Studies of import and export behavior for 
various countries regularly use joint random variables as part of the analysis.

After we have developed some basic concepts, we will present a number of applica-
tion examples to show the importance of the procedures and how to analyze jointly dis-
tributed continuous random variables.

EXERCISES

Basic Exercises
 5.50 Given an arrival process with l = 1.0, what is the prob-

ability that an arrival occurs in the first t = 2 time units?
 5.51 Given an arrival process with l = 8.0, what is the prob-

ability that an arrival occurs in the first t = 7 time units?
 5.52 Given an arrival process with l = 5.0, what is the 

probability that an arrival occurs after t = 7 time units?
 5.53 Given an arrival process with l = 5.0, what is the 

probability that an arrival occurs after t = 5 time units?
 5.54 Given an arrival process with l = 3.0, what is the prob-

ability that an arrival occurs in the first t = 2 time units?

Application Exercises
 5.55 A professor sees students during regular office hours. 

Time spent with students follows an exponential dis-
tribution with a mean of 10 minutes.

a. Find the probability that a given student spends 
fewer than 20 minutes with the professor.

b. Find the probability that a given student spends 
more than 5 minutes with the professor.

c. Find the probability that a given student spends  
between 10 and 15 minutes with the professor.

 5.56 Times to gather preliminary information from arrivals 
at an outpatient clinic follow an exponential distribu-
tion with mean 15 minutes. Find the probability, for a 
randomly chosen arrival, that more than 18 minutes 
will be required.

 5.57 It is known that for a laboratory computing system the 
number of system failures during a month has a Pois-
son distribution with a mean of 0.8. The system has 
just failed. Find the probability that at least 2 months 
will elapse before a further failure.

 5.58 Suppose that the time between successive occurrences 
of an event follows an exponential distribution with a 
mean of 1>l minutes. Assume that an event occurs.

a. Show that the probability that more than 3 minutes 
elapses before the occurrence of the next event is e - 3l.

b. Show that the probability that more than 6 min-
utes elapses before the occurrence of the next 
event is e - 6l.

c. Using the results of parts (a) and (b), show that if  
3 minutes have already elapsed, the probability that 
a further 3 minutes will elapse before the next occur-
rence is e - 3l. Explain your answer in words.

 5.59 A Lumix Panasonic camera has a rechargeable bat-
tery. The battery life before recharging is needed 
can be modeled as an exponential distribution with 
l = 0.05.

a. Calculate the standard deviation of the battery’s 
life before recharging.

b. Calculate the probability that the battery will last 
more than 20 hours.

 5.60 Delivery trucks arrive independently at the Floorstore 
Regional distribution center with various consumer 
items from the company’s suppliers. The mean num-
ber of trucks arriving per hour is 20. Given that a truck 
has just arrived answer the following:

a. What is the probability that the next truck will not 
arrive for at least 5 minutes?

b. What is the probability that the next truck will ar-
rive within the next 2 minutes?

c. What is the probability that the next truck will arrive 
between 4 and 10 minutes?

Joint Cumulative Distribution Function
Let X1, X2, . . . , XK be continuous random variables.

1. Their joint cumulative distribution, F1x1, x2, . . . , xK2, defines the probability 
that simultaneously X1 is less than x1, X2 is less than x2, and so on—that is,

 F1x1, x2, . . . , xK2 = P1X1 6 x1 > X2 6 x2 > g> XK 6 xK2 (5.17)
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We note that the notion of independence here is precisely the same as in the discrete 
case. Independence of a set of random variables implies that the probability distribution 
of any one of them is unaffected by the values taken by the others. Thus, for example, 
the assertion that consecutive daily changes in the price of a share of common stock are 
independent of one another implies that information about the past price changes is of no 
value in assessing what is likely to happen tomorrow.

The notion of expectation extends to functions of jointly distributed continuous ran-
dom variables. As in the case of discrete random variables, we have the concept of covari-
ance, which is used in assessing linear relationships between pairs of random variables.

2. The cumulative distribution functions—F1x12, F1x22, . . . , F1xK2—of the in-
dividual random variables are called their marginal distributions. For any 
i, F1xi2 is the probability that the random variable Xi does not exceed the 
specific value xi.

3. The random variables are independent if and only if

 F1x1, x2, . . . , xK2 = F1x12F1x22 gF1xK2 (5.18)

Covariance
Let X and Y be a pair of continuous random variables with respective means 
mX and mY. The expected value of 1X - mX21Y - mY2, is called the covariance 
(Cov), between X and Y,

 Cov1X, Y2 = E31X - mX21Y - mY24  (5.19)

An alternative, but equivalent, expression can be derived as

 Cov1X, Y2 = E3XY4 - mXmY (5.20)

If the random variables X and Y are independent, then the covariance be-
tween them is 0. However, the converse is not necessarily true.

In Section 4.7 we also presented the correlation as a standardized measure of the re-
lationship between two discrete random variables. The same results hold for continuous 
random variables.

Correlation
Let X and Y be jointly distributed random variables. The correlation (Corr) be-
tween X and Y is as follows:

 r = Corr1X, Y2 = Cov1X, Y2
sXsY

 (5.21)

Sums of Random Variables
Let X1, X2, . . . , XK be K random variables with means m1, m2, . . . , mK and vari-
ances s2

1, s
2
2, . . . , s

2
K. Consider the following properties:

1. The mean of their sum is the sum of their means—that is,

 E31X1 + X2 + g + XK24 = m1 + m2 + g + mK (5.22)

In Section 4.7 we presented the means and variances for sums and differences of dis-
crete random variables. The same results apply for continuous random variables because 
the results are established using expectations and, thus, are not affected by the condition 
of discrete or continuous random variables.
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2. If the covariance between every pair of these random variables is 0, 
then the variance of their sum is the sum of their variances—that is,

 Var1X1 + X2 + g + XK2 = s2
1 + s2

2 + g + s2
K (5.23)

However, if the covariances between pairs of random variables are not 0,  
the variance of their sum is as follows:

 Var1X1 + X2 + g + XK2 = s2
1 + s2

2 + g + s2
K +  2a

K- 1

i=1
 a

K

j= i+ 1
Cov1Xi, Xj2 (5.24)

Differences Between a Pair of Random Variables
Let X and Y be a pair of random variables with means mX and mY and variances 
s2

X and s2
Y. Consider the following properties:

1. The mean of their difference is the difference of their means—that is,

 E3X - Y4 = mX - mY (5.25)

2. If the covariance between X and Y is 0, then the variance of their differ-
ence is as follows:

 Var1X - Y2 = s2
X + s2

Y (5.26)

3. If the covariance between X and Y is not 0, then the variance of their 
 difference is as follows:

 Var1X - Y2 = s2
X + s2

Y - 2 Cov1X, Y2 (5.27)

Example 5.13 Total Project Costs (Mean and 
Standard Deviation)

A contractor is uncertain of the precise total costs for either materials or labor for 
a project. In addition, the total line of credit for financing the project is $260,000, 
and the contractor wants to know the probability that total costs exceed $260,000. 
It is believed that material costs can be represented by a normally distributed 
random variable with mean $100,000 and standard deviation $10,000. Labor costs 
are $1,500 a day, and the number of days needed to complete the project can be 
represented by a normally distributed random variable with mean 80 and stan-
dard deviation 12. Assuming that material and labor costs are independent, what 
are the mean and standard deviation of the total project cost (materials plus la-
bor)? In addition, what is the probability that the total project cost is greater than 
$260,000?

Solution Let the random variables X1 and X2 denote, respectively, materials and 
labor costs. Then,

For X1: m1 = 100,000 and s1 = 10,000

For X2: m2 = 11,50021802 = 120,000 and s2 = 11,50021122 = 18,000
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The total project cost is W = X1 + X2, and we have mean cost

mW = m1 + m2 = 100,000 + 120,000 = +220,000

Because X1 and X2 are independent, the variance of their sum is as follows:

s2
W = s2

1 + s2
2 = 110,00022 + 118,00022 = 424,000,000

Taking the square root, we find that the standard deviation is $20,591.
Since X1 and X2 are normally distributed, it can be shown that their sum, W, is 

also normally distributed. The probability that W is greater than $260,000 can be deter-
mined by computing a standard normal random variable Z, using the mean and vari-
ance of W as follows:

Z =
1260,000 - 220,0002

20,591
= 1.94

Using the cumulative normal probability table, we find that the probability that the 
total cost exceeds $260,000 is 0.0262. Since this probability is small, the contractor 
has some confidence that the project can be completed within the available line of 
credit.

Example 5.14 Investment Portfolio Risk  
(Linear Function Mean and Variance)

Henry Chang has asked for your assistance in establishing a portfolio containing 
two stocks. Henry has $1,000, which can be allocated in any proportion to two al-
ternative stocks. The returns per dollar from these investments will be designated 
as random variables X and Y. Both of these random variables are independent and 
have the same mean and variance. Henry wishes to know the risk for various al-
location options. You point out that risk is directly related to variance and, thus, 
that his question would be answered if he knew the variance of various allocation 
options.

Solution The amount of money allocated to the first investment will be designated 
as a, and, hence, the remaining 1,000 - a will be allocated to the second investment. 
The total return on the investment is as follows:

R = aX + 11,000 - a2Y
This random variable has the expected value

E3R4 = aE3X4 + 11,000 - a2E3Y4 = am + 11,000 - a2m = +1,000m

Thus, we see that the expected return is the same for any allocation.
However, the risk or variance is a different story.

 Var1R2 = a2Var1X2 + 11,000 - a22Var1Y2
 = a2s2 + 11,000 - a22s2

 = 12a2 - 2,000 a + 1,000,0002s2

If a is equal to either 0 or 1,000, so that the entire portfolio is allocated to just one of the 
stocks, the variance of the total return is 1,000,000s2. However, if $500 is allocated to 
each investment, the variance of the total return is 500,000s2, which is the smallest pos-
sible variance. By spreading his investment over two stocks, Henry is able to mitigate 
the effect of either high or low returns from one of the shares. Thus, it is possible to 
obtain the same expected return with a variety of risk levels.
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Financial Investment Portfolios

Linear Combinations of Random Variables
The linear combination of two random variables, X and Y, is

 W = aX + bY (5.28)

where a and b are constant numbers.
The mean value for W is

 mW = E3W4 = E3aX + bY4 = amX + bmY (5.29)

The variance for W is

 s2
W = a2s2

X + b2s2
Y + 2ab Cov1X, Y2 (5.30)

or, using the correlation,

 s 2
W = a2s2

X + b2s2
Y + 2ab r1X, Y2sXsY (5.31)

If the linear combination in Equation 5.28 is a difference,

 W = aX - bY (5.32)

then the mean and the variance are

 mW = E3W4 = E3aX - bY4 = amX - bmY (5.33)

 s 2
W = a2s2

X + b2s2
Y - 2ab Cov1X, Y2  (5.34)

or using the correlation.

 s2
W = a2s2

X + b2s2
Y - 2ab r1X, Y2sXsY (5.35)

These results come directly from Equations 5.28 through 5.31 by merely 
 substituting a negative value for the coefficient b in the equations.

If both X and Y are joint normally distributed random variables, then the 
resulting random variable, W, is also normally distributed with mean and vari-
ance derived as shown. This result enables us to determine the probability 
that the linear combination, W, is within a specific interval.

Linear Combinations of Random Variables

In Chapter 4 we developed the mean and variance for linear combinations of discrete ran-
dom variables. These results also apply for continuous random variables because their 
development is based on operations with expected values and does not depend on the 
particular probability distributions. Equations 5.28 through 5.31 indicate the important 
properties of linear combinations.

Example 5.15 Portfolio Analysis (Probability  
of a Portfolio)

Judy Chang, the account manager for Northern Securities, has a portfolio that includes 
20 shares of Allied Information Systems and 30 shares of Bangalore Analytics. Both 
firms provide Web-access devices that compete in the consumer market. The price of 
Allied stock is normally distributed with mean mX = 25 and variance s2

X = 81. The 
price of Bangalore stock is also normally distributed with the mean mY = 40 and the 
variance s2

Y = 121. The stock prices have a negative correlation, rXY = -0.40. Judy has 
asked you to determine the probability that the portfolio value exceeds 2,000.
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The previous example illustrates a very important fundamental principle in the de-
sign of investment portfolios. Recall that the risk of an investment is directly related to the 
variance of the investment value. In the previous example we showed that if the values 
of the two stock prices are positively correlated, then the resulting portfolio will have a 
larger variance and hence a higher risk. And if the two stock prices are negatively corre-
lated, then the resulting portfolio will have a smaller variance and hence a lower risk. The 
term hedging is often used by fund managers to describe this phenomenon. This important 
principle for a two-stock portfolio extends directly to a portfolio with a large number of 
different stocks, but in that case the algebra is more complex and is typically computed 
using a sophisticated computer program.

Solution The value of Judy’s portfolio, W, is defined by the linear combination

W = 20X + 30Y

and W is normally distributed. The mean value for her stock portfolio is as follows:

 mW = 20mX + 30mY

 = 20 * 25 + 30 * 40
 = 1,700

The variance for the portfolio value is

 s2
W = 202s2

X + 302s2
Y + 2 * 20 * 30 rXYsXsY

 = 202 * 81 + 302 * 121 + 2 * 20 * 30 * 1 -0.402 * 9 * 11 = 93,780

and the standard deviation of the portfolio value is

sW = 306.24

The standard normal Z for 2,000 is as follows:

ZW =
2,000 - 1,700

306.24
= 0.980

The probability that the portfolio value exceeds 2,000 is 0.1635. From the symmetry of 
the normal distribution, it follows that the probability that the portfolio value is less 
than 1,400 is also 0.1635.

If the two stock prices had a positive correlation, r = +0.40, the mean would be the 
same, but the variance and standard deviation are follows:

 s2
W = 202s2

X + 302s2
Y + 2 * 20 * 30 r1X, Y2sXsY

 = 202 * 81 + 302 * 121 + 2 * 20 * 30 * 1+0.402 * 9 * 11 = 188,820
 sW = 434.53

The standard normal Z for 2,000 is as follows:

Z2,000 =
2,000 - 1,700

434.53
= 0.690

The probability that her portfolio value exceeds 2,000 is 0.2451, and the probability that 
it is less than 1,400 is also 0.2451.

Thus, we see that a positive correlation between stock prices leads to a higher 
variance and higher risk. The risk in this example increases the probability that the 
portfolio exceeds 2,000, from 0.1635 to 0.2451. This also implies a similar change in the 
probability that the portfolio value is less than 1,400. The higher risk implies that there 
is a higher probability that the portfolio has higher or lower values compared to the 
lower risk option.
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The use of linear combinations of random variables also applies directly to the estima-
tion of portfolio return given the returns on individual stocks.

°return
on
portfolio

¢ = ±proportion
of portfolio
value,
stock 1

≤ * astock 1
return b + ±proportion

of portfolio
value,
stock 2

≤ * astock 2
return b + g

 + ±proportion
of portfolio
value,
stock K

≤ * astock K
return b

Investment fund managers use this principle to select combinations of many different 
stocks in order to obtain the desired portfolio return with the risk characteristics that are 
the objectives for a particular investment fund. Example 5.16 develops the computations 
for determining portfolio return and risk.

Example 5.16 General Portfolio Analysis

In actual practice, portfolios such as mutual funds may have 100 to 300 or more dif-
ferent stocks. This leads to extensive computations that could not be reasonably done 
without powerful computers and large databases. In this discussion we will indicate 
how the computations can be made and illustrate this with a reduced example. A large 
portfolio can be modeled with the return on stock price for each of k stock prices repre-
sented as k random variables, Xi, with means, mi, with variances, s2

i , and with covari-
ances between stock prices, Cov1Xi, Yi2. The dollar-value proportion of the portfolio for 
each stock is ai. The total value of the portfolio can be expressed as follows:

 W = a
K

i=1
aiXi

The mean value for W is as follows:

 mW = E3W4 = E caK
i=1

aiXi d
  = a

K

i=1
ai mi (5.36)

The variance for W is as follows:

  s2
W = a

K

i=1
a2

is
2
i + 2a

K -1

i=1
a
K

j= i+1
aiaj Cov1Xi, Xj2 (5.37)

These equations can be utilized to develop computer-based computations that can be 
used with a large data base of stock prices or other measures of performance.

Example 5.17 Returns on Financial Portfolios

Susan Chang, fund manager at Northlake Financial Growth, has asked you to analyze 
a portfolio consisting of Infosys Technologies, Alcoa, Inc., and Pearson PLC as part of 
a larger project to develop a new growth fund. In particular she wishes to know the 
monthly return on stock price and the variance of this return.
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Solution You decide to use the monthly return on stock price over the 5-year 
period from May 2003 through April 2008. The stock-price data was obtained from 
Stock Investor Professional (Stock Investor Pro, 2007). The return on stock price was 
computed by dividing the change in month-end closing by the most recent month-
end closing. Figure 5.27 contains the mean, variance, and covariance of the return on 
stock price for three firms—Infosys Technologies, Alcoa. Inc., Pearson PLC—for the 
60 months from May 2003 through April 2008. Return on stock price is expressed as a 
proportion change for one month. This data are contained in the file Return on Stock 
Price 60 month. After a discussion with Susan, you decide to consider a portfolio 
whose dollar value includes 40% of Infosys, 30% of Alcoa, and 30% of Pearson. The 
mean value is computed using Equation 5.36 as follows:

 mW = E3W4 = 10.40210.01962 + 10.30210.004392 + 10.30210.006212
 = 0.01101

Figure 5.27 Portfolio Statistics for Example 5.17 (Minitab Output)

Descriptive Statistics: Infosys Tech, Alcoa Inc., Pearson PLC (ADR)

Variable
Infosys Tech
Alcoa Inc.
Pearson PLC

N
60
60
60

Mean
0.0196

0.00439
0.00621

StDev
0.0926

0.07113
0.04655

Variance
0.0086

0.00506
0.00217

Min
–0.2456

–0.12813
–0.09474

Max
0.1945

0.17137
0.10108

Median
0.0254

0.01134
0.00391

Covariances: Infosys Tech, Alcoa Inc., Pearson DLC (ADR)

Infosys Tech
Alcoa Inc.
Pearson PLC

Alcoa Inc.

0.00505950
0.00150291

Infosys Tech
0.00857204
0.00168845
0.00086330

Pearson PLC

0.00216704

Descriptive Statistics: Portfolio 1

Variable
Portfolio 1

N
60

Mean
0.01101

StDev
0.05390

Variance
0.00290

Min
–0.13783

Max
0.15579

Median
0.01950

Descriptive Statistics: S & P 500

Variable
SP 500

N
60

Mean
0.00655

StDev
0.02512

Variance
0.00063

Min
–0.06515

Max
0.05210

Median
0.01157

Note that this portfolio mean is 1.101% per month, or 13.2% growth per year.
The variance is computed using Equation 5.37 as follows:

 s2
W = 10.402210.00862 + 10.302210.005062 + 10.302210.002172

       +  2310.40210.30210.001688452 + 10.40210.30210.000863302
       +  10.30210.30210.0015029124

          = 0.00290

The standard deviation for the portfolio value is as follows:

sW = 0.05390

These computations can also be made by computing the value of the portfolio each 
month and then computing the mean and variance of the monthly portfolio values. The 
results are, of course, the same as shown for the variable, portfolio 1, in Figure 5.27. We 
have also included the mean and variance for the Standard and Poors (S & P) index 
for the same time period for perspective. Note that the mean growth ratio is higher for 
portfolio 1 compared to the S & P.

Assuming that stock price growth is normally distributed, we can also compute 
the probabilities that the total value of the portfolio is above or below particular values. 
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Cautions Concerning Finance Models

The previous section introduced you to the basic understanding of the statistical model-
ing that is used in complex trading models. By using the means and variances computed 
for portfolios by these methods and the assumption of a normal distribution, analysts 
can determine the probability of various outcomes. This makes possible the determina-
tion of possible gains and losses adjusted by the probability of their occurrence. In addi-
tion, a number of very complex models have been developed—by extending the methods 
here—that use nonnormal probability distribution models and rigorous mathematical 
adjustments. These models have been developed by persons with strong mathematical 
skills, who may not have their basic education in business and economics. Computerized 
models are used successfully to assist very successful fund managers in their allocation of 
capital to the most appropriate uses.

There are, however, major examples where these models have failed with disastrous 
outcomes—such as the market collapse in September 2008. In some cases the models 
have been used to initiate trades with minimal human review. In the worst cases the 
models used are not well understood by the traders responsible for the funds, since the 
model developers may have departed from the company. The models work very well if 
the underlying probability distributions continue to be well approximated by the mod-
els. However, just because these approximations have occurred in the past, they are not 
guaranteed to occur in the future. Quoting again from Nassim Tabeb, “. . . history teaches 
us that things that never happened before do happen.” Again, we encourage you to read 
his book, Fooled by Randomness (Taleb 2005). As noted in Chapter 3, Black Swans do occur 
with unknown probability. We cannot know the probability that the Chinese govern-
ment will change the value of the yuan relative to the U.S. dollar, or that the U.S. dol-
lar will lose its central role in world finance, or that some crazy people will destroy the 
World Trade Center. These and similar unknowns will have major and unpredictable 
effects on market outcomes.

Thus the wise analyst needs to constantly consider at least the following two ideas. 
First, under continuing stable conditions, the methods just developed will, if they are 
clearly understood, lead to better decisions. However, the unexpected can occur. Knowl-
edge of probability can help one to understand that important fact. Second, one must also 
appreciate the fact that the unexpected could occur and lead to unexpected outcomes. If 
you have a broad understanding of world events you might be able to identify some pos-
sible unexpected events, but usually not their probabilities. We anticipate that patterns of 
events in the past will be followed by future similar patterns of events. But there is no 
guarantee. So, caution and continuous clear observation and thinking cannot be replaced 
by models developed from past events but must be used in combination with the models—
which contain necessary, but not sufficient, analyses.

For example, the probability that the portfolio value is above 0.10 for one month can be 
determined by computing the standard normal Z:

Z0.10 =
10.10 - 0.011012

0.0539
= 1.651

The probability that the portfolio exceeds 0.10 is 0.049. We can also compute the prob-
ability that the portfolio value is less than 0.0 by first computing the standard normal Z:

Z0.0 =
10.0 - 0.011012

0.0539
= -0.204

The probability that the portfolio value is less than 0.0 is 0.081.
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EXERCISES

Basic Exercises
 5.61 A random variable X is normally distributed with a 

mean of 100 and a variance of 100, and a random vari-
able Y is normally distributed with a mean of 200 and 
a variance of 400. The random variables have a corre-
lation coefficient equal to 0.5. Find the mean and vari-
ance of the random variable:

W = 5X + 4Y

 5.62 A random variable X is normally distributed with a 
mean of 100 and a variance of 100, and a random vari-
able Y is normally distributed with a mean of 200 and 
a variance of 400. The random variables have a cor-
relation coefficient equal to -0.5. Find the mean and 
variance of the random variable:

W = 5X + 4Y

 5.63 A random variable X is normally distributed with a 
mean of 100 and a variance of 100, and a random vari-
able Y is normally distributed with a mean of 200 and 
a variance of 400. The random variables have a corre-
lation coefficient equal to 0.5. Find the mean and vari-
ance of the random variable:

W = 5X - 4Y

 5.64 A random variable X is normally distributed with a 
mean of 500 and a variance of 100, and a random vari-
able Y is normally distributed with a mean of 200 and 
a variance of 400. The random variables have a corre-
lation coefficient equal to 0.5. Find the mean and vari-
ance of the random variable:

W = 5X - 4Y

 5.65 A random variable X is normally distributed with a 
mean of 100 and a variance of 500, and a random vari-
able Y is normally distributed with a mean of 200 and 
a variance of 400. The random variables have a cor-
relation coefficient equal to -0.5. Find the mean and 
variance of the random variable:

W = 5X - 4Y

Application Exercises
 5.66 An investor plans to divide $200,000 between two 

investments. The first yields a certain profit of 10%, 
whereas the second yields a profit with expected 
value 18% and standard deviation 6%. If the investor 
divides the money equally between these two invest-
ments, find the mean and standard deviation of the 
total profit.

 5.67 A homeowner has installed a new energy-efficient fur-
nace. It is estimated that over a year the new furnace 
will reduce energy costs by an amount that can be re-
garded as a random variable with a mean of $200 and 
a standard deviation of $60. Stating any assumptions 
you need to make, find the mean and standard devia-
tion of the total energy cost reductions over a period 
of 5 years.

 5.68 A consultant is beginning work on three projects. 
The expected profits from these projects are $50,000, 
$72,000, and $40,000. The associated standard devia-
tions are $10,000, $12,000, and $9,000. Assuming in-
dependence of outcomes, find the mean and standard 
deviation of the consultant’s total profit from these 
three projects.

 5.69 A consultant has three sources of income—from teach-
ing short courses, from selling computer software, 
and from advising on projects. His expected annual 
incomes from these sources are $20,000, $25,000, and 
$15,000, and the respective standard deviations are 
$2,000, $5,000, and $4,000. Assuming independence, 
find the mean and standard deviation of his total an-
nual income.

 5.70 Five inspectors are employed to check the quality 
of components produced on an assembly line. For 
each inspector the number of components that can 
be checked in a shift can be represented by a random 
variable with mean 120 and standard deviation 15. Let 
X represent the number of components checked by an 
inspector in a shift. Then the total number checked is 
5X, which has a mean of 600 and a standard deviation 
of 80. What is wrong with this argument? Assuming 
that inspectors’ performances are independent of one 
another, find the mean and standard deviation of the 
total number of components checked in a shift.

 5.71 It is estimated that in normal highway driving, the 
number of miles that can be covered by automobiles 
of a particular model on 1 gallon of gasoline can be 
represented by a random variable with mean 28 and 
standard deviation 2.4. Sixteen of these cars, each with 
1 gallon of gasoline, are driven independently under 
highway conditions. Find the mean and standard de-
viation of the average number of miles that will be 
achieved by these cars.

 5.72 Shirley Johnson, portfolio manager, has asked you to 
analyze a newly acquired portfolio to determine its 
mean value and variability. The portfolio consists of 
50 shares of Xylophone Music and 40 shares of Yan-
kee Workshop. Analysis of past history indicates that 
the share price of Xylophone Music has a mean of 25 
and a variance of 121. A similar analysis indicates that 
Yankee has a mean share price of 40 with a variance of 
225. Your best evidence indicates that the share prices 
have a correlation of +0.5.

a. Compute the mean and variance of the portfolio.
b. Suppose that the correlation between share prices 

was actually -0.5. Now what are the mean and vari-
ance of the portfolio?

 5.73 Prairie Flower Cereal has annual sales revenue of 
$400,000,000. George Severn, a 58-year-old senior vice 
president, is responsible for production and sales of 
Nougy 93 Fruity cereal. Daily production in cases is 
normally distributed, with a mean of 100 and a vari-
ance of 625. Daily sales in cases are also normally dis-
tributed, with a mean of 100 and a standard deviation 
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of 8. Sales and production have a correlation of 0.60. 
The selling price per case is $10. The variable produc-
tion cost per case is $7. The fixed production costs per 
day are $250.

a. What is the probability that total revenue is greater 
than total costs on any day?

b. Construct a 95% acceptance interval for total sales 
revenue minus total costs.

 5.74 The nation of Olecarl, located in the South Pacific, has 
asked you to analyze international trade patterns. You 
first discover that each year it exports 10 units and im-
ports 10 units of wonderful stuff. The price of exports 
is a random variable with a mean of 100 and a vari-
ance of 100. The price of imports is a random variable 
with a mean of 90 and a variance of 400. In addition, 
you discover that the prices of imports and exports 
have a correlation of r = -0.40. The prices of both ex-
ports and imports follow a normal probability density 
function. Define the balance of trade as the difference 
between the total revenue from exports and the total 
cost of imports.

a. What are the mean and variance of the balance of 
trade?

b. What is the probability that the balance of trade is 
negative?

 5.75 You have been asked to determine the probability 
that the contribution margin for a particular product 

line exceeds the fixed cost of $2,000. The total num-
ber of units sold is a normally distributed random 
variable with a mean of 400 and a variance of 900, 
X | N1400, 9002. The selling price per unit is $10. 
The total number of units produced is a normally dis-
tributed random variable with a mean of 400 and a 
variance of 1,600, Y | N1400, 1,6002. The variable pro-
duction cost is $4 per unit. Production and sales have 
a positive correlation of 0.50.

 5.76 The nation of Waipo has recently created an eco-
nomic development plan that includes expanded 
exports and imports. It has completed a series of ex-
tensive studies of the world economy and Waipo’s 
economic capability, following Waipo’s extensive 
10-year educational-enhancement program. The re-
sulting model indicates that in the next year exports 
will be normally distributed with a mean of 100 and 
a variance of 900 (in billions of Waipo yuan). In addi-
tion, imports are expected to be normally distributed 
with a mean of 105 and a variance of 625 in the same 
units. The correlation between exports and imports is 
expected to be +0.70. Define the trade balance as ex-
ports minus imports.

a. Determine the mean and variance of the trade 
 balance (exports minus imports) if the model 
 parameters given above are true.

b. What is the probability that the trade balance will be 
positive?
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CHAPTER EXERCISES AND APPLICATIONS

 5.77 A consultant knows that it will cost him $10,000 to ful-
fill a particular contract. The contract is to be put out 
for bids, and he believes that the lowest bid, excluding 
his own, can be represented by a distribution that is 
uniform between $8,000 and $20,000. Therefore, if the 
random variable X denotes the lowest of all other bids 

(in thousands of dollars), its probability density func-
tion is as follows:

f1x2 = e 1>12 for 8 6 x 6 20
0 for all other values of x
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a. What is the probability that the lowest of the other 
bids will be less than the consultant’s cost estimate 
of $10,000?

b. If the consultant submits a bid of $12,000, what  
is the probability that he will secure the  
contract?

c. The consultant decides to submit a bid of $12,000. 
What is his expected profit from this strategy?

d. If the consultant wants to submit a bid so that his 
expected profit is as high as possible, discuss how 
he should go about making this choice.

 5.78 The ages of a group of executives attending a con-
vention are uniformly distributed between 35 and 65 
years. If the random variable X denotes ages in years, 
the probability density function is as follows:

f1x2 = e 1>30 for 35 6 x 6 65
0 for all other values of x

a. Graph the probability density function for X.
b. Find and graph the cumulative distribution func-

tion for X.
c. Find the probability that the age of a randomly 

chosen executive in this group is between 40 and 
50 years.

d. Find the mean age of the executives in the group.

 5.79 The random variable X has probability density func-
tion as follows:

f1x2 = • x for 0 6 x 6 1
2 - x for 1 6 x 6 2
0 for all other values of x

a. Graph the probability density function for X.
b. Show that the density has the properties of a 

proper probability density function.
c. Find the probability that X takes a value between 

0.5 and 1.5.

 5.80 An investor puts $2,000 into a deposit account with 
a fixed rate of return of 10% per year. A second sum 
of $1,000 is invested in a fund with an expected rate 
of return of 16% and a standard deviation of 8% per 
year.

a. Find the expected value of the total amount of 
money this investor will have after a year.

b. Find the standard deviation of the total amount 
after a year.

 5.81 A hamburger stand sells hamburgers for $1.45 each. 
Daily sales have a distribution with a mean of 530 and 
a standard deviation of 69.

a. Find the mean daily total revenues from the sale of 
hamburgers.

b. Find the standard deviation of total revenues from 
the sale of hamburgers.

c. Daily costs (in dollars) are given by

C = 100 + 0.95X

 where X is the number of hamburgers sold. Find 
the mean and standard deviation of daily profits 
from sales.

 5.82 An analyst forecasts corporate earnings, and her record 
is evaluated by comparing actual earnings with pre-
dicted earnings. Define the following:

actual earnings = predicted earnings + forecast error

  If the predicted earnings and forecast error are in-
dependent of each other, show that the variance of 
predicted earnings is less than the variance of actual 
earnings.

 5.83 Let X1 and X2 be a pair of random variables. Show 
that the covariance between the random variables 
Y1 = 1X1 + X22 and Y2 = 1X1 - X22 is 0 if and only 
if X1 and X2 have the same variance.

 5.84 Grade point averages of students on a large campus 
follow a normal distribution with a mean of 2.6 and a 
standard deviation of 0.5.

a. One student is chosen at random from this cam-
pus. What is the probability that this student has a 
grade point average higher than 3.0?

b. One student is chosen at random from this cam-
pus. What is the probability that this student has a 
grade point average between 2.25 and 2.75?

c. What is the minimum grade point average needed 
for a student’s grade point average to be among 
the highest 10% on this campus?

d. A random sample of 400 students is chosen from 
this campus. What is the probability that at least 80 
of these students have grade point averages higher 
than 3.0?

e. Two students are chosen at random from this 
campus. What is the probability that at least one of 
them has a grade point average higher than 3.0?

 5.85 A company services home air conditioners. It is 
known that times for service calls follow a normal dis-
tribution with a mean of 60 minutes and a standard 
deviation of 10 minutes.

a. What is the probability that a single service call 
takes more than 65 minutes?

b. What is the probability that a single service call 
takes between 50 and 70 minutes?

c. The probability is 0.025 that a single service call 
takes more than how many minutes?

d. Find the shortest range of times that includes 50% 
of all service calls.

e. A random sample of four service calls is taken. 
What is the probability that exactly two of them 
take more than 65 minutes?

 5.86 It has been found that times taken by people to com-
plete a particular tax form follow a normal distribution 
with a mean of 100 minutes and a standard deviation 
of 30 minutes.

a. What is the probability that a randomly chosen 
person takes less than 85 minutes to complete this 
form?

b. What is the probability that a randomly chosen 
person takes between 70 and 130 minutes to com-
plete this form?

c. Five percent of all people take more than how 
many minutes to complete this form?
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d. Two people are chosen at random. What is the 
probability that at least one of them takes more 
than an hour to complete this form?

e. Four people are chosen at random. What is the 
probability that exactly two of them take longer 
than an hour to complete this form?

f. For a randomly chosen person, state in which of 
the following ranges (expressed in minutes) the 
time to complete the form is most likely to lie.

70989, 909109, 1009129, 1309149

g. For a randomly chosen person, state in which of 
the following ranges (expressed in minutes) the 
time to complete the form is least likely to lie.

70989, 909109, 1109129, 1309149

 5.87 A pizza delivery service delivers to a campus dor-
mitory. Delivery times follow a normal distribution 
with a mean of 20 minutes and a standard deviation 
of 4 minutes.

a. What is the probability that a delivery will take be-
tween 15 and 25 minutes?

b. The service does not charge for the pizza if de-
livery takes more than 30 minutes. What is the 
probability of getting a free pizza from a single 
order?

c. During final exams, a student plans to order pizza 
five consecutive evenings. Assume that these de-
livery times are independent of each other. What is 
the probability that the student will get at least one 
free pizza?

d. Find the shortest range of times that includes 40% 
of all deliveries from this service.

e. For a single delivery, state in which of the follow-
ing ranges (expressed in minutes) the delivery time 
is most likely to lie.

18920, 19921, 20922, 21923

f. For a single delivery, state in which of the follow-
ing ranges (expressed in minutes) the delivery time 
is least likely to lie.

18920, 19921, 20922, 21923

 5.88 A video-rental chain estimates that annual expendi-
tures of members on rentals follow a normal distribu-
tion with a mean of $100. It was also found that 10% 
of all members spend more than $130 in a year. What 
percentage of members spends more than $140 in 
a year?

 5.89 It is estimated that amounts of money spent on gas-
oline by customers at a gas station follow a normal 
distribution with a standard deviation of $2.50. It 
is also found that 10% of all customers spent more 
than $25. What percentage of customers spent less 
than $20?

 5.90 A market research organization has found that 40% 
of all supermarket shoppers refuse to cooperate when 
questioned by its pollsters. If 1,000 shoppers are ap-
proached, what is the probability that fewer than 500 
will refuse to cooperate?

 5.91 An organization that gives regular seminars on sales 
motivation methods determines that 60% of its clients 
have attended previous seminars. From a sample of 
400 clients what is the probability that more than half 
have attended previous seminars?

 5.92 An ambulance service receives an average of 15 calls 
per day during the time period 6 p.m. to 6 a.m. for 
assistance. For any given day what is the probabil-
ity that fewer than 10 calls will be received during 
the 12-hour period? What is the probability that 
more than 17 calls during the 12-hour period will be 
received?

 5.93 In a large department store a customer-complaints 
office handles an average of six complaints per 
hour about the quality of service. The distribution is 
Poisson.

a. What is the probability that in any hour exactly six 
complaints will be received?

b. What is the probability that more than 20 minutes 
will elapse between successive complaints?

c. What is the probability that fewer than 5 minutes 
will elapse between successive complaints?

d. The store manager observes the complaints office 
for a 30-minute period, during which no com-
plaints are received. He concludes that a talk he 
gave to his staff on the theme “the customer is 
always right” has obviously had a beneficial effect. 
Suppose that, in fact, the talk had no effect. What 
is the probability of the manager observing the 
 office for a period of 30 minutes or longer with no 
complaints?

 5.94 A fish market in Hong Kong offers a large variety 
of fresh fish on its stands. You have found out that 
the average chunk of tuna sushi on sale has a weight 
of 3.2 grams, with a standard deviation of 0.8 gram. 
Assuming the weights of tuna sushi are normally 
distributed, what is the probability that a randomly 
selected piece of sushi will weigh more than 4.4 
grams? 

 5.95 In a Godiva Chocolate Shop, there are different sizes 
and weights of boxes of truffles.

a. Find the probability that a box of truffles weighs 
between 283 and 285.4 grams. The mean weight of 
a box is 283 grams and the standard deviation is 
1.6 grams.

b. After a more careful check, the standard devia-
tion was found to be 2.2 grams.  Find the new 
probability.

 5.96 A management consultant found that the amount of 
time per day spent by executives performing tasks 
that could be done equally well by subordinates fol-
lowed a normal distribution with a mean of 2.4 hours. 
It was also found that 10% of executives spent over 
3.5 hours per day on tasks of this type. For a random 
sample of 400 executives, find the probability that 
more than 80 spend more than 3 hours per day on 
tasks of this type.

 5.97 Financial Managers, Inc., buys and sells a large num-
ber of stocks routinely for the various accounts that it 
manages. Portfolio manager Andrea Colson has asked 
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for your assistance in the analysis of the Johnson 
Fund. A portion of this portfolio consists of 10 shares 
of stock A and 8 shares of stock B. The price of A has 
a mean of 10 and a variance of 16, while the price of B 
has a mean of 12 and a variance of 9. The correlation 
between prices is 0.3.

a. What are the mean and variance of the portfolio 
value?

b. Andrea has been asked to reduce the variance 
(risk) of the portfolio. She offers to trade the  
10 shares of stock A and receives two offers, 
from which she can select one: 10 shares of stock 
1 with a mean price of 10, a variance of 25, and 
a correlation with the price of stock B equal to 
-0.2; or 10 shares of stock 2 with a mean price 
of 10, a variance of 9, and a correlation with the 
price of stock B equal to +0.5. Which offer should 
she select?

 5.98 Financial Managers, Inc., buys and sells a large num-
ber of stocks routinely for the various accounts that it 
manages. Portfolio manager Sarah Bloom has asked 
for your assistance in the analysis of the Burde Fund. 
A portion of this portfolio consists of 10 shares of 
stock A and 8 shares of stock B. The price of A has a 
mean of 12 and a variance of 14, while the price of B 
has a mean of 10 and a variance of 12. The correlation 
between prices is 0.5.

a. What are the mean and variance of the portfolio 
value?

b. Sarah has been asked to reduce the variance (risk) 
of the portfolio. She offers to trade the 10 shares 
of stock A and receives two offers from which she 
can select one: 10 shares of stock 1 with a mean 
price of 12, a variance of 25, and a correlation with 
the price of stock B equal to -0.2; or 10 shares of 
stock 2 with a mean price of 10, a variance of 9, 
and a correlation with the price of stock B, equal to 
+0.5. Which offer should she select?

 5.99 Big Nail Construction Inc. is building a large, new
student center for a famous Midwestern liberal arts
college. During the project Christine Buildumbig, 
the project manager, requests that a pile of sand 
weighing between 138,000 pounds and 141,000 
pounds be placed on the newly constructed drive-
way. You have been asked to determine the prob-
ability that the delivered sand satisfies Christine’s 
request. You have ordered that one big truck and 
one small truck be used to deliver the sand. Sand 
loads in the big truck are normally distributed with 
a mean of 80,000 and a variance of 1,000,000, and 
sand loads in the small truck are also normally 
distributed with a mean weight of 60,000 pounds 
and a variance of 810,000. From past experience 
with the sand-loading facility, you know that the 
weight of sand in the two trucks has a correlation of 
0.40. What is the probability that the resulting pile 
of sand has a weight that is between 138,000 and 
141,000 pounds?

5.100 An investment portfolio in Singapore specializes in 
airline stocks and contains two of them. One is Singa-
pore Airlines (mean: 0.12; standard deviation: 0.02), 
and it accounts for 30% of the portfolio shares. The 
other airline present in the portfolio is AirAsia (mean: 
0.25; standard deviation: 0.15), a higher-risk, higher-
return investment.

a. What is the expected value and the standard devi-
ation of the portfolio if the coefficient of correlation 
of the two stocks is 0.5?

b. What will they be if the correlation is 0.2 
instead?

PORTFOLIO MINI CASE STUDIES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

that consists of 10 shares of stocks from each of the fol-
lowing firms: Alcoa Inc., Reliant Energy, and Sea Con-
tainer. Using the data file Stock Price File, compute 
the mean and variance for this portfolio. Prepare the 
analysis by using means, variances, and covariances 
for individual stocks following the methods used in 
Examples 5.16 and 5.17 then confirm your results by 
obtaining the portfolio price for each year using the 
computer. Assuming that the portfolio price is nor-
mally distributed, determine the narrowest interval 
that contains 95% of the distribution of portfolio value.

 5.102 Zafer Toprak is a developing a new mutual 
fund portfolio and in the process has asked you 

to develop the mean and variance for the stock price 
that consists of 10 shares of stocks from Alcoa Inc., 20 
shares from AB Volvo, 10 shares from TCF Financial, 

The following exercises, or case studies, provide the opportunity 
to prepare small stock portfolios and to analyze their character-
istics in terms of growth and risk. These require considerably 
more work than other exercises, but they do provide important 
insights into portfolio computations and analysis. We have de-
liberately selected stock performance data from before the 2008 
crash to avoid the major additional complexities that occur in a 
major financial collapse. So you will be working with real data 
on real stocks, but avoiding the situation where it is very difficult 
if not impossible to predict long term performance from the data.

5.101 Shirley Johnson is developing a new mutual 
fund portfolio and in the process has asked you 

to develop the mean and variance for the stock price 
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and 20 shares from Pentair Inc. Using the data file 
Stock Price File, compute the mean and variance for 
this portfolio. Prepare the analysis by using means, vari-
ances, and covariances for individual stocks following 
the methods used in Examples 5.16 and 5.17, and then 
confirm your results by obtaining the portfolio price for 
each year using the computer. Assuming that the port-
folio price is normally distributed, determine the nar-
rowest interval that contains 95% of the distribution of 
portfolio value.

 5.103 Charles Thorson has asked you to determine the 
mean and variance for a portfolio that consists of 

100 shares of stock from each of the following firms: 3M 
Company, Alcoa, Inc., Intel Corporation, Potlatch Corp., 
General Motors, and Sea Containers. Using the data file 
Stock Price File, compute the mean and variance for 
this portfolio. Assuming that the portfolio price is nor-
mally distributed determine the narrowest interval that 
contains 95% of the distribution of portfolio value.

 5.104 You have been asked to evaluate the monthly 
stock price growth for a portfolio which contains 

the following firms: 3M Company, Alcoa, Inc., Intel Cor-
poration, Potlatch Corp., General Motors, and Sea Con-
tainers. The fraction of the portfolio dollar value for each 
firm will be the same. Using the data file Return on 
Stock Price 60 month, compute the mean and variance 
for the stock price growth and the covariance between 
them. Then determine the mean and variance for the en-
tire portfolio.

 5.105 Deep Water Financial of Duluth, Minnesota, has asked 
you to evaluate the stock price growth for a portfolio 
containing the following firms: General Motors, Inter-
national Business Machines, Potlatch, Inc., Sea Con-
tainers, Ltd., and Tata Communications. Compute the 
means, variances, and covariances for the stocks. Us-
ing the data file Stock Price File, compute the mean 
and variance for a portfolio that represents the five 
stocks equally. Second, modify the portfolio by re-
moving Potlatch and Sea Containers and including in 
the portfolio 40% General Motors, 30% International 
Business Machines, and 30% Tata Communications. 
Determine the mean and variance for the second port-
folio and compare it with the first.

 5.106 Consider a portfolio that contains stocks from 
the following firms: AB Volvo, Pentair, Inc., Reli-

ant Energy, Inc., TCF Financial, 3M Company, and Res-
toration Hardware. Data for these stocks for a 60-month 
period (May 2003–April 2008) are contained in the data 
file Return on Stock Price 60 month. Compute the 
means, variances, and covariances for the monthly 
stock price growth rate. Determine the mean and vari-
ance for a portfolio that contains equal fractions of the 
six stocks. Construct a second portfolio by removing 
TCF Financial and Restoration Hardware. Determine 
the mean and variance of this second portfolio that in-
cludes 20% AB Volvo, 30% Pentair, 30% Reliant Energy, 
and 20% 3M Company. Compare this portfolio with the 
first and recommend a choice between them.

Appendix: Mathematical Definition  
of Important Results

 1. Readers with knowledge of calculus will recognize that the probability that a random 
variable lies in a given range is the integral of the probability density function be-
tween the endpoints of the range—that is,

P1a 6 X 6 b2 = L
b

a

f1x2 dx

 2. Formally, in integral calculus notation,

L
`

- `

f1x2dx = 1

  The cumulative distribution function is thus the integral

F1x02 = L
xo

- `

f1x2 dx

  It therefore follows that the probability density function is the derivative of the cu-
mulative distribution function—that is,

f1x2 = dF1x2
dx
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 3. Formally using integral calculus, we express the expected value of the random vari-
able X by

E3X4 = L
`

- `

x f1x2dx

  and the expected value of the function g1X2 by

E3g1X24 = L
`

- `

g1x2 f1x2dx

  As was shown for discrete random variables,

E3g1X24 ? g1E3X4 2
  unless g1X2 is a linear function of X, as developed in Section 5.6.
  Notice that in forming these expectations, the integral plays the same role as the sum-

mation operator in the discrete case.
 4. The integral

F1x02 = L
x0

- `

122ps2
 e -1x -m22>2s2

dx

  does not have a simple algebraic form.
 5. Using integral calculus we see that the cumulative exponential distribution is

 P1t … T2 = L
T

0

le -lt dt

 = 1 - e -lT

 6. Mean and Variance for the Proportion Random Variable
  In Chapter 4 we derived the mean and variance for the Bernoulli random variable as

 E3X4 = P

 s2
X = P11 - P2

  The proportion random variable is the sum of n Bernoulli random variables divided 
by n and thus

 m = E
£ ani=1

Xi

n
§
= E c 1

n
X1 +

1
n

X2 + g +
1
n

Xn d = P

 s2 = E
£ ani=1
s2

i

n2

§
=
s2

X

n
=

P11 - P2
n
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Introduction

The remainder of this book will develop various procedures for using statistical 
sample data to make inferences about statistical populations. This is the core 
of statistical analysis. Important questions include the following:

a. How can we use a sample of voters to predict election outcomes?
b.  How can we use a sample of cereal box weights to estimate the mean 

weight of all cereal boxes produced in a particular week and the prob-
ability that a particular box weighs less than some minimum weight?

c.  How can we use a sample of sales receivable for a company to estimate 
the mean dollar value of all sales receivables held by the company?

d.  How can we use a sample of daily stock market prices to estimate the 
mean value and the risk for a stock over a 1-year interval?

e.  How can we use a sample of selling prices for homes to estimate the 
mean selling price for all homes sold in a large city?

These examples indicate some of the vast array of important business and 
economic questions that can be studied using statistical procedures.

Statistical analysis requires that we obtain a proper sample from a popula-
tion of items of interest that have measured characteristics. If we do not have 
a proper sample, then our statistical methods do not work correctly. Thus 
we must first learn how to obtain a proper sample. Sample observations can  
be shown to be random variables—if properly chosen. And, statistics such as the 
sample mean or proportion computed from sample observations are also ran-
dom variables. Using our understanding of random variables from Chapters 4  
and 5, we can make probability statements about the sample statistics computed 
from sample data and make inferences about the populations from which the 
samples were obtained. All this leads to some important and amazing results. 
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But first we need to have probability distributions for the sample statistics—
for example, the sampling distribution of the sample mean. That is our task in 
this chapter, so let us get on with it!

6.1 SAMPLING FROM A POPULATION

A population is generated by a process that can be modeled as a series of random ex-
periments, as presented in Chapter 3. Thus, consider a population of 500,000 cereal boxes, 
each having a specific weight—which can be treated as an infinite population in terms of 
our sampling procedures. The weight of each box is determined by the amount of cereal 
and the cereal density for each box filled. This weight results from a complex process that 
we will treat as the random experiment noted in Section 3.1, and the weight of each box 
is treated as a random variable. Similarly, the diameter of engine pistons produced by a 
set of high production machines in a factory will have small variations. We can treat the 
production process as a random experiment and the piston diameters as random vari-
ables. Similarly, stock prices, daily store sales, and voting choices result from complex 
processes that can be treated as a random experiment, and the outcomes can be treated as 
random variables. Populations for various statistical studies are modeled as random vari-
ables whose probability distributions have a mean and variance, which are generally not 
known as we conduct our statistical sampling and analysis.

We will select a sample of observations—realizations of a random variable—from our 
population and compute sample statistics that will be used to obtain inferences about the 
population, such as the population mean and variance. To make inferences we need to 
know the sampling distribution of the observations and the computed sample statistics. 
The process of determining the sampling distribution uses observations that are obtained 
as a simple random sample.

Simple Random Sample
A simple random sample is chosen by a process that selects a sample of n 
 objects from a population in such a way that each member of the population 
has the same probability of being selected, the selection of one member is in-
dependent of the selection of any other member, and every possible sample  
of a given size, n, has the same probability of selection. This method is so 
common that the adjective simple is generally dropped, and the resulting 
sample is called a random sample.

Random samples are the ideal. It is important that a sample represent the 
population as a whole. Random sampling is our insurance policy against al-
lowing personal biases to influence the selection. In a number of real-world 
sampling studies, analysts develop alternative sampling procedures to lower 
the costs of sampling. But the basis for determining if these alternative sam-
pling strategies are acceptable is how closely the results approximate those  
of a simple random sample.

In general, we achieve greater accuracy by carefully obtaining a random sample of the 
population instead of spending the resources to measure every item. There are three impor-
tant reasons for this result. First, it is often very difficult to obtain and measure every item 
in a population, and, even if possible, the cost would be very high for a large population. 
For example, it is well known among statistical professionals that the census conducted 
every 10 years produces an undercount, in which certain groups are seriously underrepre-
sented (Hogan 1992). Second, as we learn in this chapter, properly selected samples can be 
used to obtain measured estimates of population characteristics that are quite close to the 
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actual population values. Third, by using the probability distribution of sample statistics 
we can determine the error associated with our estimates of population characteristics.

Random sampling can be implemented in many ways. To provide a reference meta-
phor for our thinking, we could consider placing N population items—for example, the 
numbered balls used in a bingo or lottery event—in a large barrel and mix them thor-
oughly. Then, from this well-mixed barrel, we select individual balls from different 
parts of the barrel. In practice, we often use random numbers to select objects that can 
be  assigned some numerical value. For example, market-research groups may use ran-
dom numbers to select telephone numbers to call and ask about preferences for a prod-
uct.  Various statistical computer packages and spreadsheets have routines for obtaining 
random numbers, and these are used for sampling studies. These computer-generated 
random numbers have the required properties to develop random samples. Organiza-
tions that require random samples from large human populations—for example, political 
candidates seeking to determine voter preference—will use professional sampling firms, 
which are organized to select and manage the sampling process. Sampling that accurately 
represents the population requires considerable work by experienced professionals and 
has a high cost.

We use sample information to make inferences about the parent population. The dis-
tribution of all values in this population can be represented by a random variable. It would 
be too ambitious to attempt to describe the entire population distribution based on a small 
random sample of observations. However, we can make quite firm inferences about im-
portant characteristics of the population distribution, such as the population mean and 
variance. For example, given a random sample of the fuel consumption for 25 cars of a 
particular model, we can use the sample mean and variance to make inferential statements 
about the population mean and variance of fuel consumption. This inference is based on 
the sample information. We can also ask and answer questions such as this: If the fuel con-
sumption, in miles per gallon, of the population of all cars of a particular model has a mean 
of 30 and a standard deviation of 2, what is the probability that for a random sample of 25 
such cars the sample mean fuel consumption will be less than 29 miles per gallon? We need 
to distinguish between the population attributes and the random sample attributes. The 
population mean m, is a fixed (but unknown) number. We make inferences about this attri-
bute by drawing a random sample from the population and computing the sample mean. 
For each sample we draw, there will be a different sample mean, and the sample mean 
can be regarded as a random variable with a probability distribution. The distribution of 
possible sample means provides a basis for inferential statements about the sample. In this 
chapter we examine the properties of sampling distributions.

Sampling Distributions
Consider a random sample selected from a population that is used to make an 
inference about some population characteristic, such as the population mean, 
m, using a sample statistic, such as the sample mean, x. We realize that every 
sample has different observed values and, hence, different sample means. The 
sampling distribution of the sample mean is the probability distribution of the 
sample means obtained from all possible samples of the same number of ob-
servations drawn from the population. Using the sampling distribution we can 
make an inference about the population mean.

Development of a Sampling Distribution

We illustrate—using a simple example—the concept of a sampling distribution by consid-
ering the position of a supervisor with six employees, whose years of experience are

2 4 6 6 7 8
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The mean of the years of experience for this population of six employees is

m =
2 + 4 + 6 + 6 + 7 + 8

6
= 5.5

Two of these employees are to be chosen randomly for a particular work group. In this 
example we are sampling without replacement in a small population, and thus the first 
observation has a probability of 1>6 of being selected, while the second observation has 
a probability of 1>5 of being selected. For most applied problems, when sampling from 
large populations this is not an issue to worry about. If we were selecting from a popula-
tion of several thousand or more employees, then the change in probability from the first 
to the second observation would be trivial and is ignored. Thus, we assume that we are 
sampling with replacement of the first observation in essentially all real-world sampling 
studies.

Now, let us consider the mean number of years of experience of the two employees 
chosen randomly from the population of six. Fifteen possible different random samples 
could be selected. Table 6.1 shows all the possible samples and associated sample means. 
Note that some samples (such as 2, 6) occur twice because there are two employees with 6 
years of experience in the population.

Table 6.1 Samples and Sample Means from the Worker Population Sample Size n = 2

Sample Sample Mean Sample Sample Mean

2, 4 3.0 4, 8 6.0

2, 6 4.0 6, 6 6.0

2, 6 4.0 6, 7 6.5

2, 7 4.5 6, 8 7.0

2, 8 5.0 6, 7 6.5

4, 6 5.0 6, 8 7.0

4, 6 5.0 7, 8 7.5

4, 7 5.5

Table 6.2 Sampling Distribution of the Sample Means from the Worker Population 
Sample Size n = 2

Sample Mean x Probability of x

3.0 1>15

4.0 2>15

4.5 1>15

5.0 3>15

5.5 1>15

6.0 2>15

6.5 2>15

7.0 2>15

7.5 1>15

Each of the 15 samples in Table 6.1 has the same probability, 1>15, of being selected. 
Note that there are several occurrences of the same sample mean. For example, the sample 
mean 5.0 occurs three times, and, thus, the probability of obtaining a sample mean of 5.0 is 
3>15. Table 6.2 presents the sampling distribution for the various sample means from the 
population, and the probability function is graphed in Figure 6.1.
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Figure 6.1 

Probability Function 
for the Sampling 
Distribution of 
Sample Means: 
Sample Size n = 2

Table 6.3 Sampling Distribution of the Sample Means from the Worker Population 

Sample Size n = 5

Sample x Probability

2, 4, 6, 6, 7 5.0 1>6
2, 4, 6, 6, 8 5.2 1>6
2, 4, 6, 7, 8 5.4 1>3
2, 6, 6, 7, 8 5.8 1>6
4, 6, 6, 7, 8 6.2 1>6

Figure 6.2 

Probability Function 
for the Sampling 
Distribution of 
Sample Means: 
Sample Size n = 5
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We see that, although the number of years of experience for the six workers ranges 
from 2 to 8, the possible values of the sample mean have a range from only 3.0 to 7.5. In 
addition, more of the values lie in the central portion of the range.

Table 6.3 presents similar results for a sample size of n = 5, and Figure 6.2 presents 
the graph for the sampling distribution. Notice that the means are concentrated over a 
narrower range. These sample means are all closer to the population mean, m = 5.5. We 
will always find this to be true—the sampling distribution becomes concentrated closer 
to the population mean as the sample size increases. This important result provides an 
important foundation for statistical inference. In the following sections and chapters, we 
build a set of rigorous analysis tools on this foundation.
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In this section we have developed the basic concept of sampling distributions. Here, 
the examples have come from a simple discrete distribution where it is possible to define 
all possible samples of a given sample size. From each possible sample, the sample mean 
was computed, and the probability distribution of all possible sample means was con-
structed. From this simple process we discovered that as the sample size increases, the 
distribution of the sample means—the sampling distribution—becomes more concentrated 
around the population mean. In most applied statistical work, the populations are very 
large, and it is not practical or rational to construct the distribution of all possible samples 
of a given sample size. But by using what we have learned about random variables, we can 
show that the sampling distributions for samples from all populations have characteristics 
similar to those shown for our simple discrete population. That result provides the basis 
for the many useful applications that will be developed in subsequent chapters.

EXERCISES

Basic Exercises
 6.1 A five-a-side soccer club in Singapore buys a set of 

shirts numbered 1 to 5.

a. What is the population distribution of shirt numbers?
b. Determine the sampling distribution of the sample 

mean of the shirt numbers obtained by selecting 
two shirts.

 6.2 Suppose that you have a fair coin and you label the 
head side as 1 and the tail side as 0.

a. Now, you are asked to flip the coin 2 times and write 
down the numerical value that results from each 
toss. Without actually flipping the coin, write down 
the sampling distribution of the sample means.

b. Repeat part (a) with the coin flipped 4 times.
c. Repeat part (a) with the coin flipped 10 times.

Application Exercises
 6.3 A population contains 6 million 0s and 4 million 1s. 

What is the approximate sampling distribution of the 
sample mean in each of the following cases?

a. The sample size is n = 5
b. The sample size is n = 100

  Note: There is a hard way and an easy way to answer 
this question. We recommend the latter.

 6.4 Suppose that a mathematician said that it is impossible 
to obtain a simple random sample from a real-world 
population. Therefore, the whole basis for applying 
statistical procedures to real problems is useless. How 
would you respond?

6.2 SAMPLING DISTRIBUTIONS OF SAMPLE MEANS

We now develop important properties of the sampling distribution of the sample means. 
Our analysis begins with a random sample of n observations from a very large popula-
tion with mean m and variance s2; the sample observations are random variables X1, 
X2, . . . , Xn. Before the sample is observed, there is uncertainty about the outcomes. 
This uncertainty is modeled by viewing the individual observations as random vari-
ables from a population with mean m and variance s2. Our primary interest is in making 
inferences about the population mean m. An obvious starting point is the sample mean.

Sample Mean
Let the random variables X1, X2, . . . , Xn denote a random sample from a 
population. The sample mean value of these random variables is defined as 
follows:

X =
1
n

 a
n

i=1
Xi

Consider the sampling distribution of the random variable X. At this point we can-
not determine the shape of the sampling distribution, but we can determine the mean 
and variance of the sampling distribution from basic definitions we learned in Chapters 4 
and 5. First, determine the mean of the distribution. In Chapters 4 and 5 we saw that the 
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Now that we have established that the distribution of sample means is centered about 
the population mean, we wish to determine the variance of the distribution of sample 
means. Suppose that a random sample of 25 cars yields a mean fuel consumption of 
x = 31 miles per gallon. But we also wish to know how good an approximation x = 31 
is of the population mean. We use the variance of the sampling distribution of the sample 
means to provide the answer.

If the population is very large compared to the sample size, then the distributions of the 
individual independent random sample observations are the same. In Chapters 4 and 5 we 
saw that the variance of a linear combination of independent random variables is the sum 
of the linear coefficients squared times the variance of the random variables. It follows that

Var1X2 = Vara 1
n

X1 +
1
n

X2 + g +
1
n

Xnb = a
n

i=1
a 1

n
b2

s2
i =

ns2

n2 =
s2

n

The variance of the sampling distribution of X decreases as the sample size n in-
creases. In effect, this says that larger sample sizes result in more concentrated sampling 
distributions. The simple example in the previous section demonstrated this result. Thus, 
larger samples result in greater certainty about our inference of the population mean. This 
is to be expected. The variance of the sample mean is denoted as sx

2  and the correspond-
ing standard deviation, called the standard error of X, is given by the following:

sx =
s1n

If the sample size, n, is not a small fraction of the population size, N, then the indi-
vidual sample members are not distributed independently of one another, as noted in 

expectation of a linear combination of random variables is the linear combination of the 
expectations:

E3X 4 = E c 1
n
1X1 + X2 + g + Xn2d = nm

n
= m

Thus, the mean of the sampling distribution of the sample means is the population 
mean. If samples of n random and independent observations are repeatedly and inde-
pendently drawn from a population, then as the number of samples becomes very large, 
the mean of the sample means approaches the true population mean. This is an impor-
tant result of random sampling and indicates the protection that random samples provide 
against unrepresentative samples. A single sample mean could be larger or smaller than 
the population mean. However, on average, there is no reason for us to expect a sample 
mean that is either higher or lower than the population mean. Later in this section this 
result is demonstrated using computer-generated random samples.

Example 6.1 Expected Value of the Sample  
Mean (Expected Value)

Compute the expected value of the sample mean for the employee group example pre-
viously discussed.

Solution The sampling distribution of the sample means is shown in Table 6.2 and 
Figure 6.1. From this distribution we can compute the expected value of the sample 
mean as

E3X4 = a xP1x2 = 13.02a 1
15
b + 14.02a 2

15
b + g + 17.52a 1

15
b = 5.5

which is the population mean, m. A similar calculation can be made to obtain the same 
result using the sampling distribution in Table 6.3.
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Finally, the results of this section are summarized in the following section.

Section 6.1. Thus, the observations are not selected independently. It can be shown in this 
case that the variance of the sample mean is as follows:

Var1X2 = s2

n
 #  

N - n
N - 1

The term 1N - n2>1N - 12 is often called a finite population correction factor. This re-
sult is included for completeness since almost all the real sampling studies use large pop-
ulations. However, there are some examples in business applications, such as auditing, 
that involve finite populations. We will see examples using the finite population correc-
tion factor in Chapters 7 and 9. Careful evaluation of this expression would also dispel the 
notion that it is important that the sample be a substantial fraction of the population in or-
der to provide useful information. It is the sample size—not the fraction of the population 
in the sample—that determines the precision—measured by the variance of the sample 
mean—of results from a random sample.

We have now developed expressions for the mean and variance of the sampling dis-
tribution of X. For most applications the mean and variance define the sampling distribu-
tion. Fortunately, we will see that with some additional analysis these results can become 
very powerful for many practical applications. First, we examine these results under the 
assumption that the underlying population has a normal probability distribution. Next, 
we explore the sampling distributions of the sample mean when the underlying popula-
tion does not have a normal distribution. This second case will provide some very power-
ful results for many practical applications in business and economics.

First, we consider the results if the parent population—from which the random 
sample is obtained—has a normal distribution. If the parent population has a normal 
distribution, then the sampling distribution of the sample means also has a normal distri-
bution. This intuitive conclusion comes from the well-established result that linear func-
tions of normally distributed random variables are also normally distributed. We saw 
applications of this in the portfolio problems in Chapter 5. With the sampling distribu-
tion as a normal probability distribution, we can compute the standard normal Z for the 
sample mean. In Chapter 5 we saw that we can use the standard normal Z to compute 
probabilities for any normally distributed random variable. That result also applies for 
the sample mean.

Standard Normal Distribution for the Sample Means
Whenever the sampling distribution of the sample means is a normal distribu-
tion, we can compute a standardized normal random variable, Z, that has a 
mean of 0 and a variance of 1:

 Z =
X - m
sX

=
X - m
s1n

 (6.1)

Results for the Sampling Distribution  
of the Sample Means
Let X  denote the sample mean of a random sample of n observations from a 
population with mean mX and variance s2.

1. The sampling distribution of X has mean

 E3X4 = m (6.2)
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Figure 6.3 

Probability Density 
Functions for 
Sample Means from 
a Population with 
m = 100 and s = 5

Figure 6.3 shows the sampling distribution of the sample means for sample sizes 
n = 25 and n = 100 from a normal distribution. Each distribution is centered on the 
mean, but as the sample size increases, the distribution becomes concentrated more 
closely around the population mean because the standard error of the sample mean de-
creases as the sample size increases. Thus, the probability that a sample mean is a fixed 
distance from the population mean decreases with increased sample size.

2. The sampling distribution of X  has standard deviation

 sX =
s1n

 (6.3)

 This is called the standard error of X.
3. If the sample size, n, is not small compared to the population size, N, then 

the standard error of X  is as follows:

 sX =
s1n

# AN - n
N - 1

 (6.4)

4. If the parent population distribution is normal and, thus, the sampling 
distribution of the sample means is normal, then the random variable

 Z =
X - m
sX

 (6.5)

 has a standard normal distribution with a mean of 0 and a variance of 1.

Example 6.2 Executive Salary Distributions  
(Normal Probability)

Suppose that, based on historical data, we believe that the annual percentage salary 
increases for the chief executive officers of all midsize corporations are normally dis-
tributed with a mean of 12.2% and a standard deviation of 3.6%. A random sample of 
nine observations is obtained from this population, and the sample mean is computed. 
What is the probability that the sample mean will be greater than 14.4%?

Solution We know that

m = 12.2 s = 3.6 n = 9

Let x denote the sample mean, and compute the standard error of the sample mean:

sx =
s1n

=
3.619

= 1.2

Then we can compute

P1x 7 14.42 = Pa x - m
sx

7
14.4 - 12.2

1.2 b = P1z 7 1.832 = 0.0336

999897 101 102 103

n 5 100

n 5 25

x100
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where Z has a standard normal distribution and the resulting probability is obtained 
from Appendix Table 1 using the procedures developed in Chapter 5.

From this analysis we conclude that the probability that the sample mean will be 
greater than 14.4% is only 0.0336. If a sample mean greater than 14.4% actually oc-
curred, we might begin to suspect that the population mean is greater than 12.2% or 
that we do not have a random sample that properly represents the population prob-
ability distribution.

Example 6.3 Spark Plug Life (Normal Probability)

A spark plug manufacturer claims that the lives of its plugs are normally distributed 
with a mean of 60,000 miles and a standard deviation of 4,000 miles. A random sample 
of 16 plugs had an average life of 58,500 miles. If the manufacturer’s claim is correct, 
what is the probability of finding a sample mean of 58,500 or less?

Solution To compute the probability, we first need to obtain the standard error of 
the sample mean:

sx =
s1n

=
4,000116

= 1,000

The desired probability is as follows:

P1x 6 58,5002 = Pa x - m
sx

6
58,500 - 60,000

1,000
b = P1z 6 -1.502 = 0.0668

Figure 6.4(a) shows the probability density function of X, with the shaded portion in-
dicating the probability that the sample mean is less than 58,500. In Figure 6.4(b) we 
see the standard normal density function, and the shaded area indicates the probability 
that Z is less than - 1.5. Note that in comparing these figures, we see that every value 
of X has a corresponding value of Z and that the comparable probability statements 
provide the same result.

Figure 6.4 (a) Probability That Sample Mean Is Less than 58,500 (b) Probability 
That a Standard Normal Random Variable Is Less than -1.5

57,000 60,000 63,000 X 0 1 2 3

0.0668

Z
(a) (b)

212223

0.0668

Using the standard normal Z, the normal probability values from Appendix 
 Table 1 and the procedures from Chapter 5, we find that the probability that X is less 
than 58,500 is 0.0668. This probability suggests that if the manufacturer’s claims— 
m = 60,000 and s = 4,000—are true, then a sample mean of 58,500 or less has a small 
probability. As a result, if we obtained a sample mean less than 58,500 we would be 
skeptical about the manufacturer’s claims. This important concept—using the probabil-
ity of sample statistics to question the original assumption—is developed more fully in 
Chapter 9.
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The central limit theorem provides the basis for considerable work in applied statisti-
cal analysis. Many random variables can be modeled as sums or means of independent 
random variables, and the normal distribution very often provides a good approxima-
tion of the true distribution. Thus, the standard normal distribution can be used to obtain 
probability values for many observed sample means.

The central limit theorem can be applied to both discrete and continuous random 
variables. In Section 6.3 we use this theorem with discrete random variables to develop 
probabilities for proportion random variables by treating proportions as a special case of 
sample means.

A related and important result is the law of large numbers, which concludes that 
given a random sample of size n from a population, the sample mean will approach the 
population mean as the sample size n becomes large, regardless of the underlying prob-
ability distribution. One obvious result is, of course, a sample that contains the entire 
population. However, we can also see that as the sample size n becomes large, the vari-
ance becomes small, until eventually the distribution approaches a constant, which is the 
sample mean. This result combined with the central limit theorem provides the basis for 
statistical inference about populations by using random samples.

The central limit theorem has a formal mathematical proof (Hogg and Craig 1995, 
246) that is beyond the scope of this book. Results from random sample simulations can 
also be used to demonstrate the central limit theorem. In addition, there are homework 
problems that enable you to conduct further experimental analysis.

Monte Carlo Simulations: Central Limit Theorem

We now present some results using Monte Carlo sample simulations to obtain sampling 
distributions. To obtain each of these results, we selected 1,000 random samples of size n 
generated from computer simulations produced using Minitab 16 and displayed the sam-
pling distributions of the sample means in histograms. This process constructs empiri-
cal sampling distributions of the sample means. Histograms showing the results of these 
simulations are shown in Figures 6.5, 6.6, and 6.7. The chapter  appendix presents the pro-

Central Limit Theorem

In the previous section we learned that the sample mean x for a random sample of size n 
drawn from a population with a normal distribution with mean m and variance s2, is also 
normally distributed with mean m and variance s2>n. In this section we present the central 
limit theorem, which shows that the mean of a random sample, drawn from a population 
with any probability distribution, will be approximately normally distributed with mean 
m and variance s2>n, given a large-enough sample size. The central limit theorem shows 
that the sum of n random variables from any probability distribution will be approxi-
mately normally distributed if n is large, as noted in the chapter appendix. Since the mean 
is the sum divided by n, the mean is also approximately normally distributed and that is 
the result that is important for our statistical applications in business and economics.

This important result enables us to use the normal distribution to compute probabili-
ties for sample means obtained from many different populations. In applied statistics the 
probability distribution for the population being sampled is often not known, and in par-
ticular there is no way to be certain that the underlying distribution is normal.

Statement of the Central Limit Theorem
Let X1, X2, . . . , Xn be a set of n independent random variables having identical 
distributions with mean m, variance s2, and X as the mean of these random vari-
ables. As n becomes large, the central limit theorem states that the distribution of

 Z =
X - mX

sX
 (6.6)

approaches the standard normal distribution.
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cedure for obtaining sampling distributions for the sample means from any probability 
distribution. In this appendix and in the data directory, we include a Minitab Computer 
Macro for you to use in easily obtaining your own sampling distributions.

First, for Figure 6.5 we constructed a population of 100 randomly selected values 
using the normal distribution. The actual histogram of the population used is shown. 
Next, we obtained 1,000 random samples—sampling with replacement—from this dis-
tribution using sample sizes n = 10, n = 25, and n = 50. In this example the histograms 
of the sample means for all three sample sizes follow a normal distribution, as shown 
by the normal curve drawn over the histogram. Note also that the distributions are nar-
rower with increasing sample size because the standard deviation of the sample means 
becomes smaller with larger sample sizes. The normal distribution used to obtain the 
observations had a mean of 5 and a standard deviation of 2. Thus, about 95% of the ob-
servations for the histogram should be between 5 { 2 standard deviations, or between 
1 and 9. For the histogram with sample size 50, the interval for 95% of the sample means 
would be as follows:

5 { 11.962 2150

5 { 0.55

4.45 S 5.55

When random samples of various sizes are obtained from a population with known mean 
and variance, we see that the ranges for various percentages of the sample means follow 
the results obtained using the normal distribution.

Next we considered a uniform probability distribution over the range 1 to 10. The 
probability distribution is shown in Figure 6.6. Clearly, the values of the random variable 
are not normally distributed, since the values are uniform over the range 1 to 10. The dis-
tributions of sample means for sample sizes 10, 25, and 50 are shown in Figure 6.6. A nor-
mal probability density function with the same mean and variance is sketched over each 
histogram to provide a comparison. Generally, the distribution of sample means from 
uniform or symmetric distributions can be closely approximated by the normal distribu-
tion, with samples of size 25 or more. The mean for the uniform distribution is 5.5, and the 
standard deviation is 2.886. From a normal distribution of sample means, with n = 50, we 
would expect to find 95% of the sample means in the following interval:

5.5 { 11.9622.887150

5.5 { 0.80

4.70 S 6.30

An examination of Figure 6.6 indicates that the normal interval applies here.
Next, let us consider a population with a probability distribution that is skewed to 

the right, as shown in Figure 6.7. Distributions of observations for many business and 
economic processes are skewed. For example, family incomes and housing prices in a city, 
state, or country are often skewed to the right. There is typically a small percentage of 
families with very high incomes, and these families tend to live in expensive houses. Con-
sider the skewed probability distribution shown in Figure 6.7. This could be a distribution 
of family incomes for the United States of America. Suppose that you wanted to compare 
the mean income for the United States with the means for a larger set of countries with 
similar educational levels.

The sampling distributions of mean incomes are compared using random samples of 
size 10, 25, and 50 from the probability distribution. If you use a random sample of size 
n = 10 and assume that the sample mean is normally distributed, the chances for estimat-
ing incorrect probabilities are great. These mistakes in probability estimates are particu-
larly large for sample means in the upper tail of the distribution. Note that the histogram 
is different from one that would be obtained from a normal distribution. But if you use 
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a random sample of size n = 25, your results are much better. Note that the second his-
togram with n = 25 is much closer to a normal distribution. The results are even better 
when the sample size is 50. Thus, even when the distribution of individual observations is 
highly skewed, the sampling distribution of sample means closely approximates a normal 
distribution when n Ú 50. The mean and standard deviation for the skewed distribution 
are 3.3 and 4.247. Thus, the interval from the normal distribution for 95% of the sample 
means of size n = 50 is as follows:

3.3 { 11.9624.247150

3.3 { 1.18

2.12 S 4.48

The distribution of sample means for n = 50 appears to fit this interval.
From the random sampling studies in this chapter and our previous study of the bino-

mial distribution, we have additional evidence to demonstrate the central limit theorem. 
Similar demonstrations have been produced numerous times by many statisticians. As 
a result, a large body of empirical evidence supports the application of the central limit 
theorem to realistic statistical applications, in addition to theoretical results. In Chapter 5 
we learned that the binomial random variable has an approximate normal distribution as 
the sample size becomes large.

The question for applied analysis concerns the sample size required to ensure that 
sample means have a normal distribution. Based on considerable research and experience, 
we know that, if the distributions are symmetric, then the means from samples of n = 20 
to 25 are well approximated by the normal distribution. For skewed distributions the re-
quired sample sizes are generally somewhat larger. But note that in the previous examples 
using a skewed distribution a sample size of n = 50 produced a sampling distribution of 
sample means that closely followed a normal distribution.

In this chapter we have begun our discussion of the important statistical problem of 
making inferences about a population based on results from a sample. The sample mean 
or sample proportion is often computed to make inferences about population means or 
proportions. By using the central limit theorem, we have a rationale for applying the tech-
niques we develop in future chapters to a wide range of problems. The following exam-
ples show important applications of the central limit theorem.

Example 6.4 Marketing Study for Antelope Coffee 
(Normal Probability)

Antelope Coffee, Inc., is considering the possibility of opening a gourmet coffee shop in 
Big Rock, Montana. Previous research has indicated that its shops will be successful in 
cities of this size if the mean annual family income is above $70,000. It is also assumed 
that the standard deviation of income is $5,000 in Big Rock, Montana.

A random sample of 36 people was obtained, and the mean income was $72,300. 
Does this sample provide evidence to conclude that a shop should be opened?

Solution The distribution of incomes is known to be skewed, but the central limit 
theorem enables us to conclude that the sample mean is approximately normally 
distributed. To answer the question, we need to determine the probability of obtaining 
a sample mean of x = 72,300 or larger if the population mean is m = 70,000.

First, compute the value for the standardized normal Z statistic:

z =
x - m
s>1n

=
72,300 - 70,000

5,000>136
= 2.76

From the standard normal table we find that the probability of obtaining a Z value 
of 2.76 or larger is 0.0029. Because this probability is very small, we can conclude that it 
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Acceptance Intervals

In many statistical applications we would like to determine the range within which 
sample means are likely to occur. Determining such ranges is a direct application of the 
sampling distribution concepts we have developed. An acceptance interval is an interval 
within which a sample mean has a high probability of occurring, given that we know the 
population mean and variance. If the sample mean is within that interval, then we can 
accept the conclusion that the random sample came from the population with the known 
population mean and variance. Thus acceptance intervals provide an operating rule for 
process-monitoring applications. The probability that the sample mean is within a partic-
ular interval can be computed if the sample means have a distribution that is close to nor-
mal. Acceptance intervals can also be computed for nonnormal probability distributions.

Acceptance intervals find wide application for monitoring manufacturing processes 
to determine if product standards continue to be achieved. For example, in a manufactur-
ing process the manufacturing engineer carefully sets and tests a new process so that it 
will produce products that all meet the guaranteed specifications for size, weight, or other 
measured properties. Thus, the mean and standard deviation for the units produced are 
specified so that the desired product quality will be obtained. In addition, these inter-
vals are also used for monitoring various business activities that involve customer service. 
 Acceptance standards are established that meet stated marketing goals and customer ser-
vice-level capability. These standards, in turn, are used to develop means, variances, and 
acceptance intervals to be used for process monitoring (Deming, 1986).

However, it is possible that the process could come out of adjustment and produce 
defective product items. Changes in either the mean or variance of the critical measure-
ment result from a process that is out of adjustment. Therefore, the process is monitored 
regularly by obtaining random samples and measuring the important properties, such as 
the sample mean and variance. If the measured values are within the acceptance interval, 
then the process is allowed to continue. If the values are not, then the process is stopped 
and necessary adjustments are made.

Acceptance intervals based on the normal distribution are defined by the distribution 
mean and variance. From the central limit theorem we know that the sampling distribu-
tion of sample means is often approximately normal, and, thus, acceptance intervals based 
on the normal distribution have wide applications. Assuming that we know the popula-
tion mean m and variance s2, then we can construct a symmetric acceptance interval

m { za>2sx

provided that x has a normal distribution and za>2 is the standard normal when the upper 
tail probability is a>2. The probability that the sample mean x is included in the interval 
is 1 - a.

As noted, acceptance intervals are widely used for quality-control monitoring of vari-
ous production and service processes. The interval

m { za>2sx

is plotted over time (the result is called an X-bar chart) and provides limits for the sample 
mean x, given that the population mean is m. Typically, a is very small 1a 6 .012, and 
standard practice in U.S. industries is to use z = 3. This is the source for the term Six Sigma 
used for various quality-assurance programs (Hiam, 1992). If the sample mean is outside 
the acceptance interval, then we suspect that the population mean is not m. In a typical 
project engineers will take various steps to achieve a small variance for important prod-
uct measurements that are directly related to product quality. Once the process has been 

is likely that the population mean income is not $70,000 but is a larger value. This result 
provides strong evidence that the population mean income is higher than $70,000 and 
that the coffee shop is likely to be a success. In this example we can see the importance 
of sampling distributions and the central limit theorem for problem solving.



 6.2 Sampling Distributions of Sample Means 261

adjusted so that the variance is small, an acceptance interval for a sample mean—called 
a control interval—is established in the form of a control chart (Montgomery, 1997). Then 
periodic random samples are obtained and compared to the control interval. If the sample 
mean is within the control interval, it is concluded that the process is operating properly 
and no action is taken. But if the sample mean is outside the control interval, it is concluded 
that the process is not operating properly and steps are taken to correct the process.

Example 6.5 Monitoring Health Insurance Claims 
(Acceptance Interval)

Charlotte King, vice president of financial underwriting for a large health insurance 
company, wishes to monitor daily insurance claim payments to determine if the aver-
age dollar value of subscriber claims is stable, increasing, or decreasing. The value of 
individual claims varies up and down from one day to the next, and it would be naive 
to draw conclusions or change operations based on these daily variations. But at some 
point the changes become substantial and should be noted. She has asked you to de-
velop a procedure for monitoring the dollar value of individual claims.

Solution Your initial investigation indicates that health insurance claims are highly 
skewed, with a small number of very large claims for major medical procedures. To 
develop a monitoring process, you first need to determine the historical mean and 
variance for individual claims. After some investigation you also find that the mean for 
random samples of n = 100 claims is normally distributed. Based on past history the 
mean, m, level for individual claims is $6,000 with a standard deviation of s = 2,000.

Using this information you proceed to develop a claims-monitoring system that 
obtains a random sample of 100 claims each day and computes the sample mean. The 
company has established a 95% acceptance interval for monitoring claims. An interval 
defined for the standard normal using Z = {1.96 includes 95% of the values. From 
this you compute the 95% acceptance interval for insurance claims as follows:

6,000 { 1.96
2,0001100

6,000 { 392

Each day the sample mean for 100 randomly selected claims is computed and com-
pared to the acceptance interval. If the sample mean is inside the interval 5,608 to 6,392,  
Ms. King can conclude that claims are not deviating from the historical standard. You 
explain to her that if the claims are following the historical standard then 95% of the time 
the sample mean will be within the interval. The sample mean could be outside the inter-
val even if the population mean is 6,000 with probability 0.05. In those cases Ms. King’s 
conclusion that the mean claim level has changed from the historical standard would be 
wrong and this error would occur 5% of the time. Therefore if the sample mean is outside 
the interval there is strong evidence to conclude that the claims are no longer following 
the historical standard. To simplify the analysis, you instruct the analysts to plot the daily 
claims mean on a control chart, shown in Figure 6.8. Using this control chart Charlotte 
King and her staff can study the patterns of the sample means and determine if there are 
trends and if means are outside of the boundaries that indicate standard claims’ behavior.

Figure 6.8 Ninety-Five Percent Acceptance Interval for Health Insurance Claims
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Example 6.6 Prairie View Cereal Package Weights 
(Acceptance Intervals)

Prairie View Cereals. Inc., is concerned about maintaining correct package weights at 
its cereal-packaging facility. The package label weight is 440 grams, and company offi-
cials are interested in monitoring the process to ensure that package weights are stable.

Solution A random sample of five packages is collected every 30 minutes, and each 
package is weighed electronically. The mean weight is then plotted on an X-bar control 
chart such as the one in Figure 6.9. When an X-bar chart is used for monitoring limits 
on product quality—this usage is practiced by numerous highly successful firms—
the central limit theorem provides the rationale for using the normal distribution to 
establish limits for the small sample means. Thus, a fundamentally important statistical 
theory drives a key management process.

Figure 6.9 X-Bar Chart For Cereal-Package Weight
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In this chart SL is the standard deviation for the sample mean. The upper and lower 
limits are set at {3sX instead of {1.96sX, or 95%, the acceptance interval used in the 
previous example. The interval X{3sX (Minitab labels the mean for the entire popula-
tion as X) includes almost all the sample means under the normal distribution, given 
a stable mean and variance. Thus, a sample mean outside the control limits indicates 
that something has changed and that adjustments should be made. Given the number 
of points outside the acceptance interval, we recommend that the process be stopped 
and adjusted.

EXERCISES

Basic Exercises
 6.5 Given a population with a mean of m = 100 and a 

variance of s2 = 81, the central limit theorem applies 
when the sample size is n Ú 25. A random sample of 
size n = 25 is obtained.

a. What are the mean and variance of the sampling 
distribution for the sample means?

b. What is the probability that x 7 102?

c. What is the probability that 98 … x … 101?
d. What is the probability that x … 101.5?

 6.6 Given a population with a mean of m = 100 and a 
variance of s2 = 900, the central limit theorem applies 
when the sample size is n Ú 25. A random sample of 
size n = 30 is obtained.

a. What are the mean and variance of the sampling 
distribution for the sample means?
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b. What is the probability that x 7 109?
c. What is the probability that 96 … x … 110?
d. What is the probability that x … 107?

 6.7 Given a population with a mean of m = 200 and a 
variance of s2 = 625, the central limit theorem applies 
when the sample size n Ú 25. A random sample of 
size n = 25 is obtained.

a. What are the mean and variance of the sampling 
distribution for the sample mean?

b. What is the probability that x 7 209?
c. What is the probability that 198 … x … 211?
d. What is the probability that x … 202?

 6.8 Given a population with mean m = 400 and variance 
s2 = 1, 600, the central limit theorem applies when 
the sample size is n Ú 25. A random sample of size 
n = 35 is obtained.

a. What are the mean and variance of the sampling 
distribution for the sample means?

b. What is the probability that x 7 412?
c. What is the probability that 393 … x … 407?
d. What is the probability that x … 389?

 6.9 When a production process is operating correctly, the 
number of units produced per hour has a normal distri-
bution with a mean of 92.0 and a standard deviation of 
3.6. A random sample of 4 different hours was taken.

a. Find the mean of the sampling distribution of the 
sample means.

b. Find the variance of the sampling distribution of 
the sample mean.

c. Find the standard error of the sampling distribu-
tion of the sample mean.

d. What is the probability that the sample mean ex-
ceeds 93.0 units?

Application Exercises
 6.10 The lifetimes of lightbulbs produced by a particular 

manufacturer have a mean of 1,200 hours and a stan-
dard deviation of 400 hours. The population distribu-
tion is normal. Suppose that you purchase nine bulbs, 
which can be regarded as a random sample from the 
manufacturer’s output.

a. What is the mean of the sample mean lifetime?
b. What is the variance of the sample mean?
c. What is the standard error of the sample mean?
d. What is the probability that, on average, those nine 

lightbulbs have lives of fewer than 1,050 hours?

 6.11 The fuel consumption, in miles per gallon, of all cars of a 
particular model has a mean of 25 and a standard devia-
tion of 2. The population distribution can be assumed to 
be normal. A random sample of these cars is taken.

a. Find the probability that sample mean fuel con-
sumption will be fewer than 24 miles per gallon if
 i. a sample of 1 observation is taken.
 ii. a sample of 4 observations is taken.
 iii. a sample of 16 observations is taken.

b. Explain why the three answers in part (a) differ in 
the way they do. Draw a graph to illustrate your 
reasoning.

 6.12 The mean selling price of senior condominiums in 
Green Valley over a year was $215,000. The popula-
tion standard deviation was $25,000. A random sam-
ple of 100 new unit sales was obtained.

a. What is the probability that the sample mean sell-
ing price was more than $210,000?

b. What is the probability that the sample mean sell-
ing price was between $213,000 and $217,000?

c. What is the probability that the sample mean sell-
ing price was between $214,000 and $216,000?

d. Without doing the calculations, state in which of 
the following ranges the sample mean selling price 
is most likely to lie:

  $213,000 to $215,000; $214,000 to $216,000;
  $215,000 to $217,000; $216,000 to $218,000
e. Suppose that, after you had done these calculations, 

a friend asserted that the population distribution 
of selling prices of senior condominiums in Green 
Valley was almost certainly not normal. How would 
you respond?

 6.13 Candidates for employment at a city fire department 
are required to take a written aptitude test. Scores on 
this test are normally distributed with a mean of 280 
and a standard deviation of 60. A random sample of 
nine test scores was taken.

a. What is the standard error of the sample mean 
score?

b. What is the probability that the sample mean score 
is less than 270?

c. What is the probability that the sample mean score 
is more than 250?

d. Suppose that the population standard deviation is, 
in fact, 40, rather than 60. Without doing the calcula-
tions, state how this would change your answers to 
parts (a), (b), and (c). Illustrate your conclusions with 
the appropriate graphs.

 6.14 A random sample of 16 junior managers in the of-
fices of corporations in a large city center was taken 
to estimate average daily commuting time for all such 
managers. Suppose that the population times have a 
normal distribution with a mean of 87 minutes and a 
standard deviation of 22 minutes.

a. What is the standard error of the sample mean 
commuting time?

b. What is the probability that the sample mean is 
fewer than 100 minutes?

c. What is the probability that the sample mean is 
more than 80 minutes?

d. What is the probability that the sample mean is 
outside the range 85 to 95 minutes?

e. Suppose that a second (independent) random sam-
ple of 50 junior managers is taken. Without doing 
the calculations, state whether the probabilities in 
parts (b), (c), and (d) would be higher, lower, or the 
same for the second sample. Sketch graphs to illus-
trate your answers.

 6.15 A company produces breakfast cereal. The true mean 
weight of the contents of its cereal packages is 20 
ounces, and the standard deviation is 0.6 ounce. The 
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 6.19 The price-earnings ratios for all companies whose shares 
are traded on the New York Stock Exchange follow a 
normal distribution with a standard deviation of 3.8. A 
random sample of these companies is selected in order 
to estimate the population mean price-earnings ratio.

a. How large a sample is necessary in order to ensure 
that the probability that the sample mean differs 
from the population mean by more than 1.0 is less 
than 0.10?

b. Without doing the calculations, state whether a 
larger or smaller sample size compared to the sam-
ple size in part (a) would be required to guarantee 
that the probability of the sample mean differing 
from the population mean by more than 1.0 is less 
than 0.05.

c. Without doing the calculations, state whether a larger 
or smaller sample size compared to the sample size in 
part a would be required to guarantee that the prob-
ability of the sample mean differing from the popula-
tion mean by more than 1.5 hours is less than 0.10.

 6.20 The number of hours spent studying by students on a 
large campus in the week before final exams follows 
a normal distribution with a standard deviation of  
8.4 hours. A random sample of these students is taken 
to estimate the population mean number of hours 
studying.

a. How large a sample is needed to ensure that the 
probability that the sample mean differs from the 
population mean by more than 2.0 hours is less 
than 0.05?

b. Without doing the calculations, state whether a 
larger or smaller sample size compared to the sam-
ple size in part (a) would be required to guarantee 
that the probability of the sample mean differing 
from the population mean by more than 2.0 hours 
is less than 0.10.

c. Without doing the calculations, state whether a 
larger or smaller sample size compared to the sam-
ple size in part (a) would be required to guarantee 
that the probability of the sample mean differing 
from the population mean by more than 1.5 hours is 
less than 0.05.

 6.21 Greenstone Coffee is experiencing financial pressures 
due to increased competition for its numerous urban 
coffee shops. Total sales revenue has dropped by 15% 
and the company wishes to establish a sales monitor-
ing process to identify shops that are underperform-
ing. Historically, the daily mean sales for a shop have 
been $11,500 with a variance of 4,000,000. Their moni-
toring plan will take a random sample of 5 days’ sales 
per month and use the sample mean sales to identify 
shops that are underperforming. Establish the lower 
limit sales such that only 5% of the shops would have 
a sample sales mean below this value.

 6.22 In taking a sample of n observations from a popula-
tion of N members, the variance of the sampling distri-
bution of the sample means is as follows:

sx
2 =
s2

x

n
# N - n
N - 1

population distribution of weights is normal. Sup-
pose that you purchase four packages, which can be 
regarded as a random sample of all those produced.

a. What is the standard error of the sample mean 
weight?

b. What is the probability that, on average, the con-
tents of these four packages will weigh fewer than 
19.7 ounces?

c. What is the probability that, on average, the con-
tents of these four packages will weigh more than 
20.6 ounces?

d. What is the probability that, on average, the con-
tents of these four packages will weigh between 
19.5 and 20.5 ounces?

e. Two of the four boxes are chosen at random. What is 
the probability that the average contents of these two 
packages will weigh between 19.5 and 20.5 ounces?

 6.16 Assume that the standard deviation of monthly rents 
paid by students in a particular town is $40. A random 
sample of 100 students was taken to estimate the mean 
monthly rent paid by the whole student population.

a. What is the standard error of the sample mean 
monthly rent?

b. What is the probability that the sample mean ex-
ceeds the population mean by more than $5?

c. What is the probability that the sample mean is 
more than $4 below the population mean?

d. What is the probability that the sample mean differs 
from the population mean by more than $3?

 6.17 The times spent studying by students in the week be-
fore final exams follows a normal distribution with 
standard deviation 8 hours. A random sample of four 
students was taken in order to estimate the mean 
study time for the population of all students.

a. What is the probability that the sample mean ex-
ceeds the population mean by more than 2 hours?

b. What is the probability that the sample mean is 
more than 3 hours below the population mean?

c. What is the probability that the sample mean differs 
from the population mean by more than 4 hours?

d. Suppose that a second (independent) random 
sample of 10 students was taken. Without doing the 
calculations, state whether the probabilities in parts 
(a), (b), and (c) would be higher, lower, or the same 
for the second sample.

 6.18 An industrial process produces batches of a chemical 
whose impurity levels follow a normal distribution 
with standard deviation 1.6 grams per 100 grams of 
chemical. A random sample of 100 batches is selected in 
order to estimate the population mean impurity level.

a. The probability is 0.05 that the sample mean 
 impurity level exceeds the population mean by 
how much?

b. The probability is 0.10 that the sample mean 
 impurity level is below the population mean by 
how much?

c. The probability is 0.15 that the sample mean 
 impurity level differs from the population mean by 
how much?
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6.3 SAMPLING DISTRIBUTIONS OF SAMPLE PROPORTIONS

In Section 4.4 we developed the binomial distribution as the sum of n independent 
 Bernoulli random variables, each with probability of success P. To characterize the distri-
bution, we need a value for P. Here, we indicate how we can use the sample proportion to 
obtain inferences about the population proportion. The proportion random variable has 
many applications, including percent market share, percent successful business invest-
ments, and outcomes of elections.

  The quantity 
1N - n21N - 12  is called the finite population 

correction factor.

a. To get some feeling for possible magnitudes of the 
finite population correction factor, calculate it for 
samples of n = 20 observations from populations 
of members: 20, 40, 100, 1,000, 10,000.

b. Explain why the result found in part a, is precisely 
what one should expect on intuitive grounds.

c. Given the results in part a, discuss the practical sig-
nificance of using the finite-population correction 
factor for samples of 20 observations from popula-
tions of different sizes.

 6.23 A town has 500 real estate agents. The mean value 
of the properties sold in a year by these agents is 
$800,000, and the standard deviation is $300,000. A 
random sample of 100 agents is selected, and the value 
of the properties they sold in a year is recorded.

a. What is the standard error of the sample mean?
b. What is the probability that the sample mean 

 exceeds $825,000?
c. What is the probability that the sample mean 

 exceeds $780,000?
d. What is the probability that the sample mean is be-

tween $790,000 and $820,000?

 6.24 An English literature course was taken by 250 students. 
Each member of a random sample of 50 of these stu-
dents was asked to estimate the amount of time he or 
she spent on the previous week’s assignment. Suppose 
that the population standard deviation is 30 minutes.

a. What is the probability that the sample mean exceeds 
the population mean by more than 2.5 minutes?

b. What is the probability that the sample mean is 
more than 5 minutes below the population mean?

c. What is the probability that the sample mean differs 
from the population mean by more than 10 minutes?

 6.25 For an audience of 600 people attending a concert, the 
average time on the journey to the concert was 32 min-
utes, and the standard deviation was 10 minutes. A 
random sample of 150 audience members was taken.

a. What is the probability that the sample mean jour-
ney time was more than 31 minutes?

b. What is the probability that the sample mean jour-
ney time was less than 33 minutes?

c. Construct a graph to illustrate why the answers to 
parts (a) and (b) are the same.

d. What is the probability that the sample mean jour-
ney time was not between 31 and 33 minutes?

Sample Proportion
Let X be the number of successes in a binomial sample of n observations with 
the parameter P. The parameter is the proportion of the population members 
that have a characteristic of interest. We define the sample proportion as 
follows:

 pn =
X
n

 (6.7)

X is the sum of a set of n independent Bernoulli random variables, each with 
probability of success P. As a result, pn is the mean of a set of independent ran-
dom variables, and the results we developed in the previous sections for sam-
ple means apply. In addition, the central limit theorem can be used to argue 
that the probability distribution for pn can be modeled as a normally distributed 
random variable.

There is also a variation of the law of large numbers that applies when 
sampling to determine the percent of successes in a large population that has 
a known proportion P of success. If random samples are obtained from the 
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In Section 5.4 it was shown that the number of successes in a binomial distribution 
and the proportion of successes have a distribution that is closely approximated by a nor-
mal distribution (see Figures 5.23 and 5.24). This provides a very close approximation 
when nP11 - P2 7 5.

The mean and variance of the sampling distribution of the sample proportion pn  can 
be obtained from the mean and variance of the number of successes, X:

E3X4 = nP Var1X2 = nP11 - P2
Thus,

E3pn4 = E cX
n
d = 1

n
E3X4 = P

We see that the mean of the distribution of pn is the population proportion, P.
The variance of pn is the variance of the population distribution of the Bernoulli ran-

dom variables divided by n:

s
np
2 = VaraX

n
b =

1
n2 Var1X2 = P11 - P2

n

The standard deviation of pn, which is the square root of the variance, is called its stan-
dard error.

Since the distribution of the sample proportion is approximately normal for large 
sample sizes, we can obtain a standard normal random variable by subtracting P from pn 
and dividing by the standard error.

population and the success or failure is determined for each observation, then 
the sample proportion of success approaches P as the sample size increases. 
Thus, we can make inferences about the population proportion using the sam-
ple proportion and the sample proportion will get closer as our sample size 
increases. However, the difference between the expected number of sample 
successes—the sample size multiplied by P—and the number of successes in 
the sample might actually increase.

Sampling Distribution of the Sample Proportion
Let pn be the sample proportion of successes in a random sample from a popu-
lation with proportion of success P. Then,

1. the sampling distribution of pn has mean P :

 E3pn 4 = P (6.8)

2. the sampling distribution of pn has standard deviation

 s
np = AP11 - P2

n
 (6.9)

3. and, if the sample size is large, the random variable

 Z =
pn - P
spn

 (6.10)

 is approximately distributed as a standard normal. This approximation is 
good if

nP11 - P2 7 5
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Figure 6.10 

Probability Density 
Functions for the 
Sample Proportions 
with P = 0.80

Similar to the results from the previous section, we see that the standard error of the 
sample proportion, pn, decreases as the sample size increases and the distribution becomes 
more concentrated, as seen in Figure 6.10, using samples from a population with 80% suc-
cess rate. This is expected because the sample proportion is a sample mean. With larger 
sample sizes our inferences about the population proportion improve. From the central 
limit theorem we know that the binomial distribution can be approximated by the normal 
distribution with corresponding mean and variance. We see this result in the following 
examples.

Example 6.7 Evaluation of Home Electric  
Wiring (Probability of Sample Proportion)

A random sample of 270 homes was taken from a large population of older homes to 
estimate the proportion of homes with unsafe wiring. If, in fact, 20% of the homes have 
unsafe wiring, what is the probability that the sample proportion will be between 16% 
and 24%?

Solution For this problem we have the following:

P = 0.20 n = 270

We can compute the standard deviation of the sample proportion, pn, as follows:

spn = AP11 - P2
n

= A0.2011 - 0.202
270

= 0.024

The required probability is

 P10.16 6 pn 6 0.242 = Pa 0.16 - P
spn

6
pn - P
spn

6
0.24 - P
spn

b
 = Pa 0.16 - 0.20

0.024
6 Z 6

0.24 - 0.20
0.024

b
 = P1 -1.67 6 Z 6 1.672
 = 0.9050

where the probability for the Z interval is obtained using Appendix Table 1.
Thus, we see that the probability is 0.9050 that the sample proportion is within the 

interval 0.16 to 0.24, given P = 0.20, and a sample size of n = 270. This interval can be 
called a 90.50% acceptance interval. We can also note that if the sample proportion was 
actually outside this interval, we might begin to suspect that the population propor-
tion, P, is not 0.20.

0.65 0.75 0.85 0.95

n = 400

n = 100

P
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Example 6.8 Business Course Selection (Probability 
of Sample Proportion)

It has been estimated that 43% of business graduates believe that a course in business 
ethics is very important for imparting ethical values to students (David, Anderson, and 
Lawrimore 1990). Find the probability that more than one-half of a random sample of 
80 business graduates have this belief.

Solution We are given that

P = 0.43 n = 80

We first compute the standard deviation of the sample proportion:

spn = AP11 - P2
n

= A0.4311 - 0.432
80

= 0.055

Then the required probability can be computed as follows:

 P1pn 7 0.502 = Pa pn - P
spn

7
0.50 - P
spn

b
 = PaZ 7

0.50 - 0.43
0.055

b
 = P1Z 7 1.272
 = 0.1020

This probability, as shown in Figure 6.11, was obtained from Appendix Table 1. The 
probability of having more than one-half of the sample believing in the value of busi-
ness ethics courses is approximately 0.1.

Figure 6.11 The Probability that a Standard Normal Random Variable Exceeds 1.27

3

Area = 0.102

Z21

1.27

0212223

EXERCISES

Basic Exercises
 6.26 Suppose that we have a population with proportion 

P = 0.40 and a random sample of size n = 100 drawn 
from the population.

a. What is the probability that the sample proportion 
is greater than 0.45?

b. What is the probability that the sample proportion 
is less than 0.29?

c. What is the probability that the sample proportion is 
between 0.35 and 0.51?

 6.27 Suppose that we have a population with proportion 
P = 0.25 and a random sample of size n = 200 drawn 
from the population.

a. What is the probability that the sample proportion 
is greater than 0.31?

b. What is the probability that the sample proportion 
is less than 0.14?

c. What is the probability that the sample proportion is 
between 0.24 and 0.40?
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 6.28 Suppose that we have a population with proportion 
P = 0.60 and a random sample of size n = 100 drawn 
from the population.

a. What is the probability that the sample proportion 
is more than 0.66?

b. What is the probability that the sample proportion 
is less than 0.48?

c. What is the probability that the sample proportion is 
between 0.52 and 0.66?

 6.29 Suppose that we have a population with proportion 
P = 0.50 and a random sample of size n = 900 drawn 
from the population.

a. What is the probability that the sample proportion 
is more than 0.52?

b. What is the probability that the sample proportion 
is less than 0.46?

c. What is the probability that the sample proportion is 
between 0.47 and 0.53?

Application Exercises
 6.30 In 1992, Canadians voted in a referendum on a new 

constitution. In the province of Quebec, 42.4% of those 
who voted were in favor of the new constitution. A ran-
dom sample of 100 voters from the province was taken.

a. What is the mean of the distribution of the sample 
proportion in favor of a new constitution?

b. What is the variance of the sample proportion?
c. What is the standard error of the sample 

proportion?
d. What is the probability that the sample proportion is 

more than 0.5?

 6.31 According to the Internal Revenue Service, 75% of all 
tax returns lead to a refund. A random sample of 100 
tax returns is taken.

a. What is the mean of the distribution of the sample 
proportion of returns leading to refunds?

b. What is the variance of the sample proportion?
c. What is the standard error of the sample 

proportion?
d. What is the probability that the sample proportion 

exceeds 0.8?

 6.32 A record store owner finds that 20% of customers en-
tering her store make a purchase. One morning 180 
people, who can be regarded as a random sample of 
all customers, enter the store.

a. What is the mean of the distribution of the sample 
proportion of customers making a purchase?

b. What is the variance of the sample proportion?
c. What is the standard error of the sample proportion?
d. What is the probability that the sample proportion is 

less than 0.15?

 6.33 An administrator for a large group of hospitals be-
lieves that of all patients 30% will generate bills that 
become at least 2 months overdue. A random sample 
of 200 patients is taken.

a. What is the standard error of the sample propor-
tion that will generate bills that become at least  
2 months overdue?

b. What is the probability that the sample proportion 
is less than 0.25?

c. What is the probability that the sample proportion 
is more than 0.33?

d. What is the probability that the sample proportion is 
between 0.27 and 0.33?

 6.34 A corporation receives 120 applications for positions 
from recent college graduates in business. Assuming 
that these applicants can be viewed as a random sam-
ple of all such graduates, what is the probability that 
between 35% and 45% of them are women if 40% of all 
recent college graduates in business are women?

 6.35 A charity has found that 42% of all donors from last 
year will donate again this year. A random sample of 
300 donors from last year was taken.

a. What is the standard error of the sample propor-
tion who will donate again this year?

b. What is the probability that more than half of these 
sample members will donate again this year?

c. What is the probability that the sample proportion 
is between 0.40 and 0.45?

d. Without doing the calculations, state in which of 
the following ranges the sample proportion is more 
likely to lie: 0.39 to 0.41, 0.41 to 0.43, 0.43 to 0.45, or 
0.45 to 0.46.

 6.36 A corporation is considering a new issue of convert-
ible bonds. Management believes that the offer terms 
will be found attractive by 20% of all its current stock-
holders. Suppose that this belief is correct. A random 
sample of 130 current stockholders is taken.

a. What is the standard error of the sample propor-
tion who find this offer attractive?

b. What is the probability that the sample proportion 
is more than 0.15?

c. What is the probability that the sample proportion 
is between 0.18 and 0.22?

d. Suppose that a sample of 500 current stockholders 
had been taken. Without doing the calculations, state 
whether the probabilities in parts (b) and (c) would 
have been higher, lower, or the same as those found.

 6.37 A store has determined that 30% of all lawn mower 
purchasers will also purchase a service agreement. In 
1 month 280 lawn mowers are sold to customers, who 
can be regarded as a random sample of all purchasers.

a. What is the standard error of the sample pro-
portion of those who will purchase a service 
agreement?

b. What is the probability that the sample proportion 
will be less than 0.32?

c. Without doing the calculations, state in which of 
the following ranges the sample proportion is most 
likely to be: 0.29 to 0.31, 0.30 to 0.32, 0.31 to 0.33, or 
0.32 to 0.34.

 6.38 A random sample of 100 voters is taken to estimate the 
proportion of a state’s electorate in favor of increas-
ing the gasoline tax to provide additional revenue for 
highway repairs. What is the largest value that the 
standard error of the sample proportion in favor of 
this measure can take?
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these chief executive officers. If 55% of all the popula-
tion members believe that program trading should be 
banned, what is the probability that less than half the 
sample members hold this view?

 6.44 Forty percent of students at small colleges have 
brought their own personal computers to campus. 
A random sample of 120 entering freshmen was taken.

a. What is the standard error of the sample propor-
tion bringing their own personal computers to 
campus?

b. What is the probability that the sample proportion 
is less than 0.33?

c. What is the probability that the sample proportion is 
between 0.38 and 0.46?

 6.45 An employee survey conducted two years ago by Rice 
Motors, Inc., found that 53% of its employees were 
concerned about future health care benefits. A random 
sample of 80 of these employees were asked if they 
were now concerned about future health care benefits. 
Answer the following, assuming that there has been 
no change in the level of concern about health care 
benefits compared to the survey two years ago.

a. What is the standard error of the sample propor-
tion who are concerned?

b. What is the probability that the sample proportion 
is less than 0.5?

c. What is the upper limit of the sample proportion 
such that only 3% of the time the sample proportion 
would exceed this value?

 6.46 The annual percentage salary increases for the chief 
executive officers of all midsize corporations are nor-
mally distributed with mean 12.2% and standard de-
viation 3.6%. A random sample of 81 of these chief 
executive officers was taken. What is the probability 
that more than half the sample members had salary 
 increases of less than 10%?

 6.39 In the previous exercise, suppose that it is decided that 
a sample of 100 voters is too small to provide a suffi-
ciently reliable estimate of the population proportion. 
It is required instead that the probability that the sam-
ple proportion differs from the population proportion 
(whatever its value) by more than 0.03 should not ex-
ceed 0.05. How large a sample is needed to guarantee 
that this requirement is met?

 6.40 A company wants to estimate the proportion of people 
who are likely to purchase electric shavers from those 
who watch the nationally telecast baseball playoffs. A 
random sample obtained information from 120 people 
who were identified as persons who watch baseball 
telecasts. Suppose that the proportion of those likely 
to purchase electric shavers in the population who 
watch the telecast is 0.25.

a. The probability is 0.10 that the sample proportion 
watching the telecast exceeds the population pro-
portion by how much?

b. The probability is 0.05 that the sample proportion 
is lower than the population proportion by how 
much?

c. The probability is 0.30 that the sample proportion dif-
fers from the population proportion by how much?

 6.41 Suppose that 44% of adult Australians believe that 
Australia should become a republic. Calculate the 
probability that more than 50% of a random sample of 
100 adult Australians would believe this.

 6.42 Suppose that 50% of adult Australians believe that 
Australia should apply to host the next rugby World 
Cup. Calculate the probability that more than 56% of 
a random sample of 150 adult Australians would be-
lieve this.

 6.43 A journalist wanted to learn the views of the chief 
executive officers of the 500 largest U.S. corporations 
on program trading of stocks. In the time available, it 
was possible to contact only a random sample of 81 of 

6.4 SAMPLING DISTRIBUTIONS OF SAMPLE VARIANCES

Now that sampling distributions for sample means and proportions have been devel-
oped, we consider sampling distributions of sample variances. As business and industry 
increase their emphasis on producing products that satisfy customer quality standards, 
there is an increased need to measure and reduce population variance. High variance for 
a process implies a wider range of possible values for important product characteristics. 
This wider range of outcomes will result in more individual products that perform below 
an acceptable standard. After all, a customer does not care if a product performs well 
“on average.” She is concerned that the particular item that she purchased works. High-
quality products can be obtained from a manufacturing process if the process has a low 
population variance, so that fewer units are below the desired quality standard. By un-
derstanding the sampling distribution of sample variances, we can make inferences about 
the population variance. Thus, processes that have high variance can be identified and 
improved. In addition, a smaller population variance improves our ability to make infer-
ences about population means using sample means.
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We might be initially surprised by the use of 1n - 12 as the divisor in the preceding 
definition. One simple explanation is that in a random sample of n observations, we have 
n different independent values or degrees of freedom. But after we know the computed 
sample mean, there are only n - 1 different values that can be uniquely defined. In addi-
tion, it can be shown that the expected value of the sample variance computed in this way 
is the population variance. This result is established in the chapter appendix and holds 
when the actual sample size, n, is a small proportion of the population size N:

E3s24 = s2

The conclusion that the expected value of the sample variance is the population vari-
ance is quite general. But for statistical inference we would like to know more about the 
sampling distribution. If we can assume that the underlying population distribution is 
normal, then it can be shown that the sample variance and the population variance are 
related through a probability distribution known as the chi-square distribution.

We begin by considering a random sample of n observations drawn from a popula-
tion with unknown mean m and unknown variance s2. Denote the sample members as x1, 
x2, . . . , xn. The population variance is the expectation

s2 = E31X - m224
which suggests that we consider the mean of 1xi - x22 over n observations. Since m is un-
known, we use the sample mean x to compute a sample variance.

Sample Variance
Let x1, x2, . . . . , xn be a random sample of observations from a population. The 
quantity

s2 =
1

n - 1 a
n

i=1
1xi - x22

is called the sample variance, and its square root, s, is called the sample 
standard deviation. Given a specific random sample, we could compute the 
sample variance, and the sample variance would be different for each random 
sample because of differences in sample observations.

Chi-Square Distribution of Sample and Population 
Variances
Given a random sample of n observations from a normally distributed popula-
tion whose population variance is s2 and whose resulting sample variance is 
s2, it can be shown that

x21n- 12 = 1n - 12s2

s2 =
a
n

i=1
1xi - x22
s2

has a distribution known as the chi-square 1x22 distribution with n - 1 
 degrees of freedom.

The chi-square family of distributions is used in applied statistical analysis 
because it provides a link between the sample and the population variances. 
The chi-square distribution with n - 1 degrees of freedom is the distribu-
tion of the sum of squares of n - 1 independent standard normal random 
variables. The preceding chi-square distribution and the resulting computed 
probabilities for various values of s2 require that the population distribution 
be normal. Thus, the assumption of an underlying normal distribution is more 
important for determining probabilities of sample variances than it is for de-
termining probabilities of sample means.



272 Chapter 6 Distributions of Sample Statistics

0

f(x  )

3 6 9

v
2

xv
2

v = 8

v = 6

v = 4

The distribution is defined for only positive values, since variances are all positive val-
ues. An example of the probability density function is shown in Figure 6.12. The density 
function is asymmetric with a long positive tail. We can characterize a particular member 
of the family of chi-square distributions by a single parameter referred to as the degrees 
of freedom, denoted as v. A chi-square distribution with v degrees of freedom is denoted 
as x2

v. The mean and variance of this distribution are equal to the number of degrees of 
freedom and twice the number of degrees of freedom:

E3x2
v4 = v and Var1x2

v2 = 2v

Figure 6.12 

Probability Density 
Functions for 
the Chi-Square 
Distribution 4, 6, 
and 8 Degrees of 
Freedom

Using these results for the mean and variance of the chi-square distribution, we find that

 E c 1n - 12s2

s2 d = 1n - 12
 
1n - 12
s2 E3s24 = 1n - 12

 E3s24 = s2

To obtain the variance of s2, we have

 Vara 1n - 12s2

s2 b = 21n - 12
 
1n - 122
s4 Var1s22 = 21n - 12

 Var1s22 = 2s41n - 12
The parameter v of the x2 distribution is called the degrees of freedom. To help under-

stand the degrees of freedom concept, consider first that the sample variance is the sum 
of squares for n values of the form 1xi - x2. These n values are not independent because 
their sum is zero (as we can show using the definition of the mean). Thus, if we know any 
n - 1 of the values 1xi - x2,

 a
n

i=1
1xi - x2 = 0

 -1 * 1xn - x2 = a
n- 1

i=1
1xi - x2

Since we can determine the nth quantity if we know the remaining n - 1 quantities, we 
say that there are n - 1 degrees of freedom—independent values—for computing s2. In 
contrast, if m were known, we could compute an estimate of s2 by using the quantities1x1 - m2, 1x2 - m2, . . . , 1xn - m2
each of which is independent. In that case we would have n degrees of freedom from the 
n independent sample observations, xi. However, because m is not known, we use its esti-
mate x to compute the estimate of s2. As a result, one degree of freedom is lost in comput-
ing the sample mean, and we have n - 1 degrees of freedom for s2.
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For many applications involving the population variance, we need to find values for 
the cumulative distribution of x2, especially the upper and lower tails of the distribution—
for example,

 P1x2
10 6 K2 = 0.05

 P1x2
10 7 K2 = 0.05

For this purpose we have the distribution of the chi-square random variable tabulated in Ap-
pendix Table 7. In Table 7 the degrees of freedom are noted in the left column and the critical 
values of K for various probability levels are indicated in the other columns. Thus, for 
10 degrees of freedom the value of K for the lower interval is 3.940. This result is found by 
going to the row with 10 degrees of freedom in the left column and then reading over to the 
column headed by the probability 0.950 to the right of these column entries. The chi-square 
value is 3.940. Similarly, for the upper 0.05 interval the value of K is 18.307. This result is 
found by going to the row with 10 degrees of freedom in the left column and then reading 
over to the column headed by the upper-tail probability 0.050 to the right of these column en-
tries. The chi-square value is 18.307. These probabilities are shown schematically in Figure 6.13.

 P1x2
10 6 3.9402 = 0.05

 P1x2
10 7 18.3072 = 0.05

Figure 6.13 

Upper and Lower x2
10 

Probabilities with 10 
Degrees of Freedom

The sampling distribution results are summarized next.

Sampling Distribution of the Sample Variances
Let s2 denote the sample variance for a random sample of n observations from 
a population with a variance s2.

1. The sampling distribution of s2 has mean s2:

 E3s24 = s2 (6.11)

2. The variance of the sampling distribution of s2 depends on the underlying 
population distribution. If that distribution is normal, then

 Var1s22 = 2s4

n - 1
 (6.12)

3. If the population distribution is normal, then x21n -12 =
1n - 12s2

s2  is 

 distributed as the chi-squared distribution with n - 1 degrees of freedom, 1x21n -122.
Thus, if we have a random sample from a population with a normal distribution, we 

can make inferences about the sample variance s2 by using s2 and the chi-square distribu-
tion. This process is illustrated in the following examples.
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Example 6.9 Process Monitoring for Integrated 
Electronics (Probability of Sample Variance)

George Samson is responsible for quality assurance at Integrated Electronics. Integrated 
Electronics has just signed a contract with a company in China to manufacture a con-
trol device that is a component of its manufacturing robotics products. Integrated Elec-
tronics wants to be sure that these new, lower-cost components meet its high-quality 
standards. George has asked you to establish a quality-monitoring process for checking 
shipments of control device A. The variability of the electrical resistance, measured in 
ohms, is critical for this device. Manufacturing standards specify a standard deviation 
of 3.6, and the population distribution of resistance measurements is normal when the 
components meet the quality specification. The monitoring process requires that a ran-
dom sample of n = 6 observations be obtained from each shipment of devices and the 
sample variance be computed. Determine an upper limit for the sample variance such 
that the probability of exceeding this limit, given a population standard deviation of 
3.6, is less than 0.05.

Solution For this problem we have n = 6 and s2 = 13.622 = 12.96. Using the chi-
square distribution, we can state that

P1s2 7 K2 = Pa 1n - 12s2

12.96
7 11.070b = 0.05

where K is the desired upper limit and x2
5 = 11.070 is the upper 0.05 critical value of 

the chi-square distribution with 5 degrees of freedom, from row 5 of the chi-square dis-
tribution from Appendix Table 7. The required upper limit for s2—labeled as K—can be 
obtained by solving

 
1n - 12K

12.96
= 11.070

 K =
111.0702112.96216 - 12 = 28.69

If the sample variance, s2, from a random sample of size n = 6 exceeds 28.69, there 
is strong evidence to suspect that the population variance exceeds 12.96 and that the 
supplier should be contacted and appropriate action taken. This action could include 
returning the entire shipment or checking each item in the shipment at the suppliers 
expense.

Example 6.10 Process Analysis for Green Valley 
Foods (Probability of Sample Variance)

Shirley Mendez is the manager of quality assurance for Green Valley Foods, Inc., a 
packer of frozen-vegetable products. Shirley wants to be sure that the variation of pack-
age weights is small so that the company does not produce a large proportion of pack-
ages that are under the stated package weight. She has asked you to obtain upper limits 
for the ratio of the sample variance divided by the population variance for a random 
sample of n = 20 observations. The limits are such that the probability that the ratio 
is above the upper limit is 0.025. Thus, 97.5% of the ratios will be below this limit. The 
population distribution can be assumed to be normal.

Solution We are asked to obtain a value KU such that

 Pa s2

s2 6 KUb = 0.975
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At this point it is important that we emphasize that the procedures used to make in-
ferences about the population variance are substantially influenced by the assumption of a 
normal population distribution. Inferences concerning the population mean based on the 
sample mean are not substantially affected by departures from a normal distribution. In 
addition, inferences based on the sample mean can make use of the central limit theorem, 
which states that sample means will typically be normally distributed if the sample size is 
reasonably large. Thus, we state that inferences based on the sample mean are robust with 
respect to the assumption of normality. Unfortunately, inferences based on sample vari-
ances are not robust with respect to the assumption of normality.

We know that in many applications the population variance is of direct interest to an 
investigator. But when using the procedures we have demonstrated, we must keep in mind 
that if only a moderate number of sample observations are available, serious departures from 
normality in the parent population can severely invalidate the conclusions of analyses. The 
cautious analyst will therefore be rather tentative in making inferences in these circumstances.

EXERCISES

Basic Exercises
 6.47 A random sample of size n = 16 is obtained from a 

normally distributed population with a population 
mean of m = 100 and a variance of s2 = 25.

a. What is the probability that x 7 101?
b. What is the probability that the sample variance is 

greater than 45?

c. What is the probability that the sample variance is 
greater than 60?

 6.48 A random sample of size n = 25 is obtained from a 
normally distributed population with a population 
mean of m = 198 and a variance of s2 = 100.

a. What is the probability that the sample mean is 
greater than 200?

given that a random sample of size n = 20 is used to compute the sample variance.
For the upper limit we can state the following:

0.025 = P c 1n - 12s2

s2 7 1n - 12KU d = P3x2
19, 0.025 7 1n - 12KU4

This upper limit of chi-square defines an interval such that, if the sample computed chi-
square is within that interval, we accept the assumption that the process variance is at 
the assumed value. This interval is defined as an acceptance interval.

Using the upper bound for the chi-square acceptance interval, we can compute the 
acceptance interval limit, KU, for the ratio of sample variance to population variance. 
The upper value for the chi-square distribution can be found in Table 7 as

x2
19, 0.025U = 32.852

For the upper limit we have

0.025 = P3x2
19, 0.025U 7 1n - 12KU4 = P332.852 7 1192KU4

and, thus,

KU = a 32.852
19

b = 1.729

The 97.5% acceptance interval for the ratio of sample variance divided by population 
variance is as follows:

Pa s2

s2 … 1.729b = 0.975

Thus, the sample variance is less than 1.729 times the population variance with prob-
ability 0.975.
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b. What is the value of the sample variance such that 
5% of the sample variances would be less than this 
value?

c. What is the value of the sample variance such that 
5% of the sample variances would be greater than 
this value?

 6.49 A random sample of size n = 18 is obtained from a 
normally distributed population with a population 
mean of m = 46 and a variance of s2 = 50.

a. What is the probability that the sample mean is 
greater than 50?

b. What is the value of the sample variance such that 
5% of the sample variances would be less than this 
value?

c. What is the value of the sample variance such that 
5% of the sample variances would be greater than 
this value?

 6.50 A process produces batches of a chemical whose im-
purity concentrations follow a normal distribution 
with a variance of 1.75. A random sample of 20 of 
these batches is chosen. Find the probability that the 
sample variance exceeds 3.10.

 6.51 Monthly rates of return on the shares of a particular 
common stock are independent of one another and 
normally distributed with a standard deviation of 1.6. 
A sample of 12 months is taken.

a. Find the probability that the sample standard de-
viation is less than 2.5.

b. Find the probability that the sample standard devia-
tion is more than 1.0.

 6.52 It is believed that first-year salaries for newly quali-
fied accountants follow a normal distribution with a 
standard deviation of $2,500. A random sample of 16 
observations was taken.

a. Find the probability that the sample standard de-
viation is more than $3,000.

b. Find the probability that the sample standard devia-
tion is less than $1,500.

Application Exercises
 6.53 A mathematics test of 100 multiple-choice questions 

is to be given to all freshmen entering a large univer-
sity. Initially, in a pilot study the test was given to a 
random sample of 20 freshmen. Suppose that, for the 
population of all entering freshmen, the distribution 
of the number of correct answers would be normal 
with a variance of 250.

a. What is the probability that the sample variance 
would be less than 100?

b. What is the probability that the sample variance 
would be more than 500?

 6.54 In a large city it was found that summer electricity 
bills for single-family homes followed a normal distri-
bution with a standard deviation of $100. A random 
sample of 25 bills was taken.

a. Find the probability that the sample standard de-
viation is less than $75.

b. Find the probability that the sample standard devia-
tion is more than $150.

 6.55 The number of hours spent watching television by 
students in the week before final exams has a normal 
distribution with a standard deviation of 4.5 hours. A 
random sample of 30 students was taken.

a. Is the probability more than 0.95 that the sample 
standard deviation exceeds 3.5 hours?

b. Is the probability more than 0.95 that the sample 
standard deviation is less than 6 hours?

 6.56 In Table 6.1 we considered the 15 possible samples 
of two observations from a population of N = 6 val-
ues of years on the job for employees. The population 
variance for these six values is as follows:

s =
47
12

  For each of the 15 possible samples, calculate the 
sample variance. Find the average of these 15 sample 
variances, thus confirming that the expected value 
of the sample variance is not equal to the population 
variance when the number of sample members is not 
a small proportion of the number of population mem-
bers. In fact, as you can verify here,

E3s24 = Ns2>1N - 12
 6.57 A production process manufactures electronic com-

ponents with timing signals whose duration follows 
a normal distribution. A random sample of six com-
ponents was taken, and the durations of their timing 
signals were measured.

a. The probability is 0.05 that the sample variance is 
greater than what percentage of the population 
variance?

b. The probability is 0.10 that the sample variance 
is less than what percentage of the population 
variance?

 6.58 A random sample of 10 stock market mutual funds 
was taken. Suppose that rates of returns on the popu-
lation of all stock market mutual funds follow a nor-
mal distribution.

a. The probability is 0.10 that sample variance is 
greater than what percentage of the population 
variance?

b. Find any pair of numbers, a and b, to complete the 
following sentence: The probability is 0.95 that 
the sample variance is between a% and b% of the 
population variance.

c. Suppose that a sample of 20 mutual funds had been 
taken. Without doing the calculations, indicate how 
this would change your answer to part (b).

 6.59 Each member of a random sample of 15 business 
economists was asked to predict the rate of inflation 
for the coming year. Assume that the predictions for 
the whole population of business economists follow a 
normal distribution with standard deviation 1.8%.

a. The probability is 0.01 that the sample standard 
deviation is bigger than what number?

b. The probability is 0.025 that the sample standard 
deviation is less than what number?
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that the variance (in squared milligrams) be no more 
than 1.5. A random sample of 20 pills is selected, and 
the sample variance is found to be 2.05. How likely is 
it that a sample variance this high or higher would be 
found if the population variance is, in fact, 1.5? As-
sume that the population distribution is normal.

 6.62 A manufacturer has been purchasing raw materials 
from a supplier whose consignments have a variance 
of 15.4 (in squared pounds) in impurity levels. A rival 
supplier claims that she can supply consignments of 
this raw material with the same mean impurity level 
but with lower variance. For a random sample of 25 
consignments from the second supplier, the variance 
in impurity levels was found to be 12.2. What is the 
probability of observing a value this low or lower for 
the sample variance if, in fact, the true population 
variance is 15.4? Assume that the population distribu-
tion is normal.

c. Find any pair of numbers such that the probability 
that the sample standard deviation that lies between 
these numbers is 0.90.

 6.60 A precision instrument is checked by making 12 read-
ings on the same quantity. The population distribu-
tion of readings is normal.

a. The probability is 0.95 that the sample variance 
is more than what percentage of the population 
variance?

b. The probability is 0.90 that the sample variance 
is more than what percentage of the population 
variance?

c. Determine any pair of appropriate numbers, a and b, 
to complete the following sentence: The probability 
is 0.95 that the sample variance is between a% and 
b% of the population variance.

 6.61 A drug company produces pills containing an active 
ingredient. The company is concerned about the mean 
weight of this ingredient per pill, but it also requires 
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editions.com/newbold to access the data files.
6.66 The scores of all applicants taking an aptitude test 

required by a law school have a normal distribution 
with a mean of 420 and a standard deviation of 100. A 
random sample of 25 scores is taken.

a. Find the probability that the sample mean score is 
higher than 450.

b. Find the probability that the sample mean score is 
between 400 and 450.

c. The probability is 0.10 that the sample mean score 
is higher than what number?

d. The probability is 0.10 that the sample mean score 
is lower than what number?

e. The probability is 0.05 that the sample stan-
dard deviation of the scores is higher than what 
number?

f. The probability is 0.05 that the sample stan-
dard deviation of the scores is lower than what 
number?

g. If a sample of 50 test scores had been taken, would 
the probability of a sample mean score higher than 
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6.63 What is meant by the statement that the sample mean 
has a sampling distribution?

 6.64 An investor is considering six different money market 
funds. The average number of days to maturity for 
each of these funds is as follows:

41, 39, 35, 35, 33, 38

  Two of these funds are to be chosen at random.

a. How many possible samples of two funds are 
there?

b. List all possible samples.
c. Find the probability function of the sampling dis-

tribution of the sample means.
d. Verify directly that the mean of the sampling 

 distribution of the sample means is equal to the 
population mean.

 6.65 Of what relevance is the central limit theorem to the 
sampling distribution of the sample means?
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450 be smaller than, larger than, or the same as the 
correct answer to part (a)? It is not necessary to do 
the detailed calculations here. Sketch a graph to 
 illustrate your reasoning.

 6.67 A company services home air conditioners. It has been 
found that times for service calls follow a Normal dis-
tribution with a mean of 60 minutes and a standard 
deviation of 10 minutes. A random sample of four ser-
vice calls was taken.

a. What is the probability that the sample mean 
 service time is more than 65 minutes?

b. The probability is 0.10 that the sample mean 
 service time is less than how many minutes?

c. The probability is 0.10 that the sample standard 
deviation of service times is more than how many 
minutes?

d. The probability is 0.10 that the sample standard 
deviation of service times is less than how many 
minutes?

e. What is the probability that more than two of these 
calls take more than 65 minutes?

 6.68 In a particular year, the percentage rates of return of 
U.S. common stock mutual funds had a normal distri-
bution with a mean of 14.8 and a standard deviation 
of 6.3. A random sample of nine of these mutual funds 
was taken.

a. What is the probability that the sample mean per-
centage rate of return is more than 19.0?

b. What is the probability that the sample mean  
percentage rate of return is between 10.6  
and 19.0?

c. The probability is 0.25 that the sample mean per-
centage return is less than what number?

d. The probability is 0.10 that the sample standard 
deviation of percentage return is more than what 
number?

e. If a sample of 20 of these funds was taken, state 
whether the probability of a sample mean per-
centage rate of return of more than 19.0 would be 
smaller than, larger than, or the same as the correct 
answer to part (a). Sketch a graph to illustrate your 
reasoning.

 6.69 The lifetimes of a certain electronic component are 
known to be normally distributed with a mean of 
1,600 hours and a standard deviation of 400 hours.

a. For a random sample of 16 components, find the 
probability that the sample mean is more than 
1,500 hours.

b. For a random sample of 16 components, the prob-
ability is 0.15 that the sample mean lifetime is more 
than how many hours?

c. For a random sample of 16 components, the prob-
ability is 0.10 that the sample standard deviation 
lifetime is more than how many hours?

 6.70 Refer to the chapter appendix in order to derive 
the mean of the sampling distribution of the sam-
ple variances for a sample of n observations from a 
population of N members when the population vari-
ance is s2. By appropriately modifying the argument 

regarding variances in the chapter appendix, show 
that

E3s24 = Ns2>1N - 12
  Note the intuitive plausibility of this result when 

n = N.
 6.71 It has been found that times taken by people to com-

plete a particular tax form follow a normal distribution 
with a mean of 100 minutes and a standard deviation 
of 30 minutes. A random sample of nine people who 
have completed this tax form was taken.

a. What is the probability that the sample mean time 
taken is more than 120 minutes?

b. The probability is 0.20 that the sample mean time 
taken is less than how many minutes?

c. The probability is 0.05 that the sample standard 
deviation of time taken is less than how many 
minutes?

 6.72 It was found that 80% of seniors at a particular col-
lege had accepted a job offer before graduation. For 
those accepting offers, salary distribution was nor-
mal with a mean of $37,000 and a standard deviation 
of $4,000.

a. For a random sample of 60 seniors what is the 
probability that less than 70% have accepted job 
offers?

b. For a random sample of 6 seniors, what is the 
probability that less than 70% have accepted job 
offers?

c. For a random sample of 6 seniors who have 
 accepted job offers, what is the probability that the 
average salary is more than $38,000?

d. A senior is chosen at random. What is the probabil-
ity that she has accepted a job offer with a salary of 
more than $38,000?

 6.73 Plastic bags used for packaging produce are manu-
factured so that the breaking strengths of the bags are 
normally distributed with a standard deviation of 1.8 
pounds per square inch. A random sample of 16 bags 
is selected.

a. The probability is 0.01 that the sample standard 
deviation of breaking strengths exceeds what 
number?

b. The probability is 0.15 that the sample mean ex-
ceeds the population mean by how much?

c. The probability is 0.05 that the sample mean differs 
from the population mean by how much?

 6.74 A quality-control manager was concerned about vari-
ability in the amount of an active ingredient in pills 
produced by a particular process. A random sample 
of 21 pills was taken. What is the probability that the 
sample variance of the amount of an active ingredient 
was more than twice the population variance?

 6.75 A sample of 100 students is to be taken to determine 
which of two brands of beer is preferred in a blind 
taste test. Suppose that, in the whole population of 
students, 50% would prefer brand A.

a. What is the probability that more than 60% of the 
sample members prefer brand A?
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b. What is the probability that between 45% and 55% 
of the sample members prefer brand A?

c. Suppose that a sample of only 10 students was 
available. Indicate how the method of calculation 
of probabilities would differ, compared with your 
solutions to parts (a) and (b)?

 6.76 Scores on a particular test, taken by a large group of 
students, follow a normal distribution with a standard 
deviation of 40 points. A random sample of 16 scores 
was taken to estimate the population mean score. 
Let the random variable x denote the sample mean. 
What is the probability that the interval 1x - 102 to 1x + 102 contains the true population mean?

 6.77 A manufacturer of liquid detergent claims that the mean 
weight of liquid in containers sold is at least 30 ounces. 
It is known that the population distribution of weights is 
normal with a standard deviation of 1.3 ounces. In order 
to check the manufacturer’s claim, a random sample of 
16 containers of detergent is examined. The claim will 
be questioned if the sample mean weight is less than 
29.5 ounces. What is the probability that the claim will 
be questioned if, in fact, the population mean weight is 
30 ounces?

 6.78 In a particular year 40% of home sales were partially 
financed by the seller. A random sample of 250 sales is 
examined.

a. The probability is 0.8 that the sample proportion is 
more than what amount?

b. The probability is 0.9 that the sample proportion is 
less than what amount?

c. The probability is 0.7 that the sample proportion dif-
fers from the population proportion by how much?

 6.79 A candidate for office intends to campaign in a state 
if her initial support level exceeds 30% of the voters. 
A random sample of 300 voters is taken, and it is de-
cided to campaign if the sample proportion support-
ing the candidate exceeds 0.28.

a. What is the probability of a decision not to cam-
paign if, in fact, the initial support level is 20%?

b. What is the probability of a decision not to cam-
paign if, in fact, the initial support level is 40%?

 6.80 It is known that the incomes of subscribers to a par-
ticular magazine have a normal distribution with a 
standard deviation of $6,600. A random sample of 25 
subscribers is taken.

a. What is the probability that the sample standard 
deviation of their incomes is more than $4,000?

b. What is the probability that the sample standard 
deviation of their incomes is less than $8,000?

 6.81 Batches of chemical are manufactured by a production 
process. Samples of 20 batches from a production run 
are selected for testing. If the standard deviation of the 
percentage of impurity contents in the sample batches 
exceeds 2.5%, the production process is thoroughly 
checked. Assume that the population distribution of 
percentage impurity concentrations is normal. What 
is the probability that the production process will be 
thoroughly checked if the population standard devia-
tion of percentage impurity concentrations is 2%?

 6.82 A consumer product that has flourished in the 
last few years is bottled natural spring water. 

Jon Thorne is the CEO of a company that sells natural 
spring water. He has requested a report of the filling 
process of the 24-ounce (710-milliliter) bottles to be 
sure that they are being properly filled. To check if the 
process needs to be adjusted, Emma Astrom, who 
monitors the process, randomly samples and weighs 
five bottles every 15 minutes for a 5-hour period. The 
data are contained in the data file Bottles.

a. Compute the sample mean, sample standard de-
viations for individual bottles, and the standard 
deviation of the sample mean for each sample.

b. Determine the probability that the sample means 
are below 685 milliliters if the population mean  
is 710.

c. Determine the probability that the sample means 
are above 720 milliliters.

 6.83 Prairie Flower Cereal, Inc., is a small but grow-
ing producer of hot and ready-to-eat breakfast 

cereals. The company was started in 1910 by Gordon 
Thorson, a successful grain farmer. You have been 
asked to test the cereal-packing process of 18-ounce 
(510-gram) boxes of sugar-coated wheat cereal. Two 
machines are used for the packaging process. Twenty 
samples of five packages each are randomly sampled 
and weighed. The data are contained in the file Sugar 
Coated Wheat.

a. Compute the overall sample mean, sample vari-
ance, and variance of the sample means for each 
machine.

b. Determine the probability that a single sample 
mean is below 500 if the process is operating prop-
erly for each machine.

c. Determine the probability that a single sample 
mean is above 508 if the process is operating prop-
erly for each machine.

d. Using your statistical computer package, obtain 20 
random samples of size n = 5 packages for each 
machine and compute the sample mean for each 
sample. Count the number of sample means that 
are below 500 and the number that are above 508.

 6.84 Another product packaged by Prairie Flower 
Cereal, Inc., is an apple-cinnamon cereal. To 

test the packaging process of 40-ounce (1,134-gram) 
packages of this cereal, 23 samples of six packages 
each are randomly sampled and weighed. The lower 
and upper acceptance limits have been set at 1,120 
grams and 1,150 grams, respectively. The data are con-
tained in the data file Granola.

a. Compute the overall sample mean, sample vari-
ance, and variance of the sample means for each 
sample.

b. Compute the probability that the sample means 
will be within the acceptance limits.

c. Using your statistical computer package, obtain 23 
random samples of size n = 6 and compute the 
sample mean for each sample. Count the number of 
sample means that are outside the acceptance limits.
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Appendix: Mathematical  
and Simulation Results

1  CENTRAL LIMIT THEOREM FROM  
LINEAR SUM OF RANDOM VARIABLES

In applied statistical analysis many of the random variables used can be characterized as 
the sum or mean of a large number of random variables. For example, total daily sales in 
a store are the result of a number of sales to individual customers—each of whom can be 
modeled as a random variable. Total national investment spending in a month is the sum 
of many individual investment decisions by specific firms. Thus, if X1, X2, . . . , Xn repre-
sents the result of individual random events, the observed random variable

X = X1 + X2 + g + Xn

and from Chapter 5

E3X4 = nm Var1X2 = ns2

The central limit theorem states that the resulting sum, X, is normally distributed and can
be used to compute a random variable, Z, with a mean of 0 and a variance of 1:

Z =
X - E3X42Var1X2 =

X - nm2ns2

In addition, if X is divided by n to obtain a mean of X, then a corresponding Z with a mean 
of 0 and a variance of 1 can also be computed:

Z =
X - mX

sX
=

X - mX

s1n

 

Using these results, we have the central limit theorem.

2  MONTE CARLO SAMPLE 
SIMULATIONS USING MINITAB

In Section 6.2 we presented results from Monte Carlo sampling simulations to demonstrate 
the central limit theorem. In this appendix we indicate how you can construct similar sim-
ulations for a probability distribution. The simulation can be performed using a Minitab 
macro named Centlimit.mac, which is contained in the data directory for the textbook.

Visit www.mymathlab.com/global or www.pearsonglobaleditions.com/
newbold to access the macro and data files.

To use this macro, copy it to the directory located with your Minitab program

  MTBWIN\MACROS\

using Windows Explorer. This macro will then be stored with other macros supplied with 
the Minitab package. When the macro is stored in this directory, it can be run directly in 
Minitab. Alternatively, the macro can be stored in another directory, and the entire path is 
supplied to run the macro. To run the sampling simulation, use the following steps:

 1.  In column one store a set of values that have the frequency indicated by the probabil-
ity distribution that you are interested in simulating. Typically, we store 100 values, 
but any number could be stored. For example, to store a binomial distribution with 
P = 0.40, you would store 40 1s and 60 0s in column one. You could also store an em-
pirical distribution of numbers from a population being studied. Another procedure 
for obtaining the sample values is to use the following command:
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  CALC<RANDOM DATA>“SELECT PROBABILITY DISTRIBUTION”

   This would provide you with a random sample from one of a number of common 
probability distributions.

 2.  In the Minitab Session Window, type the command

  MTB>%CENTLIMIT N1 N2 C1-C3

   where N1 is the sample size for the individual samples being simulated and N2 is 
the number of samples whose means are to be obtained from the simulation. Gener-
ally, 500 to 1,000 samples will provide a good sampling distribution, but you can 
select any reasonable value. Recognize that the greater the number of samples, the 
longer it will take to run the simulation. C1 to C3 are the columns used by Minitab 
for the simulation with your probability distribution of interest in column one. You 
could use any columns as long as your probability distribution is in column one. 
Figure 6.14 shows an example of the setup for the sampling simulation.

The simulation will generate samples in column two and compute the sample mean. 
The mean for each sample will be stored in column three, titled “Mean.” Descriptive sta-
tistics and histograms will be computed for the random variable values in column one 
and for the sample means in column three. By clicking on the menu command

WINDOWS>TILE

you can obtain the screen in Figure 6.15, which is useful for comparing the original distri-
bution and the sampling distribution with a comparable normal.

In Figure 6.15 we see that the distribution of the random variable in the lower left 
corner is definitely not normal; rather, it is highly skewed to the right. In contrast, the 
sampling distribution of the means in the upper left corner closely approximates a normal 
distribution. Figure 6.16 presents a copy of the Centlimit.mac Minitab macro, which is 

Figure 6.14  

Monte Carlo 
Sampling Simulation 
Setup in Minitab
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Figure 6.16 Copy 
of the Minitab Macro 
Centlimit.Mac

Figure 6.15 

Results of the Monte 
Carlo Sampling 
Simulation
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stored in the data directory for the textbook. Users familiar with Minitab macros could 
modify this macro to obtain different outputs.

3  MEAN OF THE SAMPLING DISTRIBUTION  
OF THE SAMPLE VARIANCES

In this appendix, we show that the mean of the sampling distribution of the sample 
variances is the population variance. We begin by finding the expectation of the sum of 
squares of the sample members about their mean—that is, the expectation of

 a
n

i=1
1xi - x22 = a

n

i=1
31xi - m2 - 1x - m242

 = a
n

i=1
31xi - m22 - 21x - m21xi - m2 + 1x - m224

 = a
n

i=1
1xi - m22 - 21x - m2an

i=1
1xi - m2 + a

n

i=1
1x - m22

 = a
n

i=1
1xi - m22 - 2n1x - m22 + n1x - m22

 = a
n

i=1
1xi - m22 - n1x - m22

Taking expectations then gives

 E can
i=1
1xi - x22 d = E can

i=1
1xi - m22 d - nE31x - m224

 = a
n

i=1
E31xi - m224 - nE31x - m224

Now, the expectation of each 1xi - m22 is the population variance, s2, and the expectation 
of 1x - m22 is the variance of the sample mean, s2>n. Hence, we have the following:

E can
i=1
1xi - x22 d = ns2 -

ns2

n
= 1n - 12s2

Finally, for the expected value of the sample variance we have the following:

 E3s24 = E c 1
n - 1 a

n

i=1
1xi - x22 d

 =
1

n - 1
E can

i=1
1xi - x22 d

 =
1

n - 1
1n - 12s2 = s2

This is the result we set out to establish.
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Introduction

What is the average number of gallons of orange juice sold weekly by a local 
grocery store? Management of this grocery store could use an estimate of the 
average weekly demand for orange juice (milk, bread, or fresh fruit) to improve 
the ordering process, reduce waste (such as spoiled fruit), reduce costs, and in-
crease profits. How satisfied are customers who use an online pharmaceutical 
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company with the company’s actual delivery time? The online company may 
begin with obtaining an estimate of the average time (in days) to ship an 
order once the order is received. What proportion of customers is satisfied 
with a new product? An estimate of this proportion, along with other data, 
might be used by the company to enhance its quality efforts. Who will win 
an upcoming election for the presidency of the university’s student govern-
ment association, the mayor of a city, the senator of a state, or the president 
of a nation? Political campaign managers estimate the proportion of regis-
tered voters in various districts (precincts, counties, states, etc.) who intend 
to vote for a particular candidate if the election were to be held that day. This 
type of estimate can provide guidance to campaign managers in their prepa-
ration of campaign strategies.

In this chapter we address these and other types of situations that re-
quire an estimate of some population parameter. Inferential statements con-
cerning estimates of a single population parameter, based on information 
contained in a random sample are presented. More specifically, we discuss 
procedures to estimate the mean of a population, a proportion of population 
members that possess some specific characteristic, and the variance of a 
population.

We present two estimation procedures in this chapter. First, we esti-
mate an unknown population parameter by a single number called a point 
estimate. Properties of this point estimate are considered in Section 7.1. 
For most practical problems, a point estimate alone is not adequate. A more 
complete understanding of the process that generated the population also 
requires a measure of variability. Next we discuss a procedure that takes 
into account this variation by establishing an interval of values, known as a 
confidence interval, which is likely to include the quantity.

Initially we consider populations that are infinite (or very large compared 
to the sample size) and where sampling is with replacement. As mentioned 
in Chapter 6, most sampling studies use large populations, but there are 
some business applications, such as auditing, that involve finite popula-
tions. For completeness, in Section 7.6 we discuss estimation procedures 
when the sample size is considered to be relatively large compared to the 
population size. This situation occurs when the sample size, n, is more than 
5% of the population size, N, and thus the finite-population correction fac-
tor introduced in Chapter 6 is required. We conclude this chapter with a 
discussion of sample-size determination for selected parameters from large 
populations (Section 7.7) and for selected parameters from finite popula-
tions (Section 7.8).

7.1 PROPERTIES OF POINT ESTIMATORS

Any inference drawn about the population will be based on sample statistics. The choice 
of appropriate statistics will depend on which population parameter is of interest. The 
value of the population parameter will be unknown, and one objective of sampling is to 
estimate its value. A distinction must be made between the terms estimator and estimate.

Estimator and Estimate
An estimator of a population parameter is a random variable that depends on 
the sample information; its value provides approximations of this unknown 
parameter. A specific value of that random variable is called an estimate.
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We point out that there is “a technical distinction between an estimator as a function 
of random variables and an estimate as a single number. It is the distinction between 
a process (the estimator) and the result of that process (the estimate)” (Hildebrand and 
Ott 1998). To clarify this distinction between estimator and estimate, consider the es-
timation of the mean weekly sales of a particular brand of orange juice. One possible 
estimator of the population mean is the sample mean. If the mean of a random sample 
of weekly sales is found to be 3,280 gallons, then 3,280 is an estimate of the population 
mean weekly sales. Another possible estimator of the mean weekly sales could be the 
sample median.

In Chapter 2 we studied other descriptive statistics, such as sample variance, s2, 
and sample correlation coefficient, r. If the value of the sample variance, s2, for the 
weekly demand of orange juice is 300 gallons, then s2 is the estimator and 300 is the 
estimate.

In discussing the estimation of an unknown parameter, two possibilities must be con-
sidered. First, a single number could be computed from the sample as most representa-
tive of the unknown population parameter. This is called a point estimate. The estimate of 
3,280 gallons of orange juice is an example of a point estimate. Alternatively, it might be 
possible to find an interval or range that most likely contains the value of the population 
parameter. For example, the mean weekly demand in this store for this particular brand 
of orange juice is, with some specified degree of confidence, between 2,500 and 3,500 gal-
lons. This interval estimate is an example of one type of confidence interval that we discuss 
in this chapter.

Point Estimator and Point Estimate
Consider a population parameter such as the population mean m or the popu-
lation proportion P. A point estimator of a population parameter is a function 
of the sample information that produces a single number called a point esti-
mate. For example, the sample mean X is a point estimator of the population 
mean, m, and the value that X assumes for a given set of data is called the 
point estimate, x.

At the outset we must point out that no single mechanism exists for the determination 
of a uniquely “best” point estimator in all circumstances. What is available instead is a set 
of criteria under which particular estimators can be evaluated. The sample median also 
gives a point estimate of the population mean, m. However, we show later in this chapter 
that the median is not the best estimator for the population mean of some distributions.

We evaluate estimators based on two important properties: unbiasedness and effi-
ciency. (See the chapter appendix for the property of consistency.)

Unbiased

In searching for an estimator of a population parameter, the first property an estimator 
should possess is unbiasedness.

Unbiased Estimator
A point estimator un is said to be an unbiased estimator of a population param-
eter u if its expected value is equal to that parameter; that is, if

E1un2 = u
then un is an unbiased estimator of u.
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Notice that unbiasedness does not mean that a particular value of un must be exactly the 
correct value of u. Rather, an unbiased estimator has “the capability of estimating the popu-
lation parameter correctly on the average. . . . An unbiased estimator is correct on the av-
erage. We can think of the expected value of un as the average of un values for all possible 
samples, or alternatively, as the long-run average of un values for repeated samples. The con-
dition that the estimator un should be unbiased says that the average un value is exactly correct. 
It does not state that a particular un value is exactly correct” (Hildebrand and Ott 1998).

Sometimes un will overestimate and other times underestimate the parameter, but it 
follows from the notion of expectation that, if the sampling procedure is repeated many 
times, then, on the average, the value obtained for an unbiased estimator will be equal to 
the population parameter. It seems reasonable to assert that, all other things being equal, 
unbiasedness is a desirable property in a point estimator. Figure 7.1 illustrates the prob-
ability density functions for two estimators, u1n  and u2n , of the parameter u. It should be obvi-
ous that u1n  is an unbiased estimator of u and un2 is not an unbiased estimator of u.

Figure 7.1 

Probability Density 
Functions for 
Estimators un1 
(Unbiased) and un2 
(Biased)

u

u1
^

u
^

u2
^

In Chapter 6 we showed the following:

 1. The sample mean is an unbiased estimator of m; E1X2 = m.
 2. The sample variance is an unbiased estimator of s2; E1s22 = s2.
 3. The sample proportion is an unbiased estimator of P; E1pn2 = P.

It follows, then, that the sample mean, sample variance, and sample proportion are 
unbiased estimators of their corresponding population parameters.

An estimator that is not unbiased is biased. The extent of the bias is the difference 
between the mean of the estimator and the true parameter.

Bias
Let un be an estimator of u. The bias in un is defined as the difference between 
its mean and u:

bias1un2 = E1un2 - u

It follows that the bias of an unbiased estimator is 0.

Unbiasedness alone is not the only desirable characteristic of an estimator. There may 
be several unbiased estimators for a population parameter. For example, if the population 
is normally distributed, both the sample mean and the median are unbiased estimators of 
the population mean.

Most Efficient

In many practical problems, different unbiased estimators can be obtained, and some 
method of choosing among them needs to be found. In this situation it is natural to prefer 
the estimator whose distribution is most closely concentrated about the population pa-
rameter being estimated. Values of such an estimator are less likely to differ, by any fixed 
amount, from the parameter being estimated than are those of its competitors. Using vari-
ance as a measure of concentration, the efficiency of an estimator as a criterion for prefer-
ring one estimator to another estimator is introduced.
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Most Efficient Estimator and Relative Efficiency
If there are several unbiased estimators of a parameter, then the unbiased 
estimator with the smallest variance is called the most efficient estimator, 
or the minimum variance unbiased estimator. Let un1 and un2 be two 
unbiased estimators of u, based on the same number of sample 
observations. Then,

1. un1 is said to be more efficient than un2 if Var1un12 6 Var1un22, and
2. the relative efficiency of un1 with respect to un2 is the ratio of their 

variances.

relative efficiency =
Var1un22
Var1un12

Example 7.1 Selection from Competing Unbiased 
Estimators (Relative Efficiency)

Let x1, x2, . . . , xn be a random sample from a normally distributed population with 
mean m and variance s2. Should the sample mean or the sample median be used to 
estimate the population mean?

Solution Assuming a population that is normally distributed with a very large 
population size compared to the sample size, the sample mean, X, is an unbiased 
estimator of the population mean, m, with variance (Chapter 6):

Var1X2 = s2

n

As an alternative estimator, we could use the median of the sample observations. It can 
be shown that this estimator is also unbiased for m and that when n is large, its variance 
is as follows:

Var1median2 = p
2

*
s2

n
=

1.57s2

n

The sample mean is more efficient than the median, the relative efficiency of the mean 
with respect to the median being as follows:

relative efficiency =
Var1median2

Var1X2 = 1.57

The variance of the sample median is 57% higher than that of the sample mean. One 
advantage of the median over the mean is that it gives less weight to extreme obser-
vations. A potential disadvantage of using the sample median as a measure of central 
location lies in its relative efficiency.

We emphasize the importance of using a normal probability plot to determine if 
there is any evidence of nonnormality. If the population is not normally distributed, 
the sample mean may not be the most efficient estimator of the population mean. In 
particular, if outliers heavily affect the population distribution, the sample mean is less 
efficient than other estimators (such as the median). Table 7.1 is a summary of some 
properties for selected point estimators. It is neither an exhaustive list of estimators nor 
an exhaustive list of properties that an estimator possesses.
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A problem that often arises in practice is how to choose an appropriate point estimator 
for a population parameter. An attractive possibility is to choose the most efficient of all 
unbiased estimators. However, sometimes there are estimation problems for which no unbi-
ased estimator is very satisfactory, or there may be situations in which it is not always pos-
sible to find a minimum variance unbiased estimator. It is also possible that data may not be 
normally distributed. In these situations selecting the best point estimator is not straightfor-
ward and involves considerable mathematical intricacy beyond the scope of this book.

Table 7.1 Properties of Selected Point Estimators

POPULATION 
PARAMETER

 
POINT ESTIMATOR

 
PROPERTIES

Mean, m X Unbiased, most efficient (assuming normality)

Mean, m Median Unbiased (assuming normality), but not most efficient

Proportion, P pn Unbiased, most efficient

Variance, s2 s2 Unbiased, most efficient (assuming normality)

Example 7.2 Price-Earnings Ratios (Estimators)

Suppose that we randomly sampled stocks traded on the New York Stock Exchange 
on a particular day and found the price-earnings ratios of these stocks to be as follows:

10 16 13 11 12 14 12
15 14 14 13 13 13

Does the normal probability plot suggest non-normality? Find point estimates of the 
mean and variance. Discuss the properties of these estimators.

Solution From the normal probability plot in Figure 7.2, there appears to be no evidence 
of nonnormality. Assuming a normal distribution, an estimate of the mean price-earnings 
ratios is the sample mean, 13.1, and an estimate of the variance is s2 = 2.58. Both X and 
s2 are unbiased and efficient point estimators of m and s2, respectively.

Figure 7.2 Price-Earnings Ratios (Normality)
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EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

  Use unbiased estimation procedures to find point esti-
mates for the following:

a. The population mean
b. The population variance
c. The variance of the sample mean
d. The population proportion of employees working 

more than 30 hours of overtime in this plant in the 
last month

Application Exercises
 7.5 The Mendez Mortgage Company case study 

was introduced in Chapter 2. A random sam-
ple of n = 350 accounts of the company’s total portfo-
lio is stored in the data file Mendez Mortgage. 
Consider the variable “Original Purchase Price.” Use 
unbiased estimation procedures to find point esti-
mates of the following:

a. The population mean
b. The population variance
c. The variance of the sample mean
d. The population proportion of all mortgages  

with original purchase price of less than  
$10,000

 7.6 The demand for bottled water increases during 
the hurricane season in Florida. The operations 

manager at a plant that bottles drinking water wants 
to be sure that the filling process for 1-gallon bottles (1 
gallon is approximately 3.785 liters) is operating prop-
erly. Currently, the company is testing the volumes of 
one-gallon bottles. Suppose that a random sample of 
75 bottles is tested, and the measurements are re-
corded in the data file Water.

a. Is there evidence that the data are not normally 
distributed?

b. Find a minimum variance unbiased point estimate 
of the population mean.

c. Find a minimum variance unbiased point estimate 
of the population variance.

 7.7 Suppose that x1 and x2 are random samples of obser-
vations from a population with mean m and variance 
s2. Consider the following three point estimators, X, Y, 
Z, of m:

X =
1
2

x1 +
1
2

x2  Y =
1
4

x1 +
3
4

x2  Z =
1
3

x1 +
2
3

x2

a. Show that all three estimators are unbiased.
b. Which of the estimators is the most  

efficient?
c. Find the relative efficiency of X with respect 

to each of the other two estimators.

Basic Exercises
 7.1 There is concern about the speed of automobiles trav-

eling over a particular stretch of highway. For a ran-
dom sample of 28 automobiles, radar indicated the 
following speeds, in miles per hour:

59 63 68 57 56 71 59

69 53 58 60 66 51 59

54 64 58 57 66 61 65

70 63 65 57 56 61 59

a. Check for evidence of nonnormality.
b. Find a point estimate of the population mean that 

is unbiased and efficient.
c. Use an unbiased estimation procedure to find  

a point estimate of the variance of the sample  
mean.

 7.2 A random sample of eight homes in a particular sub-
urb had the following selling prices (in thousands of 
dollars):

  192 183 312 227 309 396 402 390

a. Check for evidence of nonnormality.
b. Find a point estimate of the population mean that 

is unbiased and efficient.
c. Use an unbiased estimation procedure to find  

a point estimate of the variance of the sample 
mean. (Hint: Use sample standard deviation to 
estimate population standard deviation).

d. Use an unbiased estimator to estimate the propor-
tion of homes in this suburb selling for less than 
$250,000.

 7.3 A random sample of 10 economists produced the fol-
lowing forecasts for percentage growth in real gross 
domestic product in the next year:

  2.2 2.8 3.0 2.5 2.4 2.6 2.5 2.4 2.7 2.6

  Use unbiased estimation procedures to find point esti-
mates for the following:

a. The population mean
b. The population variance
c. The variance of the sample mean
d. The population proportion of economists predict-

ing growth of at least 2.5% in real gross domestic 
product

 7.4 A random sample of 12 employees in a large manufac-
turing plant found the following figures for number of 
hours of overtime worked in the last month:

  22 16 28 12 18 36 23 11 41 29 26 31
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7.2  CONFIDENCE INTERVAL ESTIMATION FOR THE MEAN OF  
A NORMAL DISTRIBUTION: POPULATION VARIANCE KNOWN

We first assume that a random sample is taken from a population that is normally distrib-
uted with an unknown mean and a known variance. The chief virtue in beginning with this 
problem is that it allows a fairly straightforward exposition of the procedures involved in 
finding confidence intervals. Our objective is to find a range of values, rather than a single 
number, to estimate a population mean. This problem may seem to be unrealistic, since rarely 
will a population variance be precisely known and yet the mean be unknown. However, it does 
sometimes happen that similar populations have been sampled so often in the past that 
the variance of the population of interest can be assumed known to a very close approxi-
mation on the basis of past experience. Also, when the sample size n is large enough, the 
procedures developed for the case with the population variance known can be used even 
if that population variance has to be estimated from the sample. We consider the more 
practical situation with population variance unknown in Section 7.3.

The average number of bottles of suntan lotion filled per day by Hawaiian Tropic or 
Panama Jack or the mean number of days for an online order to be shipped by online com-
panies such as Amazon or Zappos are important measures. Wide variation above and be-
low the mean might result in excessive inventory costs, lost sales, or changes in customer 
satisfaction. We need an estimator and an estimate that take into account this variation, 
giving a range of values in which the quantity to be estimated appears likely to lie. In this 
section we establish the general format for such estimators.

In sampling from a population, with all other things being equal, a more secure knowl-
edge about that population is obtained with a relatively large sample than would be ob-
tained from a smaller sample. However, this factor is not reflected in point estimates. For 
example, a point estimate of the proportion of defective parts in a shipment would be the 
same if one defective part in a sample of 10 parts is observed or if 100 defective parts in a 
sample of 1,000 parts are observed. Increased precision in our information about popula-
tion parameters is reflected in confidence interval estimates; specifically, all other things be-
ing equal, the larger the sample size, the narrower the interval estimates that reflect our 
uncertainty about a parameter’s true value.

Confidence Interval Estimator
A confidence interval estimator for a population parameter is a rule for de-
termining (based on sample information) an interval that is likely to include 
the parameter. The corresponding estimate is called a confidence interval 
estimate.

So far, interval estimators have been described as being “likely” or “very likely” to in-
clude the true, but unknown, value of the population parameter. To make our discussion 
more precise, it is necessary to phrase such terms as probability statements. Suppose that 
a random sample has been taken and that, based on the sample information, it is possible 
to find two random variables, A and B, with A less than B. If the specific sample values of 
the random variables A and B are a and b, then the interval extending from a to b either 
includes the parameter or it doesn’t. We really don’t know for sure.

However, suppose that random samples are repeatedly taken from the population 
and, in the same fashion, similar intervals are found. In the long run a certain percentage 
of these intervals (say, 95% or 98%) will contain the unknown value. According to the 
relative frequency concept of probability, an interpretation of such intervals follows: If the 
population is repeatedly sampled and intervals are calculated in this fashion, then in the long run 
95% (or some other percentage) of the intervals would contain the true value of the unknown pa-
rameter. The interval from A to B is then said to be a 95% confidence interval estimator for 
the population proportion. The general case follows.
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Keep in mind that any time sampling occurs, one expects the possibility of a differ-
ence between the particular value of an estimator and the parameter’s true value. The true 
value of an unknown parameter u might be somewhat greater or somewhat less than the 
value determined by even the best point estimator un. It is not surprising that for many 
estimation problems, a confidence interval estimate of the unknown parameter takes on 
the general form

un { ME

where ME, the margin of error, is the error factor.

Intervals Based on the Normal Distribution

Let x1, x2, . . . , xn be a random sample of n observations from a normally distributed 
population with unknown mean m and known variance s2. Suppose that we want a 
10011 - a2% confidence interval of the population mean. In Chapter 6 we saw that

Z =
x - m
s>1n

has a standard normal distribution and za>2 is the value from the standard normal dis-
tribution such that the upper tail probability is a>2. We use basic algebra to find the 
following:

 1 - a = P1 -za>2 6 Z 6 za>22
 = Pa -za>2 6

x - m
s>1n

6 za>2b
 = Pa -za>2 s1n

6 x - m 6 za>2 s1n
b

 = Pax - za>2 s1n
6 m 6 x + za>2 s1n

b
For a 95% confidence level it follows that

P ax - 1.96
s1n

6 m 6 x + 1.96
s1n
b = 0.95

Figure 7.3 shows that the probability is 0.95 and that a standard normal random variable 
falls between the numbers -1.96 and 1.96.

Confidence Interval and Confidence Level
Let u be an unknown parameter. Suppose that on the basis of sample informa-
tion, random variables A and B are found such that P1A 6 u 6 B2 = 1 - a, 
where a is any number between 0 and 1. If the specific sample values of A and 
B are a and b, then the interval from a to b is called a 10011 - a2% confidence 
interval of u. The quantity 10011 - a2% is called the confidence level of the 
interval.

If the population is repeatedly sampled a very large number of times, the 
true value of the parameter u will be covered by 10011 - a2% of intervals cal-
culated this way. The confidence interval calculated in this manner is written 
as a 6 u 6 b, with 10011 - a2% confidence.
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Figure 7.3 

P1 -1.96 6 Z 6 1.962 =
0.95, Where Z Is a 
Standard Normal 
Random Variable

0 1.96–1.96

0.0250.025 0.95

Z

We need to interpret accurately confidence intervals. If random samples of n obser-
vations are drawn repeatedly and independently from the population and 10011 - a2% 
confidence intervals are calculated by Equation 7.1, then over a very large number of 
repeated trials, 10011 - a2% of these intervals will contain the true value of the popula-
tion mean.

Confidence Interval Estimation for the Mean of a 
Population That Is Normally Distributed: Population 
Variance Known
Consider a random sample of n observations from a normal distribution 
with mean m and variance s2. If the sample mean is x, then a 10011 - a2% 
confidence interval for the population mean with known variance is 
given by

 x { za>2 s1n
 (7.1)

or, equivalently,

 x { ME

where ME, the margin of error (also called the sampling error), is given by

 ME = za>2 s2n
 (7.2)

The width, w, is equal to twice the margin of error:

 w = 21ME2 (7.3)

The upper confidence limit (UCL) is given by

 UCL = x + za>2 s1n
 (7.4)

The lower confidence limit (LCL) is given by

 LCL = x - za>2 s1n
 (7.5)

For selected confidence levels, Table 7.2 lists corresponding values of za>2, sometimes 
called the reliability factor. For a 90% confidence interval, Equation 7.1 becomes the 
following:

x { 1.645
s1n
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Example 7.3 Time at the Grocery Store  
(Confidence Interval)

Suppose that shopping times for customers at a local mall are normally distributed with 
known population standard deviation of 20 minutes. A random sample of 64 shoppers 
in the local grocery store had a mean time of 75 minutes. Find the standard error, mar-
gin of error, and the upper and lower confidence limits of a 95% confidence interval for 
the population mean, m.

Solution  The standard error and the margin of error are as follows:

 standard error =
s1n

=
20164

= 2.5

 ME = za>2 s1n
= 1.9612.52 = 4.9

It follows from Equations 7.4 and 7.5 that the upper and lower confidence limits for a 
95% confidence interval are as follows:

UCL = x + za>2 s1n
= 75 + 4.9 = 79.9

LCL = x - za>2 s1n
= 75 - 4.9 = 70.1

How should such a confidence interval be interpreted? Based on a sample 
of 64 observations, a 95% confidence interval for the unknown population mean 
extends from approximately 70 minutes to approximately 80 minutes. Now, this 
particular sample is just one of many that might have been drawn from the pop-
ulation. If we start over again and take a second sample of 64 shoppers, it is 
virtually certain that the mean of the second sample will differ from that of the 
first. Accordingly, if a 95% confidence interval is calculated from the results of 
the second sample, it probably will differ from the interval just found. Imagine 
taking a very large number of independent random samples of 64 observations 
from this population and, from each sample result, calculating a 95% confidence 
interval. The confidence level of the interval implies that in the long run, 95% of inter-
vals found in this manner contain the true value of the population mean . It is in this 
sense reported that there is 95% confidence in our interval estimate. However, 
it is not known whether our interval is one of the good 95% or bad 5% without 
knowing m.

Table 7.2 Selected Confidence Levels and Corresponding Values of za>2
CONFIDENCE LEVEL 90% 95% 98% 99%

a 0.100 0.05 0.02 0.01

za>2 1.645 1.96 2.33 2.58

For a 95% confidence interval, Equation 7.1 becomes the following:

x { 1.96
s1n
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Figure 7.4 

Sampling Distribution of Sample Mean of n 
Observations from a Normal Distribution with 
Mean m, Variance s2, and 95% Confidence Level
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Figure 7.5 

Schematic Description of 95% 
Confidence Intervals

Reducing Margin of Error

Can the margin of error (and, consequently, the width) of a confidence interval be re-
duced? Consider the factors that affect the margin of error: the population standard devia-
tion, the sample size n, and the confidence level.

Keeping all other factors constant, the more that the population standard deviation, 
s, can be reduced, the smaller the margin of error. Corporations strive to reduce vari-
ability in product measurements. When possible, this should be the first step to decrease 
width. However, sometimes the population standard deviation cannot be reduced.

Another way to reduce the margin of error is to increase the sample size. This will 
reduce the standard deviation of the sampling distribution of the sample mean and, 
hence, the margin of error. That is, keeping all other factors constant, an increase in 
the sample size n will decrease the margin of error. The more information obtained 
from a population, the more precise our inference about its mean. When looking at 
Equation 7.2 for the margin of error, notice that the interval width is directly pro-
portional to 1>2n. For example, if the sample size is increased by a factor of 4, the 
interval width is reduced by half. If the original sample size were 100, an increase to a 
sample size of 400 would lead to an interval half the width of the original confidence 
interval (keeping all other factors constant). The disadvantage to an increased sample 
size is increased costs.

Finally, keeping all other factors constant, if the confidence level 11 - a2 is de-
creased, the margin of error is also reduced. For example, a 95% confidence interval 
is shorter than a 99% confidence interval based on the same information. Caution: The 
reduction of the confidence level reduces the probability that the interval includes the 
value of the true population parameter. Figure 7.6 illustrates some of the effects of sam-
ple size n, population standard deviation s, and confidence level 11 - a2 on confidence 
intervals for the mean of a population that has a normal distribution; in each case the 
sample mean is 19.80.

Figure 7.4 shows the sampling distribution of the sample mean of n observations from 
a population that is normally distributed with mean m and standard deviation s. This 
sampling distribution is normally distributed with mean m and standard deviation s>1n. 
A confidence interval for the population mean will be based on the observed value of the 
sample mean—that is, on an observation drawn from our sampling distribution.

Figure 7.5 shows a schematic description of a sequence of 95% confidence intervals, 
obtained from independent samples taken from the population. The centers of these inter-
vals, which are just the observed sample means, will often be quite close to the population 
mean, m. However, some may differ quite substantially from m. It follows that 95% of a 
large number of these intervals will contain the population mean.
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EXERCISES

Basic Exercises
 7.8 Find the reliability factor, za>2, to estimate the mean, 

m, of a normally distributed population with known 
population variance for the following.

a. 93% confidence level
b. 96% confidence level
c. 80% confidence level

 7.9 Find the reliability factor, za>2, to estimate the mean, 
m, of a normally distributed population with known 
population variance for the following.

a. a = 0.08
b. a>2 = 0.02

 7.10 Assume a normal distribution with known population 
variance. Calculate the margin of error to estimate the 
population mean, m, for the following.

a. 98% confidence level; n = 64; s2 = 144
b. 99% confidence level; n = 120; s = 100

 7.11 Assume a normal distribution with known population 
variance. Calculate the width to estimate the popula-
tion mean, m, for the following.

a. 90% confidence level; n = 100; s2 = 169
b. 95% confidence level; n = 120; s = 25

 7.12 Assume a normal distribution with known population 
variance. Calculate the LCL and UCL for each of the 
following.

a. x = 50; n = 64; s = 40; a = 0.05
b. x = 85; n = 225; s2 = 400; a = 0.01
c. x = 510; n = 485; s = 50; a = 0.10

Application Exercises
 7.13 A personnel manager has found that historically the 

scores on aptitude tests given to applicants for entry-
level positions follow a normal distribution with a 
standard deviation of 32.4 points. A random sample of 
nine test scores from the current group of applicants 
had a mean score of 187.9 points.

a. Find an 80% confidence interval for the  
population mean score of the current group of 
applicants.

b. Based on these sample results, a statistician found 
for the population mean a confidence interval ex-
tending from 165.8 to 210.0 points. Find the confi-
dence level of this interval.

 7.14 It is known that the standard deviation in the volumes 
of 20-ounce (591-millliliter) bottles of natural spring 
water bottled by a particular company is 5 milllili-
ters. One hundred bottles are randomly sampled and 
measured.

a. Calculate the standard error of the mean.
b. Find the margin of error of a 90% confidence inter-

val estimate for the population mean volume.
c. Calculate the width for a 98% confidence interval for 

the population mean volume.

 7.15 A college admissions officer for an MBA program has 
determined that historically applicants have under-
graduate grade point averages that are normally dis-
tributed with standard deviation 0.45. From a random 
sample of 25 applications from the current year, the 
sample mean grade point average is 2.90.

a. Find a 95% confidence interval for the population 
mean.

b. Based on these sample results, a statistician com-
putes for the population mean a confidence interval 
extending from 2.81 to 2.99. Find the confidence 
level associated with this interval.

 7.16 A process produces bags of refined sugar. The 
weights of the contents of these bags are normally 
distributed with standard deviation 1.2 ounces. The 
contents of a random sample of 25 bags had a mean 
weight of 19.8 ounces. Find the upper and lower con-
fidence limits of a 99% confidence interval for the 
true mean weight for all bags of sugar produced by 
the process.

19.33 20.2719.80

n = 25, s = 1.2, 1 – a = .95

19.51 20.0919.80

n = 64, s = 1.2, 1 – a = .95

19.02     20.5819.80

n = 25, s = 2.0, 1 – a = .95

19.18 20.4219.80

n = 25, s = 1.2, 1 – a = .99

Figure 7.6 

Effects of Sample 
Size, Population 
Standard Deviation, 
and Confidence 
Level on Confidence 
Intervals
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7.3  CONFIDENCE INTERVAL ESTIMATION FOR THE MEAN  
OF A NORMAL DISTRIBUTION: POPULATION  
VARIANCE UNKNOWN

In the preceding section confidence intervals for the mean of a normal population when 
the population variance was known were derived. Now, we study the case of consider-
able practical importance where the value of the population variance is unknown. For 
example, consider the following:

 1. Corporate executives employed by retail distributors may want to estimate mean 
daily sales for their retail stores.

 2. Manufacturers may want to estimate the average productivity, in units per hour, for 
workers using a particular manufacturing process.

 3. Automobile/truck manufacturers may want to estimate the average fuel consump-
tion, measured in miles per gallon, for a particular vehicle model.

In these types of situations, there is probably no historical information concerning 
either the population mean or the population variance. To proceed further, it is necessary 
to introduce a new class of probability distributions that were developed by William Sealy 
Gosset, an Irish statistician, who was employed by the Guinness Brewery in Dublin in the 
early 1900s (Pearson and Plackett 1990; Salsburg 2002).

Student’s t Distribution

Gosset sought to develop a probability distribution, when the population variance s2 
is not known, for a normally distributed random variable. At this time laboratory tests 
and the scientific method were beginning to be applied to the brewing industry. Gosset, 
whose works appeared under the pseudonym “Student,” was influential in the develop-
ment of modern statistical thinking and process variation: “The circumstances of brewing 
work, with its variable materials and susceptibility to temperature change . . . emphasize 
the necessity for a correct method of treating small samples. It was thus no accident, but 
the circumstances of his work that directed Student’s attention to this problem, and led 
to his discovery of the distribution of the sample standard deviation . . .” (Pearson and 
Wishart 1958). Gosset showed the connection between statistical research and practical 
problems. The distribution is still known as the Student’s t distribution. The Student’s t 
distribution developed by Gosset is the ratio of the standard normal distribution to the 
square root of the chi-square distribution divided by its degrees of freedom, v (see the 
chapter appendix).

The development of Section 7.2 was based on the fact that the random variable Z, 
given by

Z =
X - m
s>1n

has a standard normal distribution. In the case where the population standard deviation 
is unknown, this result cannot be used directly. It is natural in such circumstances to con-
sider the random variable obtained by replacing the unknown s by the sample standard 
deviation, s, giving

t =
x - m
s>1n

This random variable does not follow a standard normal distribution. However, 
its distribution is known and is, in fact, a member of a family of distributions called 
Student’s t.
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A specific member of the family of Student’s t distributions is characterized by the 
number of degrees of freedom associated with the computation of the standard error. We 
will use the parameter v to represent the degrees of freedom and a Student’s t random 
variable with v degrees of freedom will be denoted tv. The shape of the Student’s t dis-
tribution is rather similar to that of the standard normal distribution. Both distributions 
have mean 0, and the probability density functions of both are symmetric about their 
means. However, the density function of the Student’s t distribution has a wider disper-
sion (reflected in a larger variance) than the standard normal distribution. This can be 
seen in Figure 7.7, which shows density functions for the standard normal distribution 
and the Student’s t distribution with 3 degrees of freedom.

Figure 7.7 

Probability Density 
Functions of the 
Standard Normal 
and the Student’s t 
Distribution with 3 
Degrees of Freedom

0 t, z1 2 3–3 –2 –1

Standard 
normalStudent’s t

with 3
degrees of
freedom

The additional dispersion in the Student’s t distribution arises as a result of the extra 
uncertainty caused by replacing the known population standard deviation with its sam-
ple estimator. As the number of degrees of freedom increases, the Student’s t distribution 
becomes increasingly similar to the standard normal distribution. For large degrees of 
freedom, the two distributions are virtually identical. That is, the Student’s t distribution 
converges to N(0, 1), which is quite close to the t as long as n is large. This is intuitively 
reasonable and follows from the fact that for a large sample, the sample standard devia-
tion is a very precise estimator of the population standard deviation.

In order to base inferences about a population mean on the Student’s t distribution, 
critical values analogous to za>2 are needed. Just as za>2 is the value from the standard nor-
mal distribution such that the upper tail probability is a>2, so tv,a>2 is the value from the 
Student’s t distribution for v (degrees of freedom) such that the upper tail probability is 
a>2, as shown in Figure 7.8.

Figure 7.8 

P1tv 7 tv,a>22 = a>2, 
Where tv is a 
Student’s t Random 
Variable with v 
Degrees of Freedom

0

1 – a/2 

a/2 

tv,a/2 t

Student’s t Distribution
Given a random sample of n observations, with mean x and standard deviation s, 
from a normally distributed population with mean m, the random variable t follows 
the Student’s t distribution with 1n - 12 degrees of freedom and is given by

t =
x - m
s>1n
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Suppose that the number that is exceeded with probability 0.05 by a Student’s t ran-
dom variable with 15 degrees of freedom is required:

P1t15 7 t15,0.052 = 0.05

Reading directly from the Student’s t distribution table,

t15,0.05 = 1.753

Many computer programs can be used to obtain these values as well.

Intervals Based on the Student’s t Distribution

We will encounter many situations in which the population variance is not known. Find-
ing the 10011 - a2% confidence interval for this type of problem follows precisely the 
same line of reasoning as in Section 7.2. Terminology is analogous.

Notation
A random variable having the Student’s t distribution with v degrees of free-
dom is denoted tv. Then tv,a>2 is the reliability factor, defined as the number 
for which

P1tv 7 tv,a>22 = a>2

Confidence Intervals for the Mean of a Normal 
Population: Population Variance Unknown
Suppose there is a random sample of n observations from a normal distribu-
tion with mean m and unknown variance. If the sample mean and standard 
deviation are, respectively, x and s, then the degrees of freedom is v = n - 1, 
and a 10011 - a2% confidence interval for the population mean with unknown 
variance, is given by

 x { tn- 1,a>2 s1n
 (7.6)

or, equivalently,

x { ME

where ME, the margin of error, is given by

 ME = tn- 1,a>2 s1n
 (7.7)

Assume that a random sample of n observations is available from a normal popula-
tion with mean m and unknown variance and that confidence intervals for the population 
mean are required. This type of situation occurs in applications to business, government, 
and medical or other research. First, we stress the importance of checking to see if the data 
indicate nonnormality. Although we assume normality throughout this chapter, we dem-
onstrate one method to check this assumption in Example 7.4 by using the normal prob-
ability plot introduced in Chapter 5. The normal probability plot tests whether the data 
are not normally distributed. Confidence interval terminology for a population mean with 
unknown variance is similar to the situation with variance known.
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Example 7.4 Trucks: Gasoline Consumption 
(Confidence Interval)

Recently gasoline prices rose drastically. Suppose that a study was conducted using 
truck drivers with equivalent years of experience to test run 24 trucks of a particular 
model over the same highway. Estimate the population mean fuel consumption for this 
truck model with 90% confidence if the fuel consumption, in miles per gallon, for these 
24 trucks was as follows:

15.5 21.0 18.5 19.3 19.7 16.9 20.2 14.5

16.5 19.2 18.7 18.2 18.0 17.5 18.5 20.5

18.6 19.1 19.8 18.0 19.8 18.2 20.3 21.8

The data are stored in the data file Trucks.

Solution We check the normality assumption by constructing the normal probability 
plot. Figure 7.9 does not provide evidence of nonnormality.

Figure 7.9 Normal Probability Plot

Next, calculating the mean and standard deviation, we find the following:

x = 18.68 s = 1.69526 tn -1,a>2 = t23,0.05 = 1.714

By Equation 7.6 the 90% confidence interval is as follows:

 x { tn -1,a>2 s1n
= 18.68 { t23,0.05

1.69526124
= 18.68 { 11.7142 * 10.34602

 = 18.68 { 0.5930

The lower confidence limit is approximately equal to 18.1, and the upper confidence limit 
is approximately equal to 19.3. Figure 7.10 is the Excel output of descriptive statistics  
generated for the data file Trucks.

The interpretation of the confidence interval is important. If independent random 
samples of 24 trucks are repeatedly selected from the population and confidence in-
tervals for each of these samples are determined, then over a very large number of 
repeated trials, 90% of these intervals will contain the value of the true mean fuel con-
sumption for this model truck. In practice, however, one does not repeatedly draw 
such independent samples.
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The question may arise about how to handle confidence interval estimation of a popu-
lation mean when the sample size is large and the population variance is unknown. Recall 
that in Example 2.7, the sample size for the Healthy Eating Index–2005 data was n = 4,460 
individuals. Clearly, the population variance is unknown and the sample size is quite large. A 
confidence interval estimate for the population mean HEI score is presented in Example 7.5.

Mean 18.67917

Standard Error 0.346043

Median 18.65

Mode 18.5

Standard Deviation 1.695257

Sample Variance 2.873895

Kurtosis 0.624798

Skewness –0.60902

Range 7.3

Minimum 14.5

Maximum 21.8

Sum 448.3

Count 24

Confidence Level (90.0%) 0.593072

Figure 7.10 Output for 
Data File Trucks (Excel)

Example 7.5 Healthy Eating Index–2005 (Confidence 
Interval Estimate of the Population Mean, for 
Normal Distribution, Large Sample Size)

The HEI measures on a 100-point scale, the adequacy of consumption of vegetables, 
fruits, grains, milk, meat and beans, and liquid oils. This scale is called HEI2005 (Guen-
ther et al. 2007). There are two observations for each person in the study. The first ob-
servation, identified by daycode =  1, contains data from the first interview and the 
second observation, daycode =  2, contains data from the second interview. This data, 
for a random sample of n = 4,460 participants are stored in the data file HEI Cost Data 
Variable Subset. Find a 95% confidence interval for the mean HEI–2005 score for par-
ticipants at the time of their first interview.

Solution With a large sample size of n = 4,460 observations, we find the sample 
mean and the sample standard deviation for the HEI–2005 scores using Excel, Minitab, 
SPSS, or some other software. Figure 7.11 provides the Excel output giving these 
descriptive measures.

Figure 7.11 HEI–2005 
Scores: First Interview  
Descriptive Measures  
(Excel)

HEI2005

Mean 52.01003

Standard Error 0.212601

Median 51.53633

Mode #N/A

Standard Deviation

Sample Variance

14.19817

201.588

20.57356Kurtosis

Skewness 0.186753

88.28539

Minimum 11.17156

Maximum 99.45695

Count 4,460
Sum 2,319,64.7

Range
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EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

 7.22 Calculate the width for each of the following.

a. n = 6; s = 40; a = 0.05
b. n = 22; s2 = 400; a = 0.01
c. n = 25; s = 50; a = 0.10

Application Exercises
 7.23 In Example 7.5 we calculated a 95% confidence in-

terval estimate of the Healthy Eating Index–2005 
score for a random sample of participants at the time of 
their first interview. Recall that there are two observations 
for each person in the study. The first observation, identi-
fied by daycode =  1, contains data from the first inter-
view and the second observation, daycode =  2, contains 
data from the second interview. Find a 95% confidence in-
terval for the mean HEI–2005 score for participants at the 
time of their second interview. The data are stored in the 
data file HEI Cost Data Variable Subset.

 7.24 A machine that packages 18-ounce (510-gram) 
boxes of sugar-coated wheat cereal is being stud-

ied. The weights for a random sample of 100 boxes of ce-
real packaged by this machine are contained in the data 
file Sugar.

a. Find a 90% confidence interval for the population 
mean cereal weight.

b. Without doing the calculations, state whether an 
80% confidence interval for the population mean 
would be wider than, narrower than, or the same 
as the answer to part a.

 7.25 How much do students pay, on the average, for text-
books during the first semester of college? From a ran-
dom sample of 400 students the mean cost was found 
to be $357.75, and the sample standard deviation was 
$37.89. Assuming that the population is normally dis-
tributed, find the margin of error of a 95% confidence 
interval for the population mean.

 7.26 There is concern about the speed of automobiles trav-
eling over a particular stretch of highway. For a ran-
dom sample of 28 automobiles, radar indicated the 
following speeds, in miles per hour:

59 63 68 57 56 71 59

69 53 58 60 66 51 59

54 64 58 57 66 61 65

70 63 65 57  56 61 59

Basic Exercises
 7.17 Find the standard error to estimate the population 

mean for each of the following.

a. n = 17; 95% confidence level; s = 16
b. n = 25; 90% confidence level; s2 = 43

 7.18 Calculate the margin of error to estimate the popula-
tion mean for each of the following.

a. 99% confidence level;  
x1 = 25; x2 = 30; x3 = 33; x4 = 21

b. 90% confidence level; 
x1 = 15; x2 = 17; x3 = 13; x4 = 11; x5 = 14

 7.19 Twenty people in one large metropolitan area were 
asked to record the time (in minutes) that it takes them 
to drive to work. These times were as follows:

  30 42 35 40 45 22 32 15 41 45

  28 32 45 27 47 50 30 25 46 25

a. Calculate the standard error.
b. Find tv,a>2 for a 95% confidence interval for the true 

population mean.
c. Calculate the width for a 95% confidence interval for 

the population mean time spent driving to work.

 7.20 Find the LCL and UCL for each of the following.

a. a = 0.05; n = 25; x = 560; s = 45
b. a>2 = 0.05; n = 9; x = 160; s2 = 36
c. 1 - a = 0.98; n = 22; x = 58; s = 15

 7.21 A random sample of 16 tires was tested to estimate the 
average life of this type of tire under normal driving 
conditions. The sample mean and sample standard 
deviation were found to be 47,500 miles and 4,200 
miles, respectively.

a. Calculate the margin of error for a 95% confi-
dence interval estimate of the mean lifetime of 
this type of tire if driven under normal driving 
conditions.

b. Find the UCL and the LCL of a 90% confidence  
interval estimate of the mean lifetime of this type  
of tire if driven under normal driving conditions.

Clearly from the central limit theorem (Chapter 6) and the large sample size, it follows 
that the reliability factor is approximately 1.96; that is,

t4459,0.025 > 1.96

Using Equation 7.6, we find the 95% confidence interval for the population mean HEI–
2005 score of participants at the first interview as follows:

x { tn- 1,a>2 s1n
= 52.0 { t4459,0.025

14.1981714,460
The 95% confidence interval estimate of the population mean HEI–2005 score is found to be

52.01 { 1.9610.21262 = 52.01 { 0.4167
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  Assuming a normal population distribution (See Exercise 
7.1), find the margin of error of a 95% confidence interval  
for the mean speed of all automobiles traveling over 
this stretch of highway.

 7.27 A clinic offers a weight-loss program. A review of its 
records found the following amounts of weight loss, 
in pounds, for a random sample of 24 of its clients at 
the conclusion of a 4-month program:

18 25 16 11 15 20 16 19

28 25 26 31 45 40 36 19

28 25 36 16  35 20 16  19

a. Find a 99% confidence interval for the population 
mean.

b. Without doing the calculations, explain whether a 
90% confidence interval for the population mean 

would be wider than, narrower than, or the same as 
that found in part a.

 7.28 A business school placement director wants to estimate 
the mean annual salaries 5 years after students graduate. A 
random sample of 25 such graduates found a sample mean 
of $42,740 and a sample standard deviation of $4,780. Find 
a 90% confidence interval for the population mean, assum-
ing that the population distribution is normal.

 7.29 A car-rental company is interested in the amount of 
time its vehicles are out of operation for repair work. 
State all assumptions and find a 90% confidence in-
terval for the mean number of days in a year that all 
vehicles in the company’s fleet are out of operation if 
a random sample of nine cars showed the following 
number of days that each had been inoperative:

  16 10 21 22 8 17 19 14 19

7.4  CONFIDENCE INTERVAL ESTIMATION FOR  
POPULATION PROPORTION (LARGE SAMPLES)

What percent of European students expect to pursue doctoral degrees? What percent of col-
lege admission personnel think that SAT scores are a good indicator of academic success in 
college? What proportion of the students at a particular university would like classes to be 
offered on Saturdays? What proportion of registered voters will vote for a particular candi-
date in the upcoming election? In each of these scenarios the proportion of population mem-
bers possessing some specific characteristic is of interest. If a random sample is taken from 
the population, the sample proportion provides a natural point estimator of the population 
proportion. In this section confidence intervals for the population proportion are established.

Using the binomial setup, we let pn denote the proportion of “successes” in n indepen-
dent trials, each with probability of success P. We saw in Chapter 6 that if the number n of 
sample members is large, then the random variable

Z =
pn - P

AP11 - P2
n

has, to a close approximation, a standard normal distribution. If the sample size is large 
enough that nP11 - P2 7 5 , then a good approximation is obtained if P is replaced by 
the point estimator pn in the denominator:

AP11 - P2
n

< Apn11 - pn2
n

Hence, for large sample sizes, the distribution of the random variable

Z =
pn - P2pn11 - pn2>n

is approximately standard normal. This result can now be used to obtain confidence inter-
vals for the population proportion. The derivation is similar to the preceding examples.

 1 - a = P1 -za>2 6 Z 6 za>22
 = P° -za>2 6

pn - P

Apn11 - pn2
n

6 za>2¢
 = Pa -za>2Apn11 - pn2

n
6 pn - P 6 za>2Apn11 - pn2

n
b

 = Papn - za>2Apn11 - pn2
n

6 P 6 pn + za>2Apn11 - pn2
n

b
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Therefore, if the observed sample proportion is pn an approximate 10011 - a2% con-
fidence interval for the population proportion is given, as seen in Equation 7.8, which 
follows.

Confidence Intervals for Population Proportion  
(Large Samples)
Let pn  denote the observed proportion of “successes” in a random sample of 
n observations from a population with a proportion of successes P. Then, if 
nP11 - P2 7 5, a 10011 - a2% confidence interval for the population propor-
tion is given by

 pn { za>2Apn11 - pn2
n

 (7.8)

or, equivalently,

pn { ME

where ME, the margin of error, is given by

 ME = za>2Apn11 - pn2
n

 (7.9)

Confidence intervals for the population proportion are centered on the sample pro-
portion. Also, it can be seen that, all other things being equal, the larger the sample size, n, 
the narrower the confidence interval. This reflects the increasing precision of the informa-
tion about the population proportion obtained as the sample size becomes larger.

Example 7.6 Modified Bonus Plan  
(Confidence Interval)

Management wants an estimate of the proportion of the corporation’s employees who 
favor a modified bonus plan. From a random sample of 344 employees, it was found 
that 261 were in favor of this particular plan. Find a 90% confidence interval estimate of 
the true population proportion that favors this modified bonus plan.

Solution The sample proportion, pn, and the reliability factor for a 90% confidence 
interval estimate 1a = 0.102 of the true population proportion, P, are found to be

 pn = 261>344 = 0.759
 za>2 = z0.05 = 1.645

Therefore, from Equation 7.8, a 90% confidence interval for the population proportion is

0.759 { 1.645A10.759210.2412
344

0.759 { 0.038

Strictly speaking, what does this interval [0.721, 0.797] imply? Imagine taking a very 
large number of independent random samples of 344 observations from this popula-
tion and, from each sample result, calculating a 90% confidence interval. The confidence 
level of the interval implies that in the long run 90% of intervals found in this manner contain 
the true value of the population proportion. It is in this sense, we report that there is 90% 
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confidence in our interval estimate. However, it is not known whether our interval is 
one of the good 90% or bad 10% without knowing P.

Let’s compare the 90% and the 99% confidence intervals. That is, what is the effect 
on the margin of error (and consequently the width) if the confidence level is increased 
and all other factors remain constant? From Equation 7.9, the margin of error for the 
99% confidence is found to be

ME = 2.58A10.759210.2412
344

> 0.059

We see that by increasing the confidence level from 90% to 99%, the margin of error 
increased from approximately 3.8% to approximately 5.9%. Wide intervals for a given a
reflect imprecision in our knowledge about the population proportion. Narrower con-
fidence intervals can be obtained by reducing the confidence level or by taking larger 
sample sizes.

EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

selected. Estimate the proportion of all the company’s 
accounts with an original purchase price of less than 
$10,000. The data is stored in the data file Mendez 
Mortgage. Use a = 0.02.

 7.36 Consider again the Mendez Mortgage Com-
pany case study in Chapter 2. From a random 

sample of n = 350 accounts of the company’s total 
portfolio, estimate with 95% confidence the propor-
tion of all the company’s accounts in which the pur-
chaser’s latest FICO score was at least 750. The data is 
stored in the data file Mendez Mortgage.

 7.37 From a random sample of 400 registered voters in one 
city, 320 indicated that they would vote in favor of a 
proposed policy in an upcoming election.

a. Calculate the LCL for a 98% confidence interval 
estimate for the population proportion in favor of 
this policy.

b. Calculate the width of a 90% confidence interval 
estimate for the population proportion in favor of 
this policy.

 7.38 Of a random sample of 250 marketing students, 180 
rated a case of résumé inflation as unethical. Based on 
this information a statistician computed a confidence 
interval extending from 0.68 to 0.76 for the popula-
tion proportion. What is the confidence level of this 
interval?

 7.39 A Malaysian airline wanted to determine if customers 
would be interested in paying a $10 flat fee for unlim-
ited Internet access during long-haul flights. From a 
random sample of 200 customers, 125 indicated that 
they would be willing to pay this fee. Using this sur-
vey data, determine the 99% confidence interval es-
timate for the population proportion of the airline’s 
customers who would be prepared to pay this fee for 
Internet use.

 7.40 Suppose that the local authorities in a heavily popu-
lated residential area of downtown Hong Kong were 
considering building a new municipal swimming 
pool and leisure center. Because such a development 

Basic Exercises
 7.30 Find the margin of error to estimate the population 

proportion for each of the following.

a. n = 350; pn = 0.30; a = 0.01
b. n = 275; pn = 0.45; a = 0.05
c. n = 500; pn = 0.05; a = 0.10

 7.31 Calculate the confidence interval to estimate the popu-
lation proportion for each of the following.

a. 98% confidence level; n = 450; pn = 0.10
b. 95% confidence level; n = 240; pn = 0.01
c. a = 0.04; n = 265; pn = 0.50

 7.32 A small private university is planning to start a volun-
teer football program. A random sample of alumni is 
surveyed. It was found that 250 were in favor of this 
program, 75 were opposed, and 25 had no opinion.

a. Estimate the percent of alumni in favor of this pro-
gram. Let a = 0.05.

b. Estimate the percent of alumni opposed to this vol-
unteer football program with a 90% confidence level.

Application Exercises
 7.33 Suppose that a random sample of 142 graduate-admis-

sions personnel was asked what role scores on stan-
dardized tests (such as the GMAT or GRE) play in the 
consideration of a candidate for graduate school. Of these 
sample members, 87 answered “very important.” Find a 
95% confidence interval for the population proportion of 
graduate admissions personnel with this view.

 7.34 In a random sample of 95 manufacturing firms, 67 in-
dicated that their company attained ISO certification 
within the last two years. Find a 99% confidence in-
terval for the population proportion of companies that 
have been certified within the last 2 years.

 7.35 The Mendez Mortgage Company case study 
was given in Chapter 2. A random sample of 

n = 350 accounts of the company’s total portfolio was 
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would cost a great deal of money, it first of all needed 
to be established whether the residents of this area 
thought that the swimming pool and leisure center 
would be a worthwhile use of public funds. If 243 out 
of a random sample of 360 residents in the local area 
thought that the pool and leisure center should be 
built, determine with 95% confidence the proportion 
of all the local residents in the area who would sup-
port the proposal.

 7.41 It is important for airlines to follow the published 
scheduled departure times of flights. Suppose that 

one airline that recently sampled the records of 246 
flights originating in Orlando found that 10 flights 
were delayed for severe weather, 4 flights were de-
layed for maintenance concerns, and all the other 
flights were on time.

a. Estimate the percentage of on-time departures us-
ing a 98% confidence level.

b. Estimate the percentage of flights delayed for severe 
weather using a 98% confidence level.

7.5  CONFIDENCE INTERVAL ESTIMATION FOR THE VARIANCE  
OF A NORMAL DISTRIBUTION

On occasion, interval estimates are required for the variance of a population. As might be 
expected, such estimates are based on the sample variance. We emphasize here that the pop-
ulation must be normally distributed, and that this normality assumption must be verified.

Suppose a random sample of n observations from a normally distributed population 
with variance s2 and sample variance s2 is taken. The random variable

x2
n- 1 =

1n - 12s2

s2

follows a chi-square distribution with (n - 1) degrees of freedom. This result forms the 
basis for the derivation of confidence intervals for the population variance when sampling 
from a normal distribution.

In order to develop the formula for calculating confidence intervals for the variance, 
an additional notation is needed.

Notation
A random variable having the chi-square distribution with v = n - 1 degrees 
of freedom will be denoted by x2

v or simply x2
n -1. Define as x2

n -1,a the number 
for which

P1x2
n- 1 7 x2

n- 1,a2 = a
For a specified probability a, a chi-square number for n -  1 degrees of freedom is 

needed—that is, x2
n -1,a. This number can be found from values of the cumulative distribu-

tion function of a chi-square random variable. We illustrate this notation in Figure 7.12.

Figure 7.12 

Chi-Square 
Distribution

α

1 – α

0 χ2
n –1,α

For instance, suppose the number that is exceeded with probability 0.05 by a chi-
square random variable with 6 degrees of freedom is needed:

P1x2
6 7 x2

6,0.052 = 0.05
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From Appendix Table 7, x2
6,0.05 = 12.592. Similarly,

P1x2
n- 1 7 x2

n- 1,a>22 = a2
It follows that x2

n -1, 1 -a>2 is given by

P1x2
n- 1 7 x2

n- 1,1 -a>22 = 1 -
a

2

and hence

P1x2
n- 1 6 x2

n- 1,1 -a>22 = a2
Finally,

P1x2
n- 1,1 -a>2 6 x2

n- 1 6 x2
n- 1,a>22 = 1 -

a

2
-
a

2
= 1 - a

This probability is illustrated in Figure 7.13.

Suppose a pair of numbers is needed such that the probability that a chi-square 
random variable with 6 degrees of freedom lying between these numbers is 0.90. Then 
a = 0.10 and

P1x2
6,0.95 6 x2

6 6 x2
6,0.052 = 0.90

Previously, we found that x2
6,0.05 = 12.592. From Appendix Table 7, we find that 

x2
6,0.95 = 1.635.

The probability is 0.90 that this chi-square random variable falls between 1.635 and 
12.592. To find confidence intervals for the population variance,

 1 - a = P1x2
n- 1,1 -a>2 6 x2

n- 1 6 x2
n- 1,a>22

 = Pax2
n- 1,1 -a>2 6

1n - 12s2

s2 6 x2
n- 1,a>2b

 = P° 1n - 12s2

x2
n- 1,a>2 6 s2 6

1n - 12s2

x2
n- 1,1 -a>2 ¢

Figure 7.13 

Chi-Square 
Distribution for 
n - 1 and 11 - a2% 
Confidence Level

1 – α

χ2
n–1,1–α/2 χ2

n–1,α/2

α–2
α–2

Confidence Intervals for the Variance of a Normal 
Population
Suppose that there is a random sample of n observations from a normally 
distributed population with variance s2. If the observed sample variance is s2, 
then the lower and upper confidence limits of a 10011 - a2% confidence inter-
val for the population variance is given by

 LCL =
1n - 12s2

x2
n- 1,a>2  and UCL =

1n - 12s2

x2
n- 1,1 -a>2  (7.10)
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Although it is assumed throughout this section that the population is normally dis-
tributed, we should always check for any evidence that this assumption fails. Notice that 
the confidence interval in Equation 7.10 is not the usual form, sample point estimator {  
margin of error.

where x2
n -1,a>2 is the number for which

P1x2
n- 1 7 x2

n- 1,a>22 = a2
and x2

n -1,1 -a>2 is the number for which

P1x2
n- 1 6 x2

n- 1,1 -a>22 = a2
and the random variable x2

n -1 follows a chi-square distribution with (n - 1) de-
grees of freedom.

Example 7.7 Comparing Temperature Variances 
(Confidence Interval)

The manager of Northern Steel, Inc., wants to assess the temperature variation in the 
firm’s new electric furnace. It is known that temperatures are normally distributed. A 
random sample of 25 temperatures over a 1-week period is obtained, and the sample 
variance is found to be s2 = 100. Find a 95% confidence interval for the population 
variance temperature.

Solution Here, n = 25 and s2 = 100, and for a 95% confidence interval, a = 0.05. It 
follows from the chi-square distribution in Appendix Table 7 (see Figure 7. 14) that

x2
n -1,1 -a>2 = x2

24,0.975 = 12.401 and x2
n -1,a>2 = x2

24,0.025 = 39.364

From Equation 7.10, the lower confidence limit for a 95% confidence interval for 
the population variance is given by

LCL =
1n - 12s2

x2
n -1,a>2 =

124211002
39.364

= 60.97

and from Equation 7.10, the upper confidence limit is found as follows:

UCL =
1n - 12s2

x2
n -1,1 -a>2 =

124211002
12.401

= 193.53. 

Figure 7.14 Chi-Square Distribution for n = 25 and 95% Confidence Level

0.0250.025

0.95

x2
(24,0.975) = 12.401 x2

(24,0.025) = 39.364
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It is dangerous to follow the procedure just demonstrated when the population dis-
tribution is not normal. The validity of the interval estimator for the population variance 
depends far more critically on the assumption of normality than does that of the interval 
estimator for the population mean.

EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

  Find a 90% confidence interval for the population vari-
ance of weight loss for clients of this weight-loss program.

 7.47 The quality-control manager of a chemical company 
randomly sampled twenty 100-pound bags of fertil-
izer to estimate the variance in the pounds of impuri-
ties. The sample variance was found to be 6.62. Find a 
95% confidence interval for the population variance in 
the pounds of impurities.

 7.48 A psychologist wants to estimate the variance of em-
ployee test scores. A random sample of 18 scores had 
a sample standard deviation of 10.4. Find a 90% con-
fidence interval for the population variance. What 
are the assumptions, if any, to calculate this interval 
estimate?

 7.49 A manufacturer is concerned about the variability of 
the levels of impurity contained in consignments of 
raw material from a supplier. A random sample of 15 
consignments showed a standard deviation of 2.36 in 
the concentration of impurity levels. Assume normality.

a. Find a 95% confidence interval for the population 
variance.

b. Would a 99% confidence interval for this variance be 
wider or narrower than that found in part a?

 7.50 A manufacturer bonds a plastic coating to a metal sur-
face. A random sample of nine observations on the 
thickness of this coating is taken from a week’s output, 
and the thicknesses (in millimeters) of these observa-
tions are as follows:

  19.8 21.2 18.6 20.4 21.6 19.8 19.9 20.3 20.8

  Assuming normality, find a 90% confidence interval 
for the population variance.

7.6 CONFIDENCE INTERVAL ESTIMATION: FINITE POPULATIONS

In this section we consider confidence intervals where the number of sample members is 
not a negligible proportion of the number of population members. Generally, the sample 
size is considered to be relatively large compared to the population size if it is more than 
5% of the population size, that is, if n 7 0.05N. We assume that the sample is sufficiently 
large and that recourse to the central limit theorem is appropriate. As a result, the finite 
population correction (fpc) factor, (N -  n)/(N -  1), which was introduced in Chapter 6, 
will be used. In these situations the individual members are not distributed independently 
of one another and sampling is without replacement.

Population Mean and Population Total

Here, we consider problems where a sample of n individuals or objects is to be drawn from 
a population containing N members. We develop confidence intervals for the population 
mean and the population total when the sample size is more than 5% of the population size.

Basic Exercises
 7.42 Find the lower confidence limit for the population 

variance for each of the following normal populations.

a. n = 21; a = 0.05; s2 = 16
b. n = 16; a = 0.05; s = 8
c. n = 28; a = 0.01; s = 15

 7.43 Find the upper confidence limit for parts a–c of 
 Exercise 7.42.

 7.44 Consider the following random sample from a normal 
population:

  12 16 8 10 9

a. Find the 90% confidence interval for population 
variance.

b. Find the 95% confidence interval for the population 
variance.

Application Exercises
 7.45 LDS wants to be sure that the leak rate (in cubic 

centimeters per second) of transmission oil cool-
ers (TOCs) meets the established specification limits. A 
random sample 50 TOCs is tested, and the leak rates are 
recorded in the data file TOC. Estimate the variance in 
leak rate with a 95% confidence level (check normality).

 7.46 A clinic offers a weight-loss program. A review of its 
records found the following amounts of weight loss, 
in pounds, for a random sample of 10 clients at the 
conclusion of the program:

  18.2 25.9 6.3 11.8 15.4 20.3 16.8 18.5 12.3 17.2
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Estimation of the Population Mean, Simple Random 
Sample, Finite Population
Let x1, x2, . . . , xn denote the values observed from a simple random sample of 
size n, taken from a population of N members with mean m.

1. The sample mean is an unbiased estimator of the population mean, m. 
The point estimate is

x =
1
n a

n

i=1
xi

2. An unbiased estimation procedure for the variance of the sample mean 
yields the point estimate

 sn x
2 =

s2

n
aN - n

N - 1
b  (7.11)

3. A 10011 - a2% confidence interval for the population mean is given by

 x { tn- 1,a>2sn x (7.12)

 where ME, the margin of error, is given by

 ME = tn- 1,a>2sn x (7.13)

Example 7.8 Mortgages (Confidence Interval)

In a particular city 1,118 mortgages were financed last year. A random sample of 60 
of these had a mean amount $87,300 and standard deviation $19,200. Estimate the 
mean amount of all mortgages financed in this city last year, and find a 95% confidence 
interval.

Solution Denote the population mean by m. We know that

N = 1,118 n = 60 x = +87,300 s = 19,200

To obtain interval estimates, use Equation 7.11,

snx
2 =

s2

n
aN - n

N - 1
b =

119,20022
60

a 1,058
1,117

b = 5,819,474

and take the square root to obtain the estimated standard error,

snx = 2,412

With t59,0.025 > 2.00 (Appendix Table 8) the margin of error of a 95% confidence inter-
val for the mean amount of all mortgages financed in this city last year is calculated 
from Equation 7.13 as follows:

ME = tn -1,a>2snx = 212,4122 = +4,824

The resulting 95% confidence interval estimate for the mean amount of all mortgages 
financed in this city last year is

+87,300 { +4,824

That is, the interval runs from $82,476 to $92,124.

In Example 7.9, we illustrate a situation when auditors are asked to conduct a sam-
pling audit of a firm’s accounts receivable to estimate the mean value of the accounts 
receivable.
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Frequently, interest centers on the population total rather than the mean. For exam-
ple, the publisher of a business statistics text will want an estimate of the total number of 
students taking business statistics courses in all U.S. colleges. Inference about the popula-
tion total is straightforward. The relevant results follow from the fact that, in our notation, 
population total = Nm.

Example 7.9 Confirmation Audit of Receivables 
(Confidence Interval)

Toivo Steendahl Associates, a major auditing firm, has been engaged to audit Big 
Woods Furniture, an upper-Midwest furniture retailer, in order to determine the value 
of the firm’s assets preceding a take over by National Distributor. As part of this audit 
we have been asked to conduct a sampling audit of the accounts receivable to esti-
mate mean value of the accounts receivable. The company presently has 1,420 accounts 
 receivable on the ledger.

Solution Based on our experience from past audits, we decide to conduct a 
customer confirmation audit by contacting a random sample of 100 accounts receivable 
customers and asking them to either verify the value of the receivable in the company 
transaction file or to indicate the correct value of the receivable. From this sample of 100 
customers we have a value for the receivable. From the data, the mean and variance are 
as follows:

 x = 784
 s2 = 2,300

Thus, we can report that the point estimate for the mean value of the receivables is 
$784. However, in addition we wish to report a confidence interval for our estimate. 
Since we are working with a finite population it is necessary to obtain an estimate for 
the population variance as

nsx
2 =

s2

n
aN - n

N - 1
b =

2,300
100

a 1,320
1,419

b = 21.395

and take the square root to obtain the estimated standard error,

sn x = 4.626

Using Equation 7.12 and t99,0.025 > 1.96, a 95% confidence interval estimation of the 
mean accounts receivable is

x { tn- 1,a>2snx = 784 { 1.9614.6262
The margin of error is approximately $9, giving a 95% confidence interval estimate for 
the accounts receivable as $775 to $793.

Estimation of the Population Total, Simple Random 
Sample, Finite Population
Suppose a simple random sample of size n from a population of size N is 
 selected and that the quantity to be estimated is the population total Nm.

1. An unbiased estimation procedure for the population total Nm yields the 
point estimate N x.

2. An unbiased estimation procedure for the variance of our estimator of 
the population total yields the point estimate

 N2snx
2 = N2s2

n
aN - n

N - 1
b  (7.14)
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Population Proportion

Finally, consider the case where it is required to estimate the proportion P of indi-
viduals in the population possessing some specific characteristic. Inference about this 
proportion should be based on the hypergeometric distribution when the number of 
sample members is not very small compared to the number of population members. 
Again, assume that the sample size is large enough to allow the central limit theorem to 
be invoked.

 It follows that

 Nsnx =
Ns1nA aN - n

N - 1
b  (7.15)

3. A 10011 - a2% confidence interval for the population total, Nm, is 
 obtained from

 Nx { tn- 1,a>2Nsnx (7.16)

 where ME, the margin of error, is given by

 ME = tn- 1,a>2Nsnx (7.17)

Example 7.10 Enrollment in Business Statistics 
Courses (Confidence Interval)

Suppose that there are 1,395 colleges in the United States. From a simple random 
sample of 400 of these schools, it was found that the sample mean enrollment during 
the past year in business statistics courses was 320.8 students, and the sample stan-
dard deviation was found to be 149.7 students. Estimate the total number of students 
enrolled in business statistics courses in the previous year, and find a 99% confidence 
interval.

Solution If the population mean is m, an estimate of Nm includes the following:

N = 1,395 n = 400 x = 320.8 s = 149.7

Our point estimate for the total is

Nx = (1,39521320.82 = 447,516

We estimate that a total of 447,516 students are enrolled in business statistics courses. 
To obtain interval estimates, Equation 7.15 is used to obtain

Nsnx =
Ns1nAN - n

N - 1
=
11,39521149.721400 A 995

1,394
= 8,821.6

Since the sample size is large, the 99% confidence interval for the population total, 
Nm, is found by Equation 7.16 and the central limit theorem with za>2 = 2.58:

 Nx { za>2Nsnx

 447,516 { 2.5818,821.62
 447,516 { 22,760

Thus, our interval runs from 424,756 to 470,276 students.
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Estimation of the Population Proportion, Simple 
Random Sample, Finite Population
Let pn be the proportion possessing a particular characteristic in a random 
sample of n observations from a population with a proportion, P, of whose 
members possess that characteristic.

1. The sample proportion, pn, is an unbiased estimator of the population 
proportion, P.

2. An unbiased estimation procedure for the variance of our estimator of 
the population proportion yields the point estimate

 snpn
2 =

pn11 - pn2
n - 1

aN - n
N - 1

b  (7.18)

3. Provided the sample size is large, 10011 - a2% confidence intervals for 
the population proportion are given by

 pn { za>2snpn (7.19)

 where ME, the margin of error, is given by

 ME = za>2snpn (7.20)

Example 7.11 Two Semesters of Business Statistics 
(Confidence Interval)

From a simple random sample of 400 of the 1,395 colleges in our population, it was 
found that business statistics was a two-semester course in 141 of the sampled colleges. 
Estimate the proportion of all colleges for which the course is two semesters long, and 
find a 90% confidence interval.

Solution Given

N = 1,395 n = 400 pn =
141
400

= 0.3525

our point estimate of the population proportion, P, is simply pn = 0.3525. That is, the 
course is two semesters long in approximately 35.25% of all colleges. To calculate inter-
val estimates, the variance of our estimate is found by Equation 7.18:

sn 2
pn =

pn11 - pn 2
n

aN - n
N - 1

b =
10.3525210.64752

400
a 995

1,394
b = 0.0004073

so

sn pn = 0.0202

For a 90% confidence interval, za>2 = z0.05 = 1.645. The margin of error of a 90% 
confidence interval is found by Equation 7.20 as follows:

ME = za>2snpn = 1.64510.02022 > 0.0332

Finally, from Equation 7.19, the 90% confidence interval is pn { za>2snpn = 0.3525 { 0.0332.
Thus, the 90% confidence interval for the percentage of all colleges in which busi-

ness statistics is a two-semester course runs from 31.93% to 38.57%.
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EXERCISES

Basic Exercises
 7.51 Assume simple random sampling. Calculate the vari-

ance of the sample mean, s2
x for each of the following.

a. N = 1200; n = 80; s = 10
b. N = 1425; n = 90; s2 = 64
c. N = 3200; n = 200; s2 = 129

 7.52 Assume simple random sampling. Calculate the 95% 
confidence interval estimate for the population mean 
for each of the following.

a. N = 1200; n = 80; s = 10; x = 142
b. N = 1425; n = 90; s2 = 64; x = 232.4
c. N = 3200; n = 200; s2 = 129; x = 59.3

 7.53 Assume simple random sampling. Calculate the confi-
dence interval for the population total for each of the 
following.

a. N = 1325; n = 121; s = 20; x = 182; 
95%  confidence level

b. N = 2100; n = 144; s = 50; x = 1,325; 
98%  confidence level

 7.54 Assume simple random sampling. Calculate the con-
fidence interval for the population proportion, P, for 
each of the following.

a. N = 1058; n = 160; x = 40; 95% confidence level
b. N = 854; n = 81; x = 50; 99% confidence level

Application Exercises
 7.55 Take a random sample of 50 pages from this book 

and estimate the proportion of all pages that contain 
figures.

 7.56 A firm employs 189 junior accountants. In a random 
sample of 50 of these, the mean number of hours over-
time billed in a particular week was 9.7, and the sam-
ple standard deviation was 6.2 hours.

a. Find a 95% confidence interval for the mean num-
ber of hours overtime billed per junior accountant 
in this firm that week.

b. Find a 99% confidence interval for the total number 
of hours overtime billed by junior accountants in the 
firm during the week of interest.

 7.57 An auditor, examining a total of 820 accounts receiv-
able of a corporation, took a random sample of 60 of 
them. The sample mean was $127.43, and the sample 
standard deviation was $43.27.

a. Using an unbiased estimation procedure, find an 
estimate of the population mean.

b. Using an unbiased estimation procedure, find an 
estimate of the variance of the sample mean.

c. Find a 90% confidence interval for the population 
mean.

d. A statistician found, for the population mean, a 
confidence interval running from $117.43 to $137.43. 
What is the probability content of this interval?

e. Find a 95% confidence interval for the total amount 
of these 820 accounts.

 7.58 On a particular day a consumer-advice bureau re-
ceived 125 calls. For a random sample of 40 of these 

calls, it was found that mean time taken in providing 
the requested advice was 7.28 minutes, and the sam-
ple standard deviation was 5.32 minutes.

a. Find a 99% confidence interval for the mean time 
taken per call.

b. Find a 90% confidence interval for the total amount 
of time taken in answering these 125 calls.

 7.59 State whether each of the following statements is true 
or false.

a. For a given number of population members and 
a given sample variance, the larger the number of 
sample members, the wider the 95% confidence 
interval for the population mean.

b. For a given number of population members and a 
given number of sample members, the larger the 
sample variance, the wider the 95% confidence 
 interval for the population mean.

c. For a given number of sample members and a given 
sample variance, the larger the number of popula-
tion members, the wider the 95% confidence inter-
val for the population mean. Justify your answer.

d. For a given number of population members, a given 
number of sample members, and a given sample 
variance, a 95% confidence interval for the popula-
tion mean is wider than a 90% confidence interval 
for the population mean.

 7.60 A senior manager, responsible for a group of 120 junior 
executives, is interested in the total amount of time 
per week spent by these people in internal meetings. 
A random sample of 35 of these executives was asked 
to keep diary records during the next week. When the 
results were analyzed, it was found that these sample 
members spent a total of 143 hours in internal meet-
ings. The sample standard deviation was 3.1 hours. 
Find a 90% confidence interval for the total number of 
hours spent in internal meetings by all 120 junior ex-
ecutives in the week.

 7.61 A simple random sample of 300 branches out of a total 
of 1200 branches of a UK travel agency found that 75 
had at least one staff member over the age of 55. Find 
a 95% confidence interval for the proportion of all the 
branches having a staff member over 55.

 7.62 A business school dean is contemplating proposing a 
change in the requirements for graduation. At pres-
ent, business majors are required to take one science 
course, chosen from a list of possible courses. The pro-
posal is that this be replaced by the requirement that 
a course in ecology be taken. The business school has 
420 students. In a random sample of 100 of these stu-
dents, 56 expressed opposition to this proposal. Find 
a 90% confidence interval for the proportion of all the 
school’s students opposed to the proposed change in 
requirements.

 7.63 An accounting firm has 1200 clients. From a random 
sample of 120 clients, 110 indicated very high satis-
faction with the firm’s service. Find a 95% confidence 
interval for the proportion of all clients who are very 
highly satisfied with this firm.
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 7.64 A class has 420 students. The final examination is 
optional—taking it can raise, but cannot lower, a 
 student’s grade. Of a random sample of 80 students, 31 
indicated that they would take the final examination. 

Find a 90% confidence interval for the total number 
of students in this class intending to take the final 
examination.

7.7 SAMPLE-SIZE DETERMINATION: LARGE POPULATIONS

We have developed confidence intervals for population parameters on the basis of the in-
formation contained in a given sample. Following such a process, we may believe that the 
resulting confidence interval is too wide, reflecting an undesirable amount of uncertainty 
about the parameter being estimated. Typically, one way to obtain a narrower interval 
with a given confidence level is to take a larger sample.

In some circumstances we may be able to fix in advance the width of the confidence 
interval, choosing a sample size big enough to guarantee that width. In this section we 
consider how sample size can be chosen in this way for two interval estimation problems. 
Similar procedures can be employed to solve other problems. We concentrate on popula-
tions that are not necessarily large in Section 7.8.

Mean of a Normally Distributed Population,  
Known Population Variance

If a random sample of n observations is taken from a normally distributed population 
with mean m and known variance s2, we saw in Section 7.2 that a 10011 - a2% confi-
dence interval for the population mean is provided by

x { za>2 s1n

where x is the observed sample mean and za>2 is the appropriate cutoff point of the stan-
dard normal distribution. Recall that this interval is centered on the sample mean and 
extends a distance called the margin of error,

ME =
za>2s1n

on each side of the sample mean, so that ME is half the width of the interval. Suppose, 
now, that the investigator wants to fix the margin of error, ME, in advance. From basic 
algebra it follows that

1n =
za>2s
ME

and by squaring both sides of the equation, the sample size n is as follows:

n =
z2
a>2s2

ME2

This choice of the sample size guarantees that the confidence interval extends a distance 
ME on each side of the sample mean.

Sample Size for the Mean of a Normally Distributed 
Population with Known Population Variance
Suppose that a random sample from a normally distributed population  
with known variance s2 is selected. Then a 10011 - a2% confidence inter-
val for the population mean extends a distance ME (sometimes called the 
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Example 7.12 Length of Metal Rods (Sample Size)

The lengths of metal rods produced by an industrial process are normally distributed 
with a standard deviation of 1.8 millimeters. Based on a random sample of nine obser-
vations from this population, the 99% confidence interval was found for the popula-
tion mean length to extend from 194.65 to 197.75. Suppose that a production manager 
believes that the interval is too wide for practical use and, instead, requires a 99% con-
fidence interval extending no further than 0.50 mm on each side of the sample mean. 
How large a sample is needed to achieve such an interval?

Solution Since

ME = 0.50, s = 1.8, and za>2 = z0.005 = 2.576

the required sample size is as follows:

 n =
z2
a>2s2

ME2

 =
12.5762211.82210.522 < 86

Therefore, to satisfy the manager’s requirement, a sample of at least 86 observations is 
needed. This large increase in the sample size represents the additional cost of achiev-
ing the higher precision in the estimate of the true value of the population mean, re-
flected in a narrower confidence interval. The value 2.576, rather than 2.58, was used 
to determine the sample size needed. Figure 7.15 is the Excel (PHStat) output for deter-
mining sample size for Example 7.12.

Figure 7.15 Metal Rods (Sample Size)

Sample Size Determination

Population Standard Deviation

Sampling Error

Confidence Level

Z Value

Calculated Sample Size

Sample Size Needed 86

-2.5758293

85.98825995

1.8

0.5

99%

Data

Intermediate Calculations

Result

sampling error) on each side of the sample mean if the sample size, n, is as 
follows:

 n =
z2
a>2s2

ME2  (7.21)

Of course, the number of sample observations must necessarily be an integer. If the 
number n resulting from the sample-size formula is not an integer, then round up to the 
next whole number in order to guarantee that our confidence interval does not exceed 
the required width.
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Population Proportion

Earlier in this chapter (Section 7.4) we saw that for a random sample of n observations, a 
10011 - a2% confidence interval for the population proportion P is

pn { za>2Apn11 - pn2
n

where pn is the observed sample proportion. This interval is centered on the sample pro-
portion and extends a distance (margin of error)

ME = za>2Apn11 - pn2
n

on each side of the sample proportion. Now, this result cannot be used directly to determine 
the sample size necessary to obtain a confidence interval of some specific width since it in-
volves the sample proportion, which will not be known at the outset. However, whatever 
the outcome, pn11 - pn2 cannot be bigger than 0.25, its value when the sample proportion is 
0.5. Thus, the largest possible value for the margin of error, ME, is given by the following:

ME = za>2A0.25
n

=
10.52za>21n

Suppose, then, that a sufficiently large sample size is chosen to guarantee that the confi-
dence interval extends no more than ME on each side of the sample proportion. Again 
using basic algebra,

1n =
0.5za>2

ME

and squaring yields the following:

n =
0.251za>2221ME22

Sample Size for Population Proportion
Suppose that a random sample is selected from a population. Then, a 
10011 - a2% confidence interval for the population proportion, extending 
a distance of at most ME on each side of the sample proportion, can be 
 guaranteed if the sample size is as follows:

 n =
0.251za>2221ME22  (7.22)

Example 7.13 Graduate Admissions Personnel 
(Sample Size)

In Exercise 7.33 we calculated a 95% confidence interval for the proportion of graduate-
admissions personnel who viewed scores on standardized exams as very important 
in the consideration of a candidate. Based on 142 observations, the interval obtained 
extended from 0.533 to 0.693. Suppose, instead, that it must be ensured that a 95% con-
fidence interval for the population proportion extends no further than 0.06 on each side 
of the sample proportion. How large of a sample must be taken?

Solution It is given that

ME = 0.06 and za>2 = z0.025 = 1.96
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The media frequently report the results of opinion surveys concerning issues of cur-
rent interest, such as the president’s rating on domestic issues or foreign policy or peo-
ple’s views on some new tax proposal. These surveys generally represent the opinions of 
some subset of the population. Typically, these reports give estimates of the percentage of 
population members holding particular views. These reports often end with a statement 
such as, There is {3% sampling error or The poll has a 3% margin of error. Specifically, 
these intervals are the sample percentage, plus or minus the advertised sampling error or 
margin of error. However, we stress that the margin of error does not include any errors 
due to biased or otherwise inadequate samples.

Thus, the number of sample observations needed is as follows:

n =
0.25z2

a>21ME22 =
0.2511.962210.0622 = 266.78 1 n = 267

To achieve this narrower confidence interval, a minimum of 267 sample observations is 
required (a significant increase over the original 142 observations). The Excel (PHStat) 
printout is displayed in Figure 7.16.

Figure 7.16 Graduate Admissions Personnel (Sample Size)

Sample Size Determination

Estimate of True Proportion

Sampling Error

Confidence Level

Z Value

Calculated Sample Size

Sample Size Needed 267

-1.95996398

266.7679737

0.5

0.06

95%

Data

Intermediate Calculations

Result

Example 7.14 Electoral College  
(Sample Size)

Suppose that an opinion survey following a presidential election reported the views 
of a sample of U.S. citizens of voting age concerning changing the Electoral College 
process. The poll was said to have a 3% margin of error. The implication is that a 95% 
confidence interval for the population proportion holding a particular opinion is the 
sample proportion plus or minus at most 3%. How many citizens of voting age need to 
be sampled to obtain this 3% margin of error?

Solution Using Equation 7.22,

n =
0.25z2

a>21ME22 =
10.25211.962210.0322 = 1067.111 1 n = 1,068

Therefore, 1,068 U.S. citizens of voting age need to be sampled to achieve the desired 
result. Figure 7.17 is the Excel (PHStat) output for Example 7.14.
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Figure 7.17 Electoral College (Sample Size)

Sample Size Determination

Estimate of True Proportion

Sampling Error

Confidence Level

Z Value

Calculated Sample Size

Sample Size Needed 1068

-1.95996398

1067.071895

0.5

0.03

95%

Data

Intermediate Calculations

Result

EXERCISES

Basic Exercises
 7.65 How large of a sample is needed to estimate the mean 

of a normally distributed population for each of the 
following?

a. ME = 5; s = 40; a = 0.01
b. ME = 10; s = 40; a = 0.01
c. Compare and comment on your answers to parts a 

and b.

 7.66 How large a sample is needed to estimate the popula-
tion proportion for each of the following?

a. ME = 0.03; a = 0.05
b. ME = 0.05; a = 0.05
c. Compare and comment on your answers to  

parts a and b.

 7.67 How large a sample is needed to estimate the popula-
tion proportion for each of the following?

a. ME = 0.05; a = 0.01
b. ME = 0.05; a = 0.10
c. Compare and comment on your answers to  

parts a and b.

Application Exercises
 7.68 A research group wants to estimate the proportion 

of consumers who plan to buy a scanner for their PC 
during the next 3 months.

a. How many people should be sampled so that the 
sampling error is at most 0.04 with a 90% confi-
dence interval?

b. What is the sample size required if the confidence 
is increased to 95%, keeping the sampling error the 
same?

c. What is the required sample size if the research 
group extends the sampling error to 0.05 and wants 
a 98% confidence level?

 7.69 A politician wants to estimate the proportion of con-
stituents favoring a controversial piece of proposed 
legislation. Suppose that a 99% confidence interval 
that extends at most 0.05 on each side of the sample 
proportion is required. How many sample observa-
tions are needed?

 7.70 The student government association at a university 
wants to estimate the percentage of the student body 
that supports a change being considered in the aca-
demic calendar of the university for the next academic 
year. How many students should be surveyed if a 90% 
confidence interval is desired and the margin of error 
is to be only 3%?

7.8 SAMPLE-SIZE DETERMINATION: FINITE POPULATIONS

An important aspect of the planning of any survey involves the determination of an ap-
propriate number of sample members. Several factors may be relevant. If the procedure 
for contacting sample members is thought likely to lead to a high rate of nonresponse, this 
eventuality should be taken into account. In many instances the resources available to the 
investigator, in terms of time and money, will place constraints on what can be achieved. 
In this section, however, we abstract from such considerations and relate sample size to 
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the variances of the estimators of population parameters and consequently to the widths 
of resulting confidence intervals. To compensate for nonresponse or missing data, practi-
tioners may add a certain percent (like 10%) to the sample size, n, determined by the equa-
tions in this section.

Sample Sizes for Simple Random Sampling: Estimation  
of the Population Mean or Total

Consider the problem of estimating the population mean from a simple random sample 
of n observations. If the random variable X denotes the sample mean, it is known from 
Chapter 6 that the variance of this random variable is as follows:

Var1X2 = s
X
2 =

s2

n
aN - n

N - 1
b

If the population variance s2 is known, by solving the equation Var1X2 you can deter-
mine the sample size n that is needed to achieve any specified value of sx

2 for the variance 
of the sample mean. Similar procedures are available if the quantity of interest is the 
population total.

Sample Size: Population Mean or Total, Simple  
Random Sampling
Consider estimating the mean of a population of N members, which has 
 variance s2. If the desired variance, s

X
2 , of the sample mean is specified, the 

required sample size to estimate the population mean through simple random 
sampling is

 n =
Ns21N - 12sx

2 + s2 (7.23)

or, equivalently,

 n =
n0N

n0 + 1N - 12 (7.24)

where n0 = n in Equation 7.21,

n0 =
z2
a>2s2

ME2

1. Often it is more convenient to specify directly the width of confidence 
intervals for the population mean rather than sX

2 . This is easily accom-
plished, since, for example, a 95% confidence interval for the popula-
tion mean will extend approximately 1.96sX on each side of the sample 
mean.

2. If the object of interest is the population total, the variance of the sample 
estimator of this quantity is N2sX

2 , and a 95% confidence interval for it 
 extends approximately 1.96NsX on each side of Nx.

An obvious difficulty with the practical use of Equation 7.23 is that it involves the 
population variance, s2, which typically will be unknown. However, often an investigator 
will have a rough idea of the value of this quantity. Sometimes the population variance 
can be estimated from a preliminary sample of the population or approximated from his-
torical data.
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Example 7.15 Mortgages (Sample Size)

As in Example 7.8, suppose that in a city last year, 1,118 mortgages were taken out and 
that a simple random sample is to be taken in order to estimate the mean amount of 
these mortgages. From previous experience of such populations it is estimated that the 
population standard deviation is approximately $20,000. A 95% confidence interval for 
the population mean must extend $4,000 on each side of the sample mean. How many 
sample observations are needed to achieve this objective?

Solution First,

N = 1,118 s = 20,000 1.96sX = 4,000

The required sample size by using Equation 7.23 is then

n =
Ns21N - 12sx

2 + s2 =
11,1182120,0002211,117212,04122 + 120,00022 = 88.5 1 n = 89

By calculating the sample size using Equation 7.21 and Equation 7.24, we find the following:

 n0 =
z2
a>2s2

ME2 =
11.9622120,0002214,00022 = 11.96221252 = 13.841621252 = 96.04

 n =
n0N

n0 + 1N - 12 =
196.042111182
96.04 + 1117

= 88.5 1 n = 89

Thus, a simple random sample of 89 observations is the minimum needed to meet our 
objective. Figure 7.18 is the Excel (PHStat) output giving the sample size for Example 7.15 
when the finite population correction factor is used and when it is not used.

Figure 7.18 Mortgages (Sample Size)

Sample Size Determination

Population Standard Deviation

Sampling Error

Confidence Level

Z Value

Calculated Sample Size

Population Size

Sample Size with FPC
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1118
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-1.95996398
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P

Sample Sizes for Simple Random Sampling: Estimation  
of Population Proportion

Consider simple random sampling for the estimation of a population proportion P. Recall 
from earlier in the text that

Var1pn2 = s2
pn =

P11 - P2
n

aN - n
N - 1

b
Solving for n leads to the sample size given in Equations 7.24 and 7.25.
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Sample Size: Population Proportion, Simple Random 
Sampling
Consider estimation of the proportion P of individuals in a population size of 
N who possess a certain attribute. If the desired variance, s2

pn , of the sample 
proportion is specified, the required sample size to estimate the population 
proportion through simple random sampling is as follows:

 n =
NP11 - P21

 N - 12s2
pn + P11 - P2 (7.25)

The largest possible value for this expression, whatever the value of P, is

 nmax =
0.25N1N - 12s2

pn + 0.25
 (7.26)

A 95% confidence interval for the population proportion will extend approxi-
mately 1.96spn on each side of the sample proportion.

Example 7.16 Campus Survey (Sample Size)

As in Example 7.10, suppose that a simple random sample of the 1,395 U.S. colleges is 
taken to estimate the proportion for which the business statistics course is two semes-
ters long. Whatever the true proportion, a 95% confidence interval must extend no fur-
ther than 0.04 on each side of the sample proportion. How many sample observations 
should be taken?

Solution From the problem

 1.96spn = 0.04
 spn = 0.020408

the sample size needed is then

nmax =
0.25N1N - 12s2

pn + 0.25
=

10.25211,395211,394210.02040822 + 0.25
= 419.88 1 n = 420

Hence, a sample of 420 observations is needed. The sample size determination using 
Excel (PHStat) is illustrated in Figure 7.19.

Figure 7.19 Campus Survey (Sample Size)

Sample Size Determination

Estimate of True Proportion

Sampling Error

Confidence Level

Z Value

Calculated Sample Size

Sample Size Needed 601

-1.95996398
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Population Size

Calculated Sample Size

Sample Size Needed

1,395

419.8707481

420

Finite Populations

P
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EXERCISES

Basic Exercises
 7.71 Determine the sample size needed for each of the fol-

lowing situations.

a. N = 1,650 s = 500 1.96sx = 50
b. N = 1,650 s = 500 1.96sx = 100
c. N = 1,650 s = 500 1.96sx = 200
d. Compare and comment on your answers to parts a 

through c.

 7.72 Determine the sample size needed for each of the fol-
lowing situations.

a. N = 3,300    s = 500 1.96sx = 50
b. N = 4,950    s = 500 1.96sx = 50
c. N = 5,000,000 s = 500 1.96sx = 50
d. Compare and comment on your answers to parts a 

through c.
 7.73 Determine the sample size for each of the following 

situations.
a. N = 2,500 pn = 0.5 1.96spn = 0.05
b. N = 2,500 pn = 0.5 1.96spn = 0.03
c. Compare and comment on your answers to part a 

and part b.

Application Exercises
 7.74 The mean amount of the 812 mortgages taken out in a 

city in the past year must be estimated. Based on pre-
vious experience, a real estate broker knows that the 
population standard deviation is likely to be about 

$20,000. If a 95% confidence interval for the popula-
tion mean is to extend $2,000 on each side of the sam-
ple mean, how many sample observations are needed 
if a simple random sample is taken?

 7.75 An automobile dealer has an inventory of 400 used 
cars. To estimate the mean mileage of this inven-
tory, she intends to take a simple random sample of 
used cars. Previous studies suggest that the popula-
tion standard deviation is 10,000 miles. A 90% confi-
dence interval for the population mean must extend 
2,000 miles on each side of its sample estimate. How 
large of a sample size is necessary to satisfy this 
requirement?

 7.76 A country club wants to poll a random sample of its 
320 members to estimate the proportion likely to at-
tend an early-season function. The number of sample 
observations should be sufficiently large to ensure 
that a 99% confidence interval for the population ex-
tends at most 0.05 on each side of the sample propor-
tion. How large of a sample is necessary?

 7.77 An instructor in a class of 417 students is considering 
the possibility of a take-home final examination. She 
wants to take a random sample of class members to 
estimate the proportion who prefer this form of exam-
ination. If a 90% confidence interval for the population 
proportion must extend at most 0.04 on each side of 
the sample proportion, how large a sample is needed?
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CHAPTER EXERCISES AND APPLICATIONS

Visit wwww.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

 7.83 Eight randomly selected batches of a chemical were 
tested for impurity concentration. The percentage im-
purity levels found in this sample were as follows:

3.2 4.3 2.1 2.8 3.2 3.6 4.0 3.8

a. Find the most efficient estimates of the population 
mean and variance.

b. Estimate the proportion of batches with impurity 
levels greater than 3.75%.

 7.84 A marketing research assistant for a veterinary hospi-
tal surveyed a random sample of 457 pet owners. Re-
spondents were asked to indicate the number of times 
that they visit their veterinarian each year. The sam-
ple mean response was 3.59 and the sample standard 
deviation was 1.045. Based on these results, a confi-
dence interval from 3.49 to 3.69 was calculated for the 
population mean. Find the probability content for this 
interval.

 7.85 A random sample of 174 college students was asked to 
indicate the number of hours per week that they surf 
the Internet for either personal information or mate-
rial for a class assignment. The sample mean response 
was 6.06 hours and the sample standard deviation 
was 1.43 hours. Based on these results, a confidence 
interval extending from 5.96 to 6.16 was calculated for 
the population mean. Find the confidence level of this 
interval.

 7.86 A sample of 33 accounting students recorded the 
number of hours that they spent studying for a 

final exam. The data are stored in the data file Study.

a. Give an example of an unbiased, consistent, and 
efficient estimator of the population mean.

b. Find the sampling error for a 95% confidence inter-
val estimate of the mean number of hours students 
studied for this exam.

 7.87 Dr. Mihaela Sabou wants to estimate the average 
length of a hospital stay (number of days) for patients 
with a certain infectious disease. From a random sam-
ple of 25 patient records, she finds that the average 
number of days in the hospital for such patients is 
6 days, with a standard deviation of 1.8 days.

a. Find the reliability factor for a 95% confidence 
interval estimate of the population mean length of 
stay.

b. Find the LCL for a 99% confidence interval esti-
mate of the population mean length of stay.

 7.88 Suppose that a survey of race fans at this week’s 
Daytona 500 NASCAR race were asked, Is this your 
first time attending the Daytona 500? From a ran-
dom sample of 250 race fans, 100 answered in the 
affirmative.

a. Find the standard error to estimate the population 
proportion of first timers.

b. Find the sampling error to estimate the population 
proportion of first timers with 95% confidence level.

c. Estimate the proportion of repeat fans with 92% 
confidence level.

 7.78 Several drugs are used to treat diabetes. A sales spe-
cialist for a leading pharmaceutical company needs an 
estimate of the number of new prescriptions that were 
written during a particular month for his company’s 
new diabetes drug. The numbers of new prescriptions 
in a random sample of 25 sales districts are as follows:

210  240  190  275  290  185  223  190  185  192

265  312  284  261  243  168  240  170  187  190

215  240  210  235  290

a. Find a 90% confidence interval for the average num-
ber of new prescriptions written for this new drug 
among all the sales districts. State the assumptions.

b. Calculate the widths for 95% and 98% confidence 
intervals.

 7.79 Suppose that the owner of a recently opened conve-
nience store in Kuala Lumpur, Malaysia, wants to es-
timate how many pounds of bananas are sold during 
a typical day. The owner checks his sales records for a 
random sample of 16 days and establishes that the mean 
number of pounds sold per day is 75 pounds and that 
the sample standard deviation is 6 pounds. Estimate the 
mean number of pounds the owner should stock each 
day to a 95% confidence level. 

 7.80 Everyone knows that exercise is important. Recently, 
employees of one large international corporation were 
surveyed and asked, How many minutes do you 
spend daily on some form of rigorous exercise? From 
a random sample of 25 employees, the mean time 
spent on vigorous daily exercise was 28.5 minutes. 
The standard deviation was found to be 6.8 minutes. 
Find a 90% interval estimate of the mean daily time 
spent on rigorous exercise by all employees.

 7.81 The following data represent the number of audi-
ence members per week at a theater in Paris during 
the last year. (The theater was closed for 2 weeks for 
refurbishment.)

  163 165 094 137 123 095 170 096 117 129

  152 138 147 119 166 125 148 180 152 149

  167 120 129 159 150 119 113 147 169 151

  116 150 110 110 143 090 134 145 156 165

  174 133 128 100 086 148 139 150 145 100

  Estimate the average weekly attendance with a 95% 
interval estimate.

 7.82 The manager of a local fitness center wants an estimate 
of the number of times members use the weight room 
per month. From a random sample of 25 members the 
average number of visits to the weight room over the 
course of a month was 12.5 visits with a standard de-
viation of 3.8 visits. Assuming that the monthly num-
ber of visits is normally distributed, determine a 95% 
confidence interval for the average monthly usage of 
all members of this fitness center.
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 7.89 The following data represent the number of passen-
gers per flight in a random sample of 20 flights from 
Vienna, Austria, to Cluj-Napoca, Romania, with a new 
airline:

  63 65 94 37 83 95 70 96 47 29

  52 38 47 79 66 25 48 80 52 49

a. What is the reliability factor for a 90% confidence 
interval estimate of the mean number of passen-
gers per flight?

b. Find the LCL for a 99% confidence interval esti-
mate of the mean number of passengers per flight.

 7.90 What is the most common method to renew vehicle 
registration? In checking a random sample of 500 mo-
tor vehicle renewal registrations in one county, the 
finance department found that 200 were mailed, 160 
were paid in person at the county finance department 
office, and the remainder was paid online at the coun-
ty’s Web site. Phone registration renewals were not 
available.

a. Estimate the population proportion to pay for ve-
hicle registration renewals in person at the county 
finance department office. Use a 90% confidence 
level.

b. Estimate the population proportion of online re-
newals. Use a 95% confidence level.

 7.91 Consider the data in Exercise 7.90. Suppose that we 
computed for the population proportion who pay for 
vehicle registration by mail a confidence interval ex-
tending from 0.34 to 0.46. What is the confidence level 
of this interval?

 7.92 Consider the data in Exercise 7.90. It was reported in 
the local paper that less than one-third (from 23.7% to 
32.3%) of the population prefers the online renewal 
process. What is the confidence level of this interval 
estimate?

 7.93 The county finance department in Exercise 7.90 also 
wants information about renewals of disabled parking 
placards. Suppose that in a sample of 350 transactions 
for disabled parking placards, it was found that 250 
were paid electronically.

a. What is the margin of error for a 99% confidence 
interval estimate of the population proportion of 
disabled renewal transactions paid electronically?

b. Without calculating, is the margin of error for a 
95% confidence interval estimate of the population 
proportion of disabled renewal transactions paid 
electronically larger, smaller, or the same as that 
found in part a for a 99% confidence interval?

 7.94 What is the typical age of a person who renews his or 
her driver’s license online? From a random sample of 
460 driver’s license renewal transactions, the mean age 
was 42.6 and the standard deviation was 5.4. Compute 
the 98% confidence interval estimate of the mean age 
of online renewal users in this county.

 7.95 A test was taken by 90 students. A random sample of 
10 scores found the following results:

93 71 62 75 81 63 87 59 84 72

a. Find a 90% confidence interval for the population’s 
mean score.

b. Without doing the calculations, state whether a 
95% confidence interval for the population mean 
would be wider or narrower than the interval 
found in part a.

 7.96 A corporation has 272 accounts receivable in a par-
ticular category. A random sample of 50 of them was 
taken. The sample mean was $492.36, and the sample 
standard deviation was $149.92.

a. Find a 99% confidence interval for the population 
mean value of these accounts receivable.

b. Find a 95% confidence interval for the total value 
of these accounts receivable.

c. Without doing the calculations, state whether a 
90% confidence interval for the population total 
would be wider or narrower than the interval 
found in part b.

 7.97 A corporation employs 148 sales representatives. A 
random sample of 60 of them was taken, and it was 
found that, for 36 of the sample members, the volume 
of orders taken this month was higher than for the 
same month last year. Find a 95% confidence interval 
for the population proportion of sales representatives 
with a higher volume of orders.

 7.98 Several drugs are used to treat high blood pressure. A 
sales specialist for a leading pharmaceutical company 
randomly sampled the records of 10 sales districts to 
estimate the number of new prescriptions that had 
been written during a particular month for the com-
pany’s new blood pressure medication. The numbers 
of new prescriptions were as follows:

210, 240, 190, 275, 290, 265, 312, 284, 261, 243

a. Find a 90% confidence interval for the average 
number of new prescriptions written for this new 
drug among all the sales districts. What are the 
assumptions?

b. Assuming that the confidence level remains constant, 
what sample size is needed to reduce by half the 
margin of error of the confidence interval in part a?

 7.99 The president’s policy on domestic affairs received a 
45% approval rating in a recent poll. The margin of er-
ror was given as 0.035. What sample size was used for 
this poll if we assume a 95% confidence level?

    7.100 An automobile dealer has an inventory of 328 used 
cars. The mean mileage of these vehicles is to be es-
timated. Previous experience suggests that the popu-
lation standard deviation is likely to be about 12,000 
miles. If a 90% confidence interval for the population 
mean is to extend 2,000 miles on each side of the sam-
ple mean, how large of a sample is required if simple 
random sampling is employed?

    7.101 A simple random sample is to be taken of 527 business 
majors in a college to estimate the proportion favoring 
greater emphasis on business ethics in the curriculum. 
How many observations are necessary to ensure that 
a 95% confidence interval for the population propor-
tion extends at most 0.06 on each side of the sample 
proportion?
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    7.102 Show algebraically that Equation 7.23 is equal to 
Equation 7.24. That is,

Ns21N - 12s
X
2 + s2 =

n0N

n0 + 1N - 12
    7.103 The demand for bottled water increases dur-

ing the hurricane season in Florida. The opera-
tions manager at a plant that bottles drinking water 

wants to be sure that the filling process for 1-gallon 
bottles (1 gallon is approximately 3.785 liters) is oper-
ating properly. Currently, the company is testing the 
volumes of 1-gallon bottles. Suppose that a random 
sample of 75 one-gallon bottles is tested. Find the 
95% confidence interval estimate of the population 
mean volume. The measurements are recorded in the 
data file Water.

Appendix
CONSISTENT ESTIMATOR

Consistency is another property that some estimators possess.

Consistent Estimator

A point estimator un  is said to be a consistent estimator of the parameter u if the 
difference between the expected value of the estimator and the parameter decreases 
as the sample size increases. In other words, the bias becomes smaller with increased 
sample size.

Consistent estimators are used in cases where it is difficult or impossible to obtain 
unbiased estimators, which occurs in some advanced econometric work. Not all unbiased 
estimators are consistent, and by no means are all consistent estimators unbiased. If the 
sample variance were calculated as

s2 =
a
n

i=1
1xi - x22

n

then it would be a biased estimator of the population variance. However, it is consistent, 
since it approaches the unbiased estimator

s2 =
a
n

i=1
1xi - x22
n - 1

as the sample size increases.
Loosely speaking, the use of a consistent estimator with an infinite amount of sample 

information gives the correct result. Conversely, the use of an inconsistent estimator does 
not yield the correct result even with an infinite amount of sample information. For this 
reason, inconsistency in a point estimator is regarded as undesirable.

STUDENT’S t DISTRIBUTION

Gosset sought to develop a probability distribution for normally distributed random vari-
ables that did not include the population variance s2. As a result, he took the ratio of Z, 
a standard normal random variable, and the square root of x2 divided by its degrees of 
freedom, v. In mathematical notation

 t =
Z2x2>v

 t =
1x - m2>s2s21n - 12>s21n - 12 =

1x - m2
s
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The resulting t statistic has n -  1 degrees of freedom. Notice that the t probability distribu-
tion is based on normally distributed random variables. For applications, the normal Z is 
used when the population variance s2 is available, and the Student’s t is used when only 
the sample variance s2 is available. Statistical research using computer-generated random 
samples has shown that t can be used to study the distribution of sample means even if 
the distribution of the individual random variables is not normal.
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 8.1 Confidence Interval Estimation of the Difference Between  
Two Normal Population Means: Dependent Samples

 8.2 Confidence Interval Estimation of the Difference Between  
Two Normal Population Means: Independent Samples
Two Means, Independent Samples, and Known Population 
Variances
Two Means, Independent Samples, and Unknown Population  
Variances Assumed to Be Equal
Two Means, Independent Samples, and Unknown Population  
Variances Not Assumed to Be Equal

 8.3 Confidence Interval Estimation of the Difference Between  
Two Population Proportions (Large Samples)

Introduction

Confidence interval procedures to estimate certain parameters of a single 
population were presented in Chapter 7. In this chapter we consider confi-
dence interval procedures to estimate certain parameters of two populations. 
An important problem in statistical inference deals with the comparison of the 
difference between two means from normally distributed populations or the 
comparison of the difference between two proportions from large populations. 
For example, consider the following:

1.  Corporate executives employed by retail distributors may want to estimate 
the difference between the mean daily sales of two retail stores.

2.  Manufacturers may want to compare the average productivity, in units per 
hour, of day-shift workers and night-shift workers in a plant.

3.  The campaign manager for a presidential candidate may want to compare 
the popularity rating of this candidate in two different regions of the country.

4.  A clinical trial may be designed to compare the effectiveness of a new drug 
compared to a standard drug for cancer patients. Data for both drugs are 
collected on factors such as carcinoma recurrence rates, side effects, and 
survival rates.

5.  A chemical company receives shipments from two suppliers. Independent 
random samples of batches from each supplier are selected, and a com-
parison of impurity levels of the two batches is made.
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The confidence interval procedures discussed in this chapter are extensions 
of the procedures developed in Chapter 7 and follow the same general form:

best point estimate { ME

where ME, the margin of error, is the error term. More specifically, we will 
see that confidence interval estimates of the difference between the means 
of normally distributed populations X and Y will be as follows:1x - y2 { ME

Similarly, confidence interval estimates of the difference between two popu-
lation proportions (large samples) will be of the general form1pnx - pny2 { ME

8.1  CONFIDENCE INTERVAL ESTIMATION OF THE DIFFERENCE 
BETWEEN TWO NORMAL POPULATION MEANS:  
DEPENDENT SAMPLES

To compare population means, random samples are drawn from the two populations. 
The procedure that we use to select the samples determines the appropriate method that 
we use to analyze inferences based on the sample results. In this section we present a 
sampling scheme for dependent samples. In Section 8.2 we focus our attention on sampling 
schemes for independent samples.

We consider samples to be dependent if the values in one sample are influenced by the 
values in the other sample. Dependent samples are either matched pairs or the same indi-
vidual or objects tested twice. The idea of matched pairs is that, apart from the factor un-
der study, the members of these pairs should resemble one another as closely as possible 
so that the comparison of interest can be made directly. In clinical trials to compare the 
effectiveness of two medications, dependent samples will be selected and the members 
will be matched on various factors such as the patients’ age or weight.

Dependent sampling also refers to two measurements taken on the same person or 
object. Suppose that the effectiveness of a speed-reading course is to be measured. One 
possible approach would be to record the number of words per minute read by a sam-
ple of students before taking the course and compare the data to the results for the same 
 students after completing the course. In this case each pair of observations consists of 
“before” and “after” measurements on a single student. This type of dependent sampling 
is sometimes referred to as repeated measurements.

An interval estimate for the general case of n matched pairs of observations, denoted 
by 1x1, y12, 1x2, y22, . . . , 1xn, yn2, selected from populations with means mX and mY follows.

Confidence Intervals of Two Means: Dependent 
Samples (Matched Pairs)
Suppose that there is a random sample of n matched pairs of observations 
from normal distributions with means mx and my. That is, let x1, x2, . . . , xn de-
note the values of the observations from the population with mean mx and let 
y1, y2, . . . , yn denote the matched sampled values from the population with the 
mean my. Let d  and sd denote the observed sample mean and standard devia-
tion for the n differences di = xi - yi. If the population distribution of the differ-
ences is assumed to be normal, then a 10011 - a2% confidence interval for the 
difference between two means, dependent samples 1md = mx - my2 is given by

 d { tn- 1,a>2 sd1n
 (8.1)
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or, equivalently,

d { ME

The standard deviation of the differences, sd, and the margin of error, ME, are

sd = A g1di - d22
n - 1

 ME = tn- 1,a>2 sd1n
 (8.2)

where tn -1,a>2 is the number for which

P1tn- 1 7 tn- 1,a>22 = a2
The random variable, tn -1, has a Student’s t distribution with 1n - 12 degrees 
of freedom.

Example 8.1 Cholesterol Reduction Study 
(Confidence Interval)

Clinical trials are conducted to compare the difference in effectiveness of drugs in lower-
ing cholesterol levels, blood pressure, cancer recurrence, and numerous other medical 
conditions. Suppose that one research team is studying the effectiveness of two drugs to 
reduce cholesterol levels. In order to control variation in reduction that might be due to 
factors other than the drug itself, a matched pair sample design is selected. Each mem-
ber of a pair is matched by age, weight, lifestyle, and other pertinent factors. Drug X is 
tested by one person randomly selected from each pair, and drug Y is tested by the other 
individual in the pair. After a specified amount of time, each person’s cholesterol level 
is measured again. Although clinical studies may involve many hundreds or even thou-
sands of participants, we simply illustrate the matched-pair statistical procedure for 
dependent samples in Example 8.1 with a very small random sample of pairs of partici-
pants with known cholesterol problems. Table 8.1 gives the number of points by which 
each person’s cholesterol level was reduced as well as the differences, di = xi - yi, for 
each pair. Notice the missing value in pair 5. Estimate with a 99% confidence level the 
mean difference in the effectiveness of the two drugs, X and Y, to lower cholesterol.

Table 8.1 Cholesterol Reduction

 
PAIR

 
DRUG X

 
DRUG Y

DIFFERENCE 1di = xi - yi2
1 29 26      3

2 32 27      5

3 31 28      3

4 32 27      5

5 30

6 32 30      2

7 29 26      3

8 31 33 -2

9 30 36 -6
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In addition to matched pairs, another type of situation that involves dependent sam-
ples is sometimes known as repeated measurements since two scores are obtained for each 
individual. For example, sales representatives may attend a motivational course on sales 
techniques. For each sales representative attending the course, data on the value of sales 
(in thousands of dollars) is obtained for a 3-month period prior to the course and for a 
3-month period following the completion of the course. Example 8.2 illustrates dependent 
samples with repeated measurements.

Solution Missing values are common in survey responses, clinical trials, and other 
research. For some reason (perhaps the individual simply chose to withdraw from the 
clinical trial) the participant in pair 5 who was to test drug Y did not complete the 
clinical trial. In a study of dependent samples, first delete all observations from your 
sample that contain missing values. It follows that our sample size is reduced from nine 
matched pairs to eight matched pairs. From Table 8.1 we compute the sample mean, 
d, and the observed sample standard deviation, sd, of the differences in cholesterol 
reduction as follows:

d = 1.625 and sd = 3.777

From the Student’s t distribution table, tn -1,a>2 = t7,0.005 = 3.499. From Equation 8.1 we 
find the 99% confidence interval estimate for the difference between the effectiveness of 
drug X and drug Y as follows:

 d { tn -1,a>2 sd1n

 1.625 { 3.499
3.77718

The lower confidence limit is a negative number (−3.05), whereas the upper confidence 
limit is a positive number (6.30).

Since the confidence interval contains the value of zero, one of the following three 
possibilities exist: (1) mx - my could be positive, suggesting that drug X is more effective; 
(2) mx - my could be negative, suggesting that drug Y is more effective; or (3) mx - my 
could be zero, suggesting that drug X and drug Y are equally effective.  Thus, it is not 
possible, based on this data, to determine if either drug is more effective in reducing 
one’s cholesterol level.

Example 8.2 Improve SAT Scores  
(Confidence Interval)

Countless Web sites, study guides, software, online interactive courses, books, and 
classes promise to increase students’ vocabulary, to refresh students’ math skills, and 
to teach test-taking strategies in order to improve SAT scores, which should help to 
enhance chances of college acceptance or increase the possibilities of receiving certain 
scholarships. Similarly, the same types of offerings exist to improve GMAT scores, 
LSAT scores, MCAT scores, and other such standardized tests. One company randomly 
sampled 140 of its clients and collected data on each person’s SAT score before taking 
the online course and the person’s score after taking the course. The data are stored in 
the data file Improve Your Score. Estimate with a 95% confidence level the difference 
in the mean SAT scores before and after taking this course.

Solution Let x1, x2, . . . , xn denote the SAT scores after each person completed 
the course, and let y1, y2, . . . , yn denote the SAT scores before each person took the 
course. The difference, di = xi - yi, is the “after score-before score” for each person. 
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Using Excel, Minitab, SPSS, or some other software package, we obtain the following 
information:

d = 77.7 and sd = 43.68901

Using the normal approximation we have tn -1,a>2 = t139,0.025 > 1.96. From Equation 8.1 
we find the 95% confidence interval estimate for the difference between the mean SAT 
scores before and the mean SAT scores after completing the online course as follows:

 d { tn -1,a>2 sd1n

 77.7 { 1.96
43.689011140

 77.7 { 7.2

The result is a 95% confidence interval estimate that extends from 70.5 to 84.9. Table 8.2 
shows the Excel printout for this problem. Notice that the value of the margin of error 
appears on the line Confidence Level (95.0%). The slight difference in the value of the 
margin of error between our calculation of 7.2 and the value in Excel’s output of 7.3 is 
due to our using the normal approximation to the Student’s t distribution.

Table 8.2 Improvement in SAT Scores

DEPENDENT SAMPLES

DIFFERENCE = AFTER SCORE - BEFORE SCORE

Mean 77.7

Standard Error 3.692395

Median 80

Mode 80

Standard Deviation 43.68901

Sample Variance 1908.729

Range 260

Minimum -50

Maximum 210

Sum 10878

Count 140

Confidence Level (95.0%) 7.300521

EXERCISES

Basic Exercises
 8.1 A dependent random sample from two normally dis-

tributed populations gives the following results:

n = 15  d = 25.4  sd = 2.8

a. Find the 95% confidence interval for the difference 
between the means of the two populations.

b. Find the margin of error for a 95% confidence inter-
val for the difference between the means of the two 
populations.

 8.2 A confidence interval for the difference between the 
means of two normally distributed populations based 
on the following dependent samples is desired:

Before After
 6  8
12 14
 8  9
10 13
 6  7
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a. Find the margin of error for a 90% confidence 
level.

b. Find the UCL and the LCL for a 90% confidence 
level.

c. Find the width of a 95% confidence interval.

 8.3 An educational study was designed to investigate the 
effectiveness of a reading program of elementary age 
children. Each child was given a pretest and posttest. 
Higher posttest scores would indicate reading im-
provement. From a very large population, a random 
sample of scores for the pretest and posttest are as 
follows:

Child Pretest Score Posttest Score
1 40 48
2 36 42
3 32
4 38 36
5 43
6 33 38
7 35 45

  Child 3 moved from the school district and did not 
take the posttest. Child 5 moved into the district af-
ter the start of the study and did not take the pretest. 
Find a 95% confidence interval estimate of the mean 
improvement in the reading scores.

Application Exercises
 8.4 A company is trying to select an Internet provider and 

to decide which one is better. It decides to try down-
loading some documents from different Web sites and 
comparing the downloading times in all cases.

Provider A Provider B
17 21
29 38
18 15
14 19
21 22
25 30
22 31
29 37
34 36
18 20

a. Can the company conclude that A is different from 
and better than B at a 5% level of significance?

b. Will the results stay the same at the 1% level of 
significance?

 8.5 A random sample of six salespeople who attended a 
motivational course on sales techniques was moni-
tored 3 months before and 3 months after the course. 
The table shows the values of sales (in thousands of 
dollars) generated by these six salespeople in the two 
periods. Assume that the population distributions are 
normal. Find an 80% confidence interval for the differ-
ence between the two population means.

Salesperson Before the Course After the Course
1 212 237
2 282 291
3 203 191
4 327 341
5 165 192
6 198 180

8.2  CONFIDENCE INTERVAL ESTIMATION OF THE DIFFERENCE 
BETWEEN TWO NORMAL POPULATION MEANS:  
INDEPENDENT SAMPLES

In this section we develop confidence interval estimation when two samples are drawn 
independently from two normally distributed populations. We consider three situations: 
(1) both population variances are known; (2) both population variances are not known but 
can be considered to be equal; and (3) both population variances are not known but are 
not considered to be equal.

Two Means, Independent Samples, and Known  
Population Variances

In this scheme, samples are drawn independently from the two normally distributed popu-
lations so that the membership of one sample is not influenced by the membership of the 
other sample. Also we know the population variances of both populations.

Consider the case where independent samples, not necessarily of equal size, are taken 
from the two populations of interest. Suppose that there is a random sample of nx obser-
vations from a population with mean mx and variance s2

x and an independent random 
sample of ny observations from a population with mean my and variance s2

y. Let the re-
spective sample means be x and y.
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As a first step, examine the situation when the two population distributions are nor-
mal with known variances. Since the object of interest is the difference between the two 
population means, it is natural to base an inference on the difference between the corre-
sponding sample means. This random variable has mean

E1X - Y2 = E1X2 - E1Y2 = mx - my

and, since the samples are independent,

Var1X - Y2 = Var1X2 + Var1Y2 = s2
x

nx
+
s2

y

ny

Furthermore, it can be shown that its distribution is normal. It therefore follows that the 
random variable

Z =
1x - y2 - 1mx - my2

As2
x

nx
+
s2

y

ny

has a standard normal distribution. An argument parallel to that in Chapter 7 can then be 
used to obtain the confidence interval for the difference between the population means.

Confidence Intervals of the Difference Between 
Means: Independent Samples (Normal Distributions  
and Known Population Variances)
Suppose that there are two independent random samples of nx and ny 
 observations from normally distributed populations with means mx and my 
and variances s2

x  and s2
y . If the observed sample means are x and y, then a 

10011 - a2% confidence interval for the difference between two means, 
 independent samples, and known population variances is given by

 1x - y2 { za>2As2
x

nx
+
s2

y

ny

 (8.3)

or, equivalently, 1x - y2 { ME

where the margin of error, ME, is given by the following:

 ME = za>2As2
x

nx
+
s2

y

ny

 (8.4)

In some applications, historical variances from similar studies can be used 
as the true population variances.

Example 8.3 Comparison of GPAs  
(Confidence Interval)

From a very large university, independent random samples of 120 students majoring 
in marketing and 90 students majoring in finance were selected. The mean GPA for the 
random sample of marketing majors was found to be 3.08, and the mean GPA for the 
random sample of finance majors was 2.88. From similar past studies the population 
standard deviation for the marketing majors is assumed to be 0.42; similarly, the popu-
lation standard deviation for the finance majors is 0.64. Denoting the population mean 
for marketing majors by mx and the population mean for finance majors by my, find a 
95% confidence interval for 1mx - my2.
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Two Means, Independent Samples, and Unknown Population 
Variances Assumed to Be Equal

It seems reasonable that if we do not know the population means, we most likely do not 
know the population variances either. Two possibilities arise: Either the unknown popu-
lation variances are assumed to be equal, or they are not assumed to be equal. We turn our 
attention first to the situation where the unknown population variances are assumed to be 
equal. We present both of the situations but defer discussion of how to determine whether 
population variances are equal to Chapter 10.

Suppose again that there are two independent random samples of nx and ny obser-
vations from normally distributed populations with means mx and my, and assume that 
the populations have a common (unknown) variance s2—that is, s2

x = s2
y = s2. Inference 

about the population means is based on the difference 1x - y2 between the two sample 
means. This random variable has a normal distribution with mean 1mx - my2 and variance

Var1X - Y2 = Var1X2 + Var1Y2 = s2

nx
+
s2

ny

It therefore follows that the random variable,

Z =
1x - y2 - 1mx - my2

As2

nx
+
s2

ny

has a standard normal distribution. However, this result cannot be used as it stands be-
cause the unknown population variance is involved.

Since s2
x = s2

y = s2, then both s2
x and s2

y are estimators of the common population 
variance s2. To use only s2

x or only s2
y to estimate the common variance would ignore infor-

mation from the other sample. If the sample sizes are the same 1nx = ny2, then the average 
of s2

x and s2
y could be used to estimate the common variance. However, in the more general 

situation of unequal sample sizes, an estimate is needed that acknowledges the fact that 
more information about the common variance is obtained from the sample with the larger 
sample size. Thus, a weighted average of s2

x and s2
y is used. This estimator s2

p, pools the two 
sets of sample information and is given in Equation 8.7.

Solution We use Equation 8.3,

1x - y2 { za>2As2
x

nx
+
s2

y

ny

with

 nx = 120   x = 3.08   sx = 0.42
 ny = 90   y = 2.88   sy = 0.64

And for a 95% confidence interval,

za>2 = z0.025 = 1.96

The confidence interval is then

13.08 - 2.882 { 1.96A10.4222
120

+
10.6422

90

or

0.20 { 0.1521

This interval extends from 0.0479 to 0.3521.
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Confidence Intervals of Two Means: Unknown 
Population Variances That Are Assumed to Be Equal
Suppose that there are two independent random samples with nx and ny ob-
servations from normally distributed populations with means mx and my, and a 
common, but unknown, population variance. If the observed sample means are 
x and y,  and the observed sample variances are s2

x and s2
y, then a 10011 - a2% 

confidence interval for the difference between two means, independent sam-
ples, and unknown population variances assumed to be equal is given by

 1x - y2 { tnx + ny - 2,a>2A s2
p

nx
+

s2
p

ny

 (8.5)

or, equivalently, 1x - y2 { ME

where the margin of error, ME, is

 ME = tnx + ny - 2,a>2A s2
p

nx
+

s2
p

ny

 (8.6)

and the pooled sample variance, s2
p, is given by

 s2
p =
1nx - 12s2

x + 1ny - 12s2
y

nx + ny - 2
 (8.7)

tnx +ny -2,a>2 is the number for which

P1tnx + ny - 2 7 tnx + ny - 2,a>22 = a2

Example 8.4 Traffic Fines (Confidence Interval)

The residents of St. Paul, Minnesota, complain that traffic speeding fines given in their 
city are higher than the traffic speeding fines that are given in nearby Minneapolis. Inde-
pendent random samples of the amounts paid by residents for speeding tickets in each 
of the two cities over the last 3 months were obtained. These amounts were as follows:

St. Paul 100 125 135 128 140 142 128 137 156 142

Minneapolis 95 87 100 75 110 105 85 95

Assuming equal population variances, find a 95% confidence interval for the difference 
in the mean costs of speeding tickets in these two cities.

Solution Let the X population be all speeding tickets given in St. Paul and the Y 
population be all speeding tickets given in Minneapolis. First, we use a statistical 
package such as Minitab and conclude that normal probability plots for both samples 
do not indicate evidence of nonnormality. Next we calculate the mean and variance of 
both samples and obtain results as follows:

 nx = 10  x = +133.30   s2
x = 218.0111

 ny = 8   y = +94.00   s2
y = 129.4286

The pooled sample variance is found by Equation 8.7 to be

s2
p =
1nx - 12s2

x + 1ny - 12s2
y

nx + ny - 2
=
110 - 121218.01112 + 18 - 121129.42862

10 + 8 - 2
= 179.2563
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Two Means, Independent Samples, and Unknown Population 
Variances Not Assumed to Be Equal

In many applications it is not reasonable to assume equality of population variances. In 
that case we do not have need for a pooled sample variance. When the population vari-
ances are unknown and not assumed to be equal, the approximate value of the degrees of 
freedom is given in Equation 8.10 and is known as Satterthwaite’s approximation ( Sat-
terthwaite 1946). Most statistical packages provide both procedures (with and without 
equal variances) for finding confidence intervals for differences in means of independent 
samples.

and 1x - y2 = 1133.30 - 94.002 = +39.30

The degrees of freedom result is nx + ny - 2 = 16 and t16,0.025 = 2.12.
We obtain the confidence interval by Equation 8.5 as follows:

 1x - y2 { tnx +ny -2,a>2A s2
p

nx
+

s2
p

ny

 39.3 { 12.122A179.2563
10

+
179.2563

8
 +39.30 { +13.46

Figure 8.1 is the Minitab output for this example.

Figure 8.1 Traffic Fines (Confidence Interval)

St. Paul
Minneapolis

N
10
8

Mean
133.3
94.0

StDev
14.8
11.4

SE Mean
4.7
4.0

Difference 5 mu (St. Paul) 2 mu (Minneapolis)
Estimate for difference: 39.30
95% CI for difference: (25.84, 52.76)

Confidence Intervals of Two Means:  
Unknown Population Variances, Not Assumed  
to Be Equal
Suppose that there are two independent random samples of nx and ny 
 observations from normally distributed populations with means mx and 
my, and it is assumed that the population variances are not equal. If the ob-
served sample means and variances are x, y, and s2

x, s2
y, then a 10011 - a2% 

confidence interval for the difference between two means, independent 
samples, and unknown population variances not assumed to be equal is 
given by

 1x - y2 - tv,a>2A s2
x

nx
+

s2
y

ny

 (8.8)

where the margin of error, ME, is

 ME = tv,a>2A s2
x

nx
+

s2
y

ny

 (8.9)
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and the degrees of freedom, v, is given by

 v =

ca s2
x

nx
b + a s2

y

ny
b d 2

a s2
x

nx
b2>1nx - 12 + a s2

y

ny
b2>1ny - 12 (8.10)

If the sample sizes are equal, nx = ny = n, then the degrees of freedom 
 reduces to the following:

 v = ±1 +
2

s2
x

s2
y

+
s2

y

s2
x

≤ * 1n - 12 (8.11)

Example 8.5 Auditors (Confidence Interval)

An accounting firm conducts a random sample of the accounts payable for the east and 
the west offices of one of its clients. From these two independent samples, the company 
wants to estimate the difference between the population mean values of the payables. 
The sample statistics obtained are as follows:

EAST OFFICE  
(POPULATION X)

WEST OFFICE  
(POPULATION Y)

Sample mean $290 $250

Sample size   16   11

Sample standard deviation   15   50

We do not assume that the unknown population variances are equal. Estimate the dif-
ference between the mean values of the payables for the two offices. Use a 95% confi-
dence level.

Solution First, we calculate the degrees of freedom by using Equation 8.10:

v =

ca s2
x

nx
b + a s2

y

ny
b d 2

a s2
x

nx
b2>1nx - 12 + a s2

y

ny
b2>1ny - 12 =

31225>16 + 2500>11242a 225
16
b2>15 + a 2500

11
b2>10

< 11

The margin of error is now found by using Equation 8.9:

ME = tv,a>2A s2
x

nx
+

s2
y

ny

= t11,0.025A225
16

+
2500
11

= 2.201115.534972 = 34.19

Using Equation 8.8, the 95% confidence interval is as follows:1290 - 2502 { 34.19

The 95% confidence interval estimate for the difference between the mean values of 
the payables in these two offices extends from $5.81 to $74.19. Figure 8.2 is the Minitab 
output for these data.
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Figure 8.2 Accounts Payable (Confidence Interval)

Two-Sample T-Test and CI

Sample
1
2

N
16
11

Mean
290.0
250.0

StDev
15.0
50.0

SE Mean
3.8

15.0

Difference 5 mu (1) 2 mu (2)
Estimate for difference: 40.0000
95% CI for difference: (5.8078, 74.1922)
T-Test of difference 5 0 (vs not 5): T-Value 5 2.57 P-Value 5 0.026 DF 5 11

EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

Basic Exercises
8.6 Independent random sampling from two normally 

distributed populations gives the following results:

 nx = 64; x = 400; sx = 20

 ny = 36; y = 360; sy = 25

  Find a 90% confidence interval estimate of the differ-
ence between the means of the two populations.

 8.7 Independent random sampling from two normally 
distributed populations gives the following results:

 nx = 81; x = 140; s2
x = 25

 ny = 100; y = 120; s2
y = 14

  Find a 95% confidence interval estimate of the differ-
ence between the means of the two populations.

 8.8 Assuming equal population variances, determine the 
number of degrees of freedom for each of the following:

a. nx = 16 s2
x = 30 

ny = 9  s2
y = 36

b. nx = 12 s2
x = 30 

ny = 14 s2
y = 36

c. nx = 20 s2
x = 16 

ny = 8  s2
y = 25

 8.9 Assuming equal population variances, compute the 
pooled sample variance s2

p for part a through part c of 
Exercise 8.8.

 8.10 Assuming unequal population variances, determine the 
number of degrees of freedom for each of the following:

a. nx = 16 s2
x = 5  

ny = 4  s2
y = 36

b. nx = 9  s2
x = 30 

ny = 16 s2
y = 4

 8.11 Determine the margin of error for a 95% confidence 
interval for the difference between population means 
for each of the following (assume equal population 
variances):

a. nx = 10 s2
x = 6 x = 200  

ny = 16 s2
y = 10 y = 160

b. nx = 5  s2
x = 6 x = 200  

ny = 8  s2
y = 10 y = 160

c. The sample sizes in part a are double the sample 
sizes in part b. Comment on your answers to part a 
compared to your answers to part b.

Application Exercises
 8.12 A manufacturer knows that the numbers of items 

produced per hour by machine A and by machine B 
are normally distributed with a standard deviation 
of 8.4 items for machine A and a standard deviation 
of 11.3 items for machine B. The mean hourly amount 
produced by machine A for a random sample of 40 hours 
was 130 units; the mean hourly amount produced by 
machine B for a random sample of 36 hours was 120 
units. Find the 95% confidence interval for the differ-
ence in mean parts produced per hour by these two 
machines.

 8.13 From a random sample of six students in an introduc-
tory finance class that uses group-learning techniques, 
the mean examination score was found to be 76.12 and 
the sample standard deviation was 2.53. For an inde-
pendent random sample of nine students in another 
introductory finance class that does not use group-
learning techniques, the sample mean and standard 
deviation of exam scores were 74.61 and 8.61, respec-
tively. Estimate with 95% confidence the difference 
between the two population mean scores; do not as-
sume equal population variances.

 8.14 Prairie Flower Cereal, Inc., is a small, but grow-
ing, producer of hot and ready-to-eat breakfast 

cereals. Gordon Thorson, a successful grain farmer, 
started the company in 1910 (Carlson 1997). Two ma-
chines are used for packaging 18-ounce (510-gram) 
boxes of sugar-coated wheat cereal. Estimate the dif-
ference in the mean weights of boxes of this type of 
cereal packaged by the two machines. Use a 95% con-
fidence level and the data file Sugar Coated Wheat. 
Explain your findings.

 8.15 Recent business graduates currently employed in 
full-time positions were surveyed. Family back-
grounds were self-classified as relatively high or 
low socioeconomic status. For a random sample of 
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16 high-socioeconomic-status recent business gradu-
ates, the mean total compensation was $34,500 and 
the sample standard deviation was $8,520. For an in-
dependent random sample of 9 low-socioeconomic-
status recent business graduates, the mean total 
compensation was $31,499 and the sample standard 
deviation was $7,521. Find a 90% confidence interval 
for the difference between the two population means.

 8.16 Suppose that for a random sample of 200 firms that 
revalued their fixed assets, the mean ratio of debt to 
tangible assets was 0.517 and the sample standard de-
viation was 0.148. For an independent random sample 
of 400 firms that did not revalue their fixed assets, the 
mean ratio of debt to tangible assets was 0.489 and 
the sample standard deviation was 0.158. Find a 99% 

confidence interval for the difference between the two 
population means.

 8.17 A researcher intends to estimate the effect of a drug 
on the scores of human subjects performing a task of 
psychomotor coordination. The members of a random 
sample of 9 subjects were given the drug prior to test-
ing. The mean score in this group was 9.78, and the 
sample variance was 17.64. An independent random 
sample of 10 subjects was used as a control group and 
given a placebo prior to testing. The mean score in this 
control group was 15.10, and the sample variance was 
27.01. Assuming that the population distributions are 
normal with equal variances, find a 90% confidence 
interval for the difference between the population 
mean scores.

8.3  CONFIDENCE INTERVAL ESTIMATION OF THE  
DIFFERENCE BETWEEN TWO POPULATION  
PROPORTIONS (LARGE SAMPLES)

We derived confidence intervals for a single population proportion in Chapter 7. Often 
a comparison of two population proportions is of interest. For instance, one might want 
to compare the proportion of residents in one city who indicate that they will vote for a 
particular presidential candidate with the proportion of residents in another city who in-
dicate the same candidate preference. In this section, we consider confidence intervals for 
the difference between two population proportions with independent large samples taken 
from these two populations.

Suppose that a random sample of nx observations from a population with proportion 
Px of “successes” yields sample proportion pnx and that an independent random sample 
of ny observations from a population with proportion Py of “successes” produces sample 
proportion pny. Since our concern is with the population difference 1Px - Py2, it is natural 
to examine the random variable 1pnx - pny2. This has mean

E1pnx - pny2 = E1pnx2 - E1pny2 = Px - Py

and, since the samples are taken independently, it has the variance

Var1pnx - pny2 = Var1pnx2 + Var1pny2 = Px11 - Px2
nx

+
Py11 - Py2

ny

Furthermore, if the sample sizes are large, the distribution of this random variable 
is approximately normal, so subtracting its mean and dividing by its standard deviation 
gives a standard normally distributed random variable. Moreover, for large sample sizes 
this approximation remains valid when the unknown population proportions Px and Py 
are replaced by the corresponding sample quantities. Thus, to a good approximation, the 
random variable

 Z =
1pnx - pny2 - 1Px - Py2

Apnx11 - pnx2
nx

+ pny11 - pny2
ny

has a standard normal distribution. This result allows the derivation of confidence inter-
vals for the difference between the two population proportions when the same sample 
sizes are large.
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Confidence Intervals of the Difference Between 
Population Proportions (Large Samples)
Let Px denote the observed proportion of successes in a random sample 
of nx observations from a population with proportion Px of successes, 
and let pny denote the proportion of successes observed in an indepen-
dent  random sample of ny observations from a population with proportion 
Py of successes. Then, if the sample sizes are large (generally at least 40 
 observations in each sample), a 10011 - a2% confidence interval for the 
difference between population proportions (large samples), 1Px - Py2, is 
given by

 1pnx - pny2 { ME (8.12)

where the margin of error, ME, is as follows:

 ME = za>2Apnx11 - pnx2
nx

+ pny11 - pny2
ny

 (8.13)

Example 8.6 Precinct Preference  
(Confidence Interval)

During a presidential election year, many forecasts are made to determine how voters 
perceive a particular candidate. In a random sample of 120 registered voters in precinct 
X, 107 indicated that they supported the candidate in question. In an independent ran-
dom sample of 141 registered voters in precinct Y, only 73 indicated support for the 
same candidate. The respective population proportions are denoted Px andPy. Find a 
95% confidence interval for the population difference, 1Px - Py2.
Solution From the sample information it follows that

 nx = 120 and pnx = 107>120 = 0.892
 ny = 141 and pny = 73>141 = 0.518

For a 95% confidence interval, a = 0.05, and so

za>2 = z0.025 = 1.96

The required interval is, therefore,10.892 - 0.5182 { 1.96A10.892210.1082
120

+
10.518210.4822

141

It follows that the 95% confidence interval estimate of the difference for the population 
proportion of registered voters in precinct X and precinct Y extends from 0.274 to o.473.

Figure 8.3 is the Minitab output for Example 8.6.

Figure 8.3 Precinct Preference (Confidence Interval)

Sample
1
2

X
107
73

N
120
141

Sample p
0.891667
0.517730

Estimate for p (1) 2 p (2): 0.373936
95% CI for p (1) 2 p (2): (0.274463, 0.473409)
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EXERCISES

Basic Exercises
 8.18 Calculate the margin of error for each of the following:

a. nx = 280 pnx = 0.75 
ny = 320 pny = 0.68

b. nx = 210 pnx = 0.51 
ny = 200 pny = 0.48

 8.19 Calculate the 95% confidence interval for the dif-
ference in population proportions for each of the 
following:

a. nx = 350 pnx = 0.64
ny = 300 pny = 0.68

b. nx = 245 pnx = 0.45
ny = 230 pny = 0.48

Application Exercises
 8.20 In a random sample of 120 large retailers, 85 used regres-

sion as a method of forecasting. In an independent ran-
dom sample of 163 small retailers, 78 used regression as a 
method of forecasting. Find a 98% confidence interval for 
the difference between the two population proportions.

 8.21 In a computer store chain, all PC tablets are sold with the 
option of a discount coupon for some application pack-
ages. Some of them are low-priced tablets, and some 
are the upmarket models. To learn the buying habits of 
 customers and find out how to encourage application 
sales, the seller decides to select a random sample of 
407 customers and to ask if they have also purchased the 
discount coupon, with the following results.

Upmarket 
Tablets

Low-priced 
Tablets

Sample size 229 178
Option coupon   47   25

  Is it possible to conclude at 10% of significance level 
that the people buying upmarket tablets are also more 
willing to purchase option coupons?

 8.22 Would you use the library more if the hours were 
extended? From a random sample of 138 freshmen, 
80 indicated that they would use the school’s library 
more if the hours were extended. In an independent 
random sample of 96 sophomores, 73 responded that 
they would use the library more if the hours were 
extended. Estimate the difference in proportion of 
first-year and second-year students responding af-
firmatively to this question. Use a 95% confidence 
level.

 8.23 A random sample of 100 men contained 61 in favor 
of a state constitutional amendment to retard the rate 
of growth of property taxes. An independent random 
sample of 100 women contained 54 in favor of this 
amendment. A confidence interval extending from 
0.04 to 0.10 was calculated for the difference between 
the population proportions. Determine the confidence 
level of this interval.

 8.24 Supermarket shoppers were observed and ques-
tioned immediately after putting an item in their cart. 
Of a random sample of 510 choosing a product at the 
regular price, 320 claimed to check the price before 
putting the item in their cart. Of an independent ran-
dom sample of 332 choosing a product at a special 
price, 200 made this claim. Find a 90% confidence in-
terval for the difference between the two population 
proportions.
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• confidence interval for the  
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CHAPTER EXERCISES AND APPLICATIONS

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

8.25 Independent random samples from two normally dis-
tributed populations give the following results:

 nx = 15 x = 400 sx = 20

 ny = 13 y = 360 sy = 25

  Assume that the unknown population variances are 
equal and find a 90% confidence interval for the differ-
ence between population means.

 8.26 Independent random samples from two normally dis-
tributed populations give the following results:

 nx = 15 x = 400 sx = 10

 ny = 13 y = 360 sy = 40

  If we do not assume that the unknown population 
variances are equal, what is the 90% confidence inter-
val for the difference between population means?

 8.27 Independent random samples from two normally dis-
tributed populations give the following results:

 nx = 10 x = 480 sx = 30

 ny = 12 y = 520 sy = 25

a. If we assume that the unknown population vari-
ances are equal, find the 90% confidence interval 
for the difference of population means.

b. If we do not assume that the unknown population 
variances are equal, find the 90% confidence inter-
val for the difference between population means.

 8.28 A company sends a random sample of 16 of its sales-
people to a course designed to increase their motiva-
tion and, hence, presumably their effectiveness. In 
the following year these people generated sales with 
an average value of $625,000 and a sample standard 
deviation of $80,000. During the same period, an in-
dependently chosen random sample of 10 salespeople 
who had not attended the course obtained sales with 
an average value of $608,000 and a sample standard 
deviation of $73,000. Assume that the two population 
distributions are normal and have the same variance. 
Find a 90% confidence interval estimate for the dif-
ference between the population mean sales for sales-
people who attended the motivational course and for 
those salespeople who did not attend the course.

 8.29 A proposal for a new 1-cent tax increase to support can-
cer research is to appear on the ballot in one county’s 
next election. The residents in two cities were ques-
tioned as to their level of support. In Sterling Heights a 
recent survey of 225 residents showed that 140 people 
supported the proposal, 35 were undecided, and the 
remainder were opposed to the new proposal. In a 
nearby community, Harrison Township, the results of 
a random sample of 210 residents found that 120 people 
supported the tax, 30 were opposed, and the remainder 
were undecided. Estimate the difference in the percent-
ages of residents from these two communities who sup-
port this proposal. Use a 95% confidence level.

 8.30 Is the average amount spent on textbooks per semes-
ter by accounting majors significantly different from 
the average amount spent on textbooks per semester 
by management majors? Answer this question with a 
90% confidence interval using the following data from 
random samples of students majoring in accounting 
or management. Discuss the assumptions.

Accounting 
Majors

Management 
Majors

Mean $340 $285
Standard deviation   20   30
Sample size   40   50

8.31 The supervisor of an orange juice-bottling company is 
considering the purchase of a new machine to bottle 
16-fluid-ounce (473-milliliter) bottles of 100% pure 
orange juice and wants an estimate of the difference 
in the mean filling weights between the new machine 
and the old machine. Random samples of bottles of or-
ange juice that had been filled by both machines were 
obtained. Estimate the difference in the mean filling 
weights between the new and the old machines? Dis-
cuss the assumptions. Use a = 0.10.

New Machine Old Machine
Mean 470 milliliters 460 milliliters
Standard deviation   5 milliliters   7 milliliters
Sample size  15  12

8.32 An agency offers students preparation courses 
for a graduate school admissions test. As part of 

an experiment to evaluate the merits of the course, 12 
students were chosen and divided into six pairs in such 
a way that the two members of any pair had similar ac-
ademic records. Before taking the test, one member of 
each pair was assigned at random to take the prepara-
tion course, while the other member took no course. 
The achievement test scores are contained in the Stu-
dent Pair data file. Assuming that the differences in 
scores are normally distributed, find a 98% confidence 
interval for the difference in means scores between 
those who took the course and those who did not.

 8.33 A newspaper article reported that 400 people in one state 
were surveyed and 75% were opposed to a recent court 
decision. The same article reported that a similar survey 
of 500 people in another state indicated opposition by 
only 45%. Construct a 95% confidence interval of the dif-
ference in population proportions based on the data.

 8.34 The Healthy Eating Index measures on a 
100-point scale the adequacy of consumption of 

vegetables, fruits, grains, milk, meat and beans, and liq-
uid oils. This scale is called HEI2005 (Guenther et al. 
2007). There are two interviews for each person in the 
study. The first interview is identified by daycode =  1 
and the second interview is identified by daycode =  2. 
This data is stored in the data file HEI Cost Data Vari-
able Subset. Find a 95% confidence interval estimate of 
the difference in the mean HEI–2005 scores between 
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male and female participants at the time of their first 
interview.

 8.35 Consider again the data at the time of the first 
interview 1daycode = 12 for participants in 

the HEI–2005 study (Guenther et al. 2007). Find a 
95% confidence interval estimate of the difference in 

the mean HEI–2005 scores between participants in 
the HEI study who smoke and those who do not 
smoke. The data is stored in the data file HEI Cost 
Data Variable Subset.

Appendix
STUDENT’S t DISTRIBUTION FOR THE DIFFERENCE 
IN THE MEANS OF TWO NORMALLY DISTRIBUTED 
POPULATIONS WITH UNKNOWN POPULATION 
VARIANCES NOT ASSUMED TO BE EQUAL

We saw in the Chapter 7 appendix that Gosset developed a probability distribution for nor-
mally distributed random variables that did not include the population variance s2. He took 
the ratio of Z, a standard normal random variable, to the square root of x2 divided by its 
degrees of freedom, v. In mathematical notation

t =
Z2x2>v

Now, for the difference between the means of two normally distributed populations, the 
random variable Z is

Z =
1x - y2 - 1mx - my2

As2
x

nx
+
s2

y

ny

and the random variable x2 is

x2 = x2
x + x2

y

That is, the random variable x2 is the sum of two independent chi-square random variables, 
x2

X and x2
Y, based on the two independent random samples, X and Y. We saw in Section 7.5 

that x2
X and x2

Y are defined as

 x2
x =

1nx - 12s2
x

s2
x

 x2
y
=
1ny - 12s2

y

s2
y

with 1nx - 12 and 1ny - 12 degrees of freedom, respectively. The degrees of freedom for x2 
is the sum of the component degrees of freedom, v = 1nx - 12 + 1ny - 12 = nx + ny - 2.

Bringing these pieces together,

t =
31x - y2 - 1mx - my24 >2s2

x >nx + s2
y>ny231nx - 12s2

x>s2
x + 1ny - 12s2

y>s2
y4 >1nx + ny - 22

If s2
x = s2

y, then this reduces to the following:

t =
1x - y2 - 1mx - my2

A s2
p

nx
+

s2
p

ny
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 9.1 Concepts of Hypothesis Testing
 9.2 Tests of the Mean of a Normal Distribution:

Population Variance Known
p-Value
Two-Sided Alternative Hypothesis

 9.3 Tests of the Mean of a Normal Distribution:
Population Variance Unknown

 9.4 Tests of the Population Proportion (Large Samples)
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Introduction

In this chapter we develop hypothesis-testing procedures that enable us to 
test the validity of some conjecture or claim by using sample data. This form 
of inference contrasts and complements the estimation procedures developed 
in Chapters 7 and 8. The process begins with an investigator forming a hy-
pothesis about the nature of some population. We clearly state this hypoth-
esis as involving two options, and then we select one option based on the 
results of a statistic computed from a random sample of data. Following are 
examples of typical problems:

1.  Malt-O-Meal, Inc., a producer of ready-to-eat cereal, claims that, on aver-
age, its cereal packages weigh at least 16 ounces, and thus do not weigh 
less than 16 ounces. The company can test this claim by collecting a 
 random sample of cereal packages, determining the weight of each one, 
and computing the sample mean package weight from the data.

2.  An automobile-parts factory wishes to monitor its manufacturing 
process to ensure that the diameter of pistons meets engineering toler-
ance specifications. It could obtain random samples every 2 hours from 
the production line and use them to determine if standards are being 
maintained.
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These examples indicate a standard procedure. We state a hypothesis 
about some population parameter and then collect sample data to test the 
validity of our hypothesis.

9.1 CONCEPTS OF HYPOTHESIS TESTING

Here we introduce a general framework to test hypotheses. First, as noted earlier, we need 
to define two alternatives that cover all possible outcomes. Then, by using statistics com-
puted from random samples, we select one of the two alternatives. Since these statistics 
have a sampling distribution, our decision is made in the face of random variation. Thus, 
clear decision rules are needed for choosing between the two alternatives. The sample 
statistics cannot in general be used to absolutely “prove” that one of the two alternatives 
is correct. However, we can find that one of the alternatives has a very small probability of 
being correct. Thus as a result we would select the other alternative. This approach is the 
fundamental decision-making process used in scientific research. The term “counterfac-
tual” testing is commonly used to define this decision process.

The process that we develop here has a direct analogy to a criminal jury trial. A per-
son charged with a crime is either innocent or guilty. In a jury trial we initially assume 
that the accused is innocent, and the jury will decide that a person is guilty only if there is 
very strong evidence against the presumption of innocence. That is, the jury would reject 
the initial assumption of innocence. The criminal jury trial process for choosing between 
guilt and innocence has the following characteristics:

 1. Rigorous procedures or rules for presenting and evaluating evidence
 2. A judge to enforce the rules
 3. A decision process that assumes innocence unless there is evidence to prove guilt be-

yond a reasonable doubt

Note that this process will fail to convict some people who are, in fact, guilty. But if a per-
son’s innocence is rejected and the person is found guilty, we have strong evidence that 
the person is guilty.

We begin the hypothesis-testing procedure by considering a value for a population 
probability distribution parameter such as the mean, m, the variance, s2, or the propor-
tion, P. Our approach starts with a hypothesis about the parameter—called the null 
hypothesis—that will be maintained unless there is strong evidence against this null hy-
pothesis. If we reject the null hypothesis, then the second hypothesis, named the alternative 
hypothesis, will be accepted. However, if we fail to reject the null hypothesis, we cannot 
necessarily conclude that the null hypothesis is correct. If we fail to reject, then either the 
null hypothesis is correct or the alternative hypothesis is correct, but our test procedure is 
not strong enough to reject the null hypothesis.

Using our Malt-O-Meal example, we could begin by assuming that the mean package 
weight is just equal to 16 ounces, so our null hypothesis is defined as follows:

H0 : m = 16

A hypothesis, whether null or alternative, might specify a single value—in this case, 
m = 16:for the population parameter m. We define this hypothesis as a simple hypoth-
esis, which is read as follows: The null hypothesis is that the population parameter m is 
equal to a specific value of 16. For this cereal example, a possible alternative hypothesis is 
that the population mean package weight falls in a range of values greater than 16 ounces:

H1 : m 7 16

We define this alternative hypothesis as a one-sided composite alternative hypothesis. 
Another possibility would be to test the null hypothesis against the general two-sided 
composite alternative hypothesis:

H1 : m � 16
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We choose these hypotheses so that one or the other must be true. In this book we denote 
the null hypothesis as H0 and the alternative hypothesis as H1.

Similar to a jury trial, our decision to choose one hypothesis or the other follows a 
rigorous procedure. The decision process uses a decision statistic computed from a random 
sample, such as a sample mean, x, a sample variance, s2, or a sample proportion, pn. The 
 decision statistic will have a known sampling distribution based on the sampling proce-
dure and the parameter value specified by the null hypothesis. From this sampling dis-
tribution we determine values of the decision statistic that have a small probability of 
occurring if the null hypothesis is true. If the decision statistic has a value that has a small 
probability of occurring when the null hypothesis is true, we reject the null hypothesis 
and accept the alternative hypothesis. However, if the decision statistic does not have a 
small probability of occurring when the null hypothesis is true, then we do not reject the 
null hypothesis. The specification of null and alternative hypotheses depends on the prob-
lem, as indicated in the following examples.

 1. Malt-O-Meal would like to have its mean package weight above the label weight. Let 
m denote the population mean weight (in ounces) of cereal per box. The composite 
null hypothesis is that this mean is at most 16 ounces:

H0 : m … 16

  And the obvious alternative is that the mean weight is greater than 16 ounces:

H1 : m 7 16

  For this problem we would seek strong evidence that the mean weight of pack-
ages is not less than or equal to 16 ounces and thus is greater than 16 ounces. The 
company wishes to avoid legal action and/or customer dissatisfaction because of 
low package weights. The company would have confidence in its conclusion—that 
mean package weight exceeds 16 ounces—if it had strong evidence that resulted in 
rejecting H0.

 2. An automobile-parts factory has proposed a process to monitor the diameter of 
pistons on a regular schedule. Every 2 hours a random sample of n = 6 pistons 
would be selected from the production process and their diameters measured. The 
mean diameter for the 6 pistons would be computed and used to test the simple null 
hypothesis,

H0 : m = 3.800

  versus the alternative hypothesis,

H1 : m � 3.800

  In this example a piston that is either too big or too small cannot be used.

The company would continue to operate unless the null hypothesis was rejected in 
favor of the alternative hypothesis. Rejection would occur if the sample mean had a small 
value or a large value, either of which had a small probability of occurring if the null 
hypothesis—the piston diameter is equal to 3.800—was true. Strong evidence that the 
 pistons were not meeting the tolerance standards would result in an interruption of the 
production process.

Once we have specified the null and the alternative hypotheses and collected sample 
data, we must make a decision concerning the null hypothesis. We can either reject the 
null hypothesis and accept the alternative, or fail to reject the null hypothesis. For good 
reasons many statisticians prefer not to say, “accept the null hypothesis”; instead, they 
say, “fail to reject the null hypothesis.” When we fail to reject the null hypothesis, then 
either the null hypothesis is true or our test procedure was not strong enough to reject it 
and we have committed an error. To select the hypothesis—null or alternative—we de-
velop a decision rule based on sample evidence. Later in this chapter we present specific 
decision rules for various problems. In many cases the form of the rule is fairly obvious. 
To test the null hypothesis that the mean weight of cereal boxes is at most 16 ounces, we 
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obtain a random sample of boxes and compute the sample mean. If the sample mean is 
substantially above 16 ounces, we can reject the null hypothesis and accept the alterna-
tive hypothesis. In general, the greater the sample mean is above 16, the greater the 
chance is of rejecting the null hypothesis. We develop specific decision rules next.

From our discussion of sampling distributions in Chapter 6, we know that the sample 
mean is different from the population mean. With only one sample mean, we cannot be 
certain of the value of the population mean. Thus, we know that the adopted decision rule 
will have some chance of reaching an erroneous conclusion. Table 9.1 summarizes the pos-
sible types of error. We define Type I error as the probability of rejecting the null hypothesis 
when the null hypothesis is true. Our decision rule will be defined so that the probability 
of rejecting a true null hypothesis, denoted as a, is “small.” We define a to be the signifi-
cance level of the test. The probability of failing to reject the null  hypothesis when it is true 
is 11 - a2. We also have another possible error, called a Type II error, that arises when we 
fail to reject a false null hypothesis. For a particular decision rule, the probability of making 
such an error when the null hypothesis is false will be denoted as b. Then the probability of 
rejecting a false null hypothesis is 11 - b2, which is called the power of the test.

Table 9.1 States of Nature and Decisions on the Null Hypothesis, with Probabilities of 
Making the Decisions, Given the States of Nature

States of Nature

Decisions on  
Null Hypothesis

 
Null Hypothesis Is True

 
Null Hypothesis Is False

Fail to reject H0 Correct decision Type II error

Probability = 1 - a Probability = b

Reject H0 Type I error Probability = a 
(a is called the significance level)

Correct decision Probability = 1 - b 
(1 - b is called the power of the test)

We illustrate these ideas by reference to an earlier example. A factory manager is try-
ing to determine if the population mean package weight is greater than the package label 
weight. The null hypothesis is that in the population, the mean package weight is less 
than or equal to the label weight of 16 ounces. This null hypothesis is tested against the 
alternative hypothesis that the mean package weight is greater than 16 ounces. To test 
the hypothesis, we obtain an independent random sample of cereal packages and com-
pute the sample mean. If the sample mean is substantially larger than 16 ounces, the null 
hypothesis is rejected. Otherwise, we will not reject the null hypothesis. Let x denote the 
sample mean. Then, a possible decision rule is as follows:

reject H0 if x 7 16.13

Now, suppose that the null hypothesis is true. We could still find that the sample 
mean is greater than 16.13, and, according to our decision rule, the null hypothesis would 
be rejected. In that case we would have committed a Type I error. The probability of rejec-
tion when the null hypothesis is true is the significance level a. By contrast, suppose that 
the null hypothesis is false and that the population mean package weight is greater than 
16. We could still find that the sample mean was less than 16.13, and, according to our 
decision rule, the null hypothesis would not be rejected. Thus, a Type II error would have 
occurred. The probability of making such an error will depend on just how much the pop-
ulation mean exceeds 16. We will find that it is more likely that the null hypothesis would 
be rejected for a given sample size if the population mean was 16.5 compared to the case 
where the population mean was 16.1.

Ideally, we would like to have the probabilities of both types of errors be as small as 
possible. However, there is a trade-off between the probabilities of the two types of errors. 
Given a particular sample, any reduction in the probability of Type I error, a, will result 
in an increase in the probability of Type II error, b, and vice versa. We need to emphasize 
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here that there is not a direct linear substitution (e.g., a reduction of 0.02 in a does not 
usually result in an increase of 0.02 in b). Thus, in the previous example the probability of 
Type I error, a, could be reduced by changing the decision rule to the following:

reject H0 if  x 7 16.23

But failure to reject the null hypothesis is more likely even if the null hypothesis is false. 
As a result, the probability of Type II error, b, would be increased. In practice, we select 
a small (e.g., less than 0.10) probability of Type I error, and that probability is used to 
set the decision rule. The probability of Type II error is then determined, as shown in 
Figure 9.1.

Investigator chooses
significance level

(probability of Type I error)

Decision rule
is established

Probability of
Type II error follows

Figure 9.1 Consequences of Fixing the Significance Level of a Test

Suppose that a plant manager wishes to test whether the true mean weight of cereal 
boxes is greater than 16 ounces. He would begin the analysis by first fixing the probability 
of Type I error. In a sense this is like deciding the rules for a baseball or soccer game be-
fore the game starts instead of making up the rules as the game is played. After analyzing 
the nature of the decision process, he might decide that the decision rule should have a 
probability of a = 0.05 or less of rejecting the null hypothesis when it is true. He would 
do this by selecting an appropriate number, xc, according to the following decision rule: 
Reject the null hypothesis if the sample mean is greater than xc ounces. In the following 
sections we indicate the procedure for choosing xc. Once the number xc has been chosen, 
the probability of Type II error can be computed—for a particular value of m included in 
H1—using the procedures to be developed in Section 9.5.

Another concept used in hypothesis testing is the power of the test, defined as the 
probability of rejecting H0 when H1 is true. The power is computed for particular values of 
m that satisfy the null hypothesis. The power is typically different for every different value 
of m. Consider the cereal problem with

H0 : m = 16

H1 : m 7 16

Thus, for any value of m contained in the alternative hypothesis, H1

Power = P 1reject H0 �m, 1m� H122
Since the decision rule is determined by the significance level chosen for the test, the 

concept of power does not directly affect the decision to reject or fail to reject a null hy-
pothesis. However, by computing the power of the test for particular significance levels 
and values of m included in H1, we will have valuable information about the properties of 
the decision rule. For example, we will see that, by taking a larger sample size, the power 
of the test will be increased for a given significance level, a. Thus, we will balance the 
increased costs of a larger sample size against the benefits of increasing the power of the 
test. Another important use of power calculations occurs when, for a given sample size, 
we have a choice between two or more possible tests with the same significance levels. 
Then it would be appropriate to choose the test that has the smallest probability of Type II 
error—that is, the test with the highest power.

In Sections 9.2 through 9.4, we show how, for given significance levels, decision rules 
can be formulated for some important classes of hypothesis-testing problems. In Section 9.5 
we show how the power of a test can be computed. A summary of the important terms and 
ideas that have been developed thus far is as follows.
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We use the terms reject and failure to reject for possible decisions about a null hy-
pothesis in formal summaries of the outcomes of tests. We will see that these terms 
do not adequately reflect the asymmetry of the status of null and alternative hypoth-
eses or the consequences of a procedure in which the significance level is fixed and the 
probability of a Type II error is not controlled. The null hypothesis has the status of a 
maintained hypothesis—one held to be true—unless the data contain strong evidence to 
reject the hypothesis. By setting the significance level, a at a low level, we have a small 
probability of rejecting a true null hypothesis. When we reject a true null hypothesis, 
the probability of error is the significance level, a. But if there is only a small sample, 
then we will reject the null hypothesis only when it is wildly in error. As we increase the 
sample size, the probability of rejecting a false null hypothesis is increased. But failure 
to reject a null hypothesis leads to much greater uncertainty because we do not know 
the probability of Type II error. Thus, if we fail to reject, then either the null hypothesis 
is true or our procedure for detecting a false null hypothesis does not have sufficient 
power—for example, the sample size is too small. When we reject the null hypothesis, 
we have strong evidence that the null hypothesis is not true and, therefore, that the al-
ternative hypothesis is true. If we seek strong evidence in favor of a particular outcome, 
we define that outcome as the alternative hypothesis, H1, and the other outcome as the 
null hypothesis, H0. This is called a counterfactual argument. When we reject H0, there 
is strong evidence in favor of H1, and we are confident that our decision is correct. But 
failing to reject H0 leads to great uncertainty. We see many applications of this idea in 
the following sections.

The analogy to a criminal trial is apparent. An accused defendant is presumed inno-
cent (the null hypothesis) unless sufficient strong evidence is produced to indicate guilt 
beyond a reasonable doubt (rejection of the null hypothesis). The defendant may be found 
not guilty either because he or she is innocent or because the evidence was not strong 
enough to convict. The burden of proof rests on the sample data.

Summary of Hypothesis-Testing Terminology
Null hypothesis, H0: A maintained hypothesis that is considered to be true 

 unless sufficient evidence to the contrary is obtained.
Alternative hypothesis, H1: A hypothesis against which the null hypothesis is 

tested and which will be held to be true if the null is declared to be false.
Simple hypothesis: A hypothesis that specifies a single value for a population 

parameter of interest.
Composite hypothesis: A hypothesis that specifies a range of values for a 

population parameter.
One-sided alternative: An alternative hypothesis involving all possible values 

of a population parameter on either one side or the other of the value speci-
fied by a simple null hypothesis—that is, either greater than or less than.

Two-sided alternative: An alternative hypothesis involving all possible values 
of a population parameter other than the value specified by a simple null 
hypothesis—that is, both greater than or less than.

Hypothesis test decisions: A decision rule is formulated, leading the investiga-
tor to either reject or fail to reject the null hypothesis on the basis of sample 
evidence.

Type I error: The rejection of a true null hypothesis.
Type II error: The failure to reject a false null hypothesis.
Significance level: The probability a of rejecting a null hypothesis that is true. 

This probability is sometimes expressed as a percentage, so a test of signifi-
cance level a is referred to as a (100a)%@level test (e.g., when a = 0.05, we 
have a 5% level test).

Power: The probability of rejecting a null hypothesis that is false.
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9.2  TESTS OF THE MEAN OF A NORMAL DISTRIBUTION: 
POPULATION VARIANCE KNOWN

In this section we present hypothesis tests of the mean of a normal distribution (popula-
tion variance known) that have applications to business and economic problems. These 
procedures use a random sample of n normally distributed observations x1, x2, . . . , xn that 
were obtained from a population with mean m and known variance s2. We will test a hy-
pothesis concerning the unknown population mean. Later, our assumption of normality 
will be relaxed in many cases because of the central limit theorem.

In the discussion of hypothesis testing in Section 9.1, we noted that if a null hypoth-
esis is rejected using a test with significance level a, then the probability of error is known. 
In this case either the decision is correct or we have committed a Type I error. But if we 
fail to reject a null hypothesis, we do not know the probability of error. Thus, we have 
strong evidence to support a specific position if the null and alternative hypotheses are 
chosen such that rejecting the null hypothesis and accepting the alternative hypothesis 
lead to the support of our specific position. Consider our previous example concerning 
the filling of cereal boxes. Suppose that industry regulations state that if the population 
mean package weight is 16.1 ounces or less for a population of packages with label weight 
16 ounces, then the manufacturer will pay a substantial fine. Thus, our objective is to ob-
tain strong evidence that the mean package weight, m, is greater than 16.1 ounces. In this 
case we would state our null hypothesis as

H0 : m = m0 = 16.1

EXERCISES

Basic Exercises
 9.1 Mary Arnold wants to use the results of a random 

sample market survey to seek strong evidence that her 
brand of breakfast cereal has more than 20% of the to-
tal market. Formulate the null and alternative hypoth-
eses, using P as the population proportion.

 9.2 The Federal Reserve Board is meeting to decide if it 
should reduce interest rates in order to stimulate eco-
nomic growth. State the null and alternative hypoth-
eses regarding economic growth that the board would 
formulate to guide its decision.

 9.3 John Stull, senior vice president of manufacturing, is 
seeking strong evidence to support his hope that new 
operating procedures have reduced the percentage of 
underfilled cereal packages from the Ames production 
line. State his null and alternative hypotheses and in-
dicate the results that would provide strong evidence.

Application Exercises
 9.4 In the UK, some motorist groups want the current 

speed limit on motorways increased; they argue this 
would not be dangerous and would enable motorists 
to reach their destinations more quickly. However, 
some road-safety groups say speed can be a factor 
in accidents and believe it would be dangerous to 
 increase the existing speed limit.

a. State the null and alternative hypotheses from the 
perspective of the motorist groups.

b. State the null and alternative hypotheses from the 
perspective of road-safety groups.

 9.5 The branch manager of an international bank in 
Kuala Lumpur, Malaysia, has received a memo-
randum from senior executives at the head office of 
the bank instructing the manager to ensure that the 
 average queuing time for customers waiting to see a 
 cashier is no more than 5 minutes. Since receiving this 
directive, the manager has been informally checking 
queuing times and is very confident that the average 
time customers spend waiting to see a cashier is cur-
rently 5 minutes or less. You have now been brought 
in to undertake an audit of queuing times to check 
that they are in accordance with the senior executives’ 
 directive. State the null and alternative hypotheses 
you will be using in this instance.

 9.6 The 2000 presidential election in the United States 
was very close, and the decision came down to 
the results of the presidential voting in the state of 
 Florida. The election was finally decided in favor 
of George W. Bush over Al Gore by a U.S. Supreme 
Court decision that stated that it was not appropri-
ate to hand count ballots that had been rejected by 
the voting machines in various counties. At that 
time Bush had a small lead based on the ballots that 
had been counted. Imagine that you were a lawyer 
for Al Gore. State your null and alternative hypoth-
eses concerning the population vote totals for each 
 candidate. Given your hypotheses, what would you 
argue about the results of the proposed recount—if 
it had actually occurred?
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and the alternative hypothesis would be

H1 : m 7 m0 = 16.1

By designing our testing rule with significance level a, we know that rejecting the null 
hypothesis provides strong evidence that the mean weight is greater than 16.1 ounces, 
because the probability of error is a small value, a.

Our test of the population mean uses the sample mean x. If the sample mean is sub-
stantially greater than m0 = 16.1, then we reject the null hypothesis. In order to obtain the 
appropriate decision value we use the fact that the standardized random variable

Z =
X - m0

s>1n

has a standard normal distribution with a mean of 0 and a variance of 1, given that H0 is 
true. If a is the probability of Type I error and Z is large such that

P1Z 7 za2 = a
then to test the null hypothesis, we can use the following decision rule:

reject H0 if  
x - m0

s>1n
7 za

It follows that the probability of rejecting the null hypothesis, H0, when it is true is the 
significance level a.

Note that by simple algebraic manipulation, we could also state the decision rule as 
follows:

reject H0 if  x 7 xc = m0 + za s>1n

The value xc is often called the critical value for the decision. Note that for every value za 
obtained from the standard normal distribution, there is also a value xc, and either of the 
previous decision rules provide exactly the same result.

Suppose that for this problem the population standard deviation is s = 0.4 and we 
obtain a random sample of size 25. For a one-sided hypothesis test with significance level 
a = 0.05, the value of za is 1.645 from the standard normal table. In this case our decision 
rule is as follows:

reject H0 if  
x - m0

s>1n
=

x - 16.1
0.4>125

7 1.645

Equivalently, the rule is as follows:

reject H0 if x 7 xc = m0 + za s>1n = 16.1 + 1.645 * 10.4>1252 = 16.232

If we reject H0 using this rule, then we accept the alternative hypothesis that the mean 
weight is greater than 16.1 ounces with the probability of Type I error 0.05 or less. This 
provides strong evidence to support our conclusion. But, failure to reject the null hypoth-
esis leads us to conclude that either H0 is true or the selected testing procedure was not 
sensitive enough to reject H0. The decision rules are illustrated in Figure 9.2.

Figure 9.2 

Normal Probability 
Density Function 
Showing Both Z 
and x Values for the 
Decision Rule to Test 
the Null Hypothesis 
H0 : m = 16.1 versus 
H1 : m 7 16.1

a = 0.05

15.86
15.44 16.1 16.26

16.02 16.18 16.34

16.232
Reject H0

x

a = 0.05

–3 –2 –1 0 1 2 3 Z

1.645
Reject H0



354 Chapter 9 Hypothesis Tests of a Single Population

We summarize the hypothesis test for a simple null hypothesis concerning the popu-
lation mean as follows.

A Test of the Mean of a Normal Population: Population 
Variance Known
A random sample of n observations is obtained from a normally distributed 
population with mean m and known variance s2. Compute the sample mean x. 
Then, a test with significance level a of the null hypothesis

H0 : m = m0

against the alternative

H1 : m 7 m0

is obtained by using the following decision rule:

 Reject H0 if  
x - m0

s>1n
7 za (9.1)

Or, equivalently,

reject H0 if  x 7 xc = m0 + za s>1n

where za is the number for which

P1Z 7 za2 = a
and Z is the standard normal random variable.

Let us pause to consider what is meant by the rejection of a null hypothesis. In the 
 cereal-package problem, the hypothesis that the population mean is 16.1 would be rejected 
with significance level 0.05 if x 7 16.232. This certainly does not mean that we would have 
proof that the population mean weight exceeds 16.1 units. Given only sample information, 
we can never be certain about a population parameter. Rather, we conclude that the data 
have cast strong doubt on the truth of the null hypothesis. If the null hypothesis were true, 
then we see that an observed value of the sample mean x = 16.25 1e.g., 16.25 7 16.2322 
would represent a single unlikely observation drawn from a normal distribution with 
mean 16.1 and standard error

s1n
=

0.4125
= 0.08

We are really asking how likely it would be to observe such an extreme value if the null 
hypothesis were, in fact, true. We saw that the probability of observing a mean value 
greater than 16.232 is 0.05. Hence, in rejecting the null hypothesis, either the null hypoth-
esis is false or we have observed an unlikely event—one that would occur only with a 
probability of less than that specified by the significance level. This is the sense in which 
the sample information has aroused doubt about the null hypothesis.

p-Value

There is another popular procedure for considering the test of the null hypothesis.  Notice 
that in our cereal problem, the null hypothesis was rejected at significance level 0.05 but 
would not have been rejected at the lower 0.01 level. If we use a lower significance level, 
we would reduce the probability of rejecting a true null hypothesis. This would modify 
our decision rule to make it less likely that the null hypothesis would be rejected whether 
or not it is true. Obviously, the lower the significance level at which we reject a null 
 hypothesis, the greater the doubt cast on its truth when the null hypothesis is rejected. 
Rather than testing hypotheses at preassigned levels of significance, investigators can 
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also determine the smallest level of significance at which a null hypothesis can be rejected 
given the single observed sample mean.

The p-value is the probability of obtaining a value of the test statistic as extreme as 
or more extreme than the actual value obtained when the null hypothesis is true. Thus, the 
p-value is the smallest significance level at which a null hypothesis can be rejected, given 
the observed sample statistic. For example, suppose that in the cereal-package problem with 
the population mean equal to 16.1, s = 0.4, and n = 25 and that under the null hypothesis, 
we had obtained a sample mean of 16.3 ounces. Then the p-value would be as follows:

P1x 7 16.3 � H0 : m = 16.12 = PaZ 7
16.3 - 16.1

0.08
= 2.5b = 0.0062

From the normal probability table we find that the probability of obtaining a sample mean 
of 16.3 or greater from a normal distribution with a population mean of 16.1 and a stan-
dard deviation of the sample mean of 0.08 is equal to 0.0062. Thus, the p-value for this 
test is 0.0062. Now, the p-value (0.0062) represents the smallest significance level, a, that 
would lead to rejection of the null hypothesis. When the p-value is calculated, we can test 
the null hypothesis by using the following rule:

reject H0 if p@value 6 a

This rule will result in the same conclusion obtained using Equation 9.1.
There is another, more important reason for the popularity of the p-value. The p-value 

provides more precise information about the strength of the rejection of the null hypoth-
esis that results from one observed sample mean. Suppose that in the test of the cereal-
package weight we had set the significance level at a = 0.05—a popular choice. Then 
with a sample mean equal to 16.3, we would state that the null hypothesis was rejected at 
significance level 0.05. However, in fact, that sample result points to a much stronger con-
clusion. We could have rejected the null hypothesis at a significance level of a = 0.0063. 
Alternatively, suppose that the computed p-value based on a different sample mean had 
been 0.07. In that case we could not reject the null hypothesis, but we would know that we 
were quite close to rejecting the null hypothesis. In contrast, a p-value of 0.30 would tell 
us that we were quite far from rejecting the null hypothesis. The popularity of the p-value 
is that it provides more information than merely stating that the null hypothesis was ac-
cepted or rejected at a particular significance level. The p-value is summarized as follows.

Interpretation of the Probability Value, or p-Value
The probability value, or p-value, is the smallest significance level at which the 
null hypothesis can be rejected given the single observed sample mean. Con-
sider a random sample of n observations from a population that has a normal 
distribution with mean m and standard deviation s, and the resulting com-
puted sample mean, x. The null hypothesis

H0 : m = m0

is tested against the alternative hypothesis

H1 : m 7 m0

The p-value for the test is

 p@value = Pax - m0

s>1n
Ú zp � H0 : m = m0b  (9.2)

where zp is the standard normal value associated with the smallest significance 
level at which the null hypothesis can be rejected. The p-value is regularly com-
puted by most statistical computer programs based on the computed single 
sample mean and provides more information about the test, based on the ob-
served sample mean. Thus, it is a popular tool for many statistical applications.
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It is important to note that the p-value is an observed random variable that will be dif-
ferent for each random sample obtained for a statistical test. Thus, two different analysts 
could obtain their own random samples and sample means from a process population, 
and, thus, each would compute a different p-value.

Example 9.1 Evaluating a New Production Process 
(Hypothesis Test)

The production manager of Northern Windows, Inc., has asked you to evaluate a pro-
posed new procedure for producing its Regal line of double-hung windows. The pres-
ent process has a mean production of 80 units per hour with a population standard 
deviation of s = 8. The manager does not want to change to a new procedure unless 
there is strong evidence that the mean production level is higher with the new process.

Solution The manager will change to the new process only if there is strong evidence 
in its favor. Therefore, we will define the null hypothesis as

H0 : m … 80

and the alternative hypothesis as

H1 : m 7 80

We see that if we define the significance level a = 0.05 and conclude that the new pro-
cess has higher productivity, then our probability of error is 0.05 or less. This would 
imply strong evidence in favor of our recommendation.

We obtain a random sample of n = 25 production hours using the proposed new 
process and compute the sample mean, x, often using a computer. With a significance 
level of a = 0.05 the decision rule is

reject H0 if  
x - 80
8>125

7 1.645

where z0.05 = 1.645 is obtained from the standard normal table. Alternatively, we could 
use the following rule:

reject H0 if x 7 xc = m0 + zas>1n = 80 + 1.645 * 18>1252 = 82.63

Suppose that the resulting sample mean was x = 83. Based on that result

z =
83 - 80
8>125

= 1.875 7 1.645

we would reject the null hypothesis and conclude that we have strong evidence to sup-
port the conclusion that the new process resulted in higher productivity. Given this 
sample mean, we could also compute the p-value as follows:

p@value = P1Z 7 1.8752 = 0.03

Thus we could recommend the new process to the production manager.

A Test of the Mean of a Normal Distribution (Variance 
Known): Composite Null and Alternative Hypotheses
The appropriate procedure for testing, at significance level a, the null 
hypothesis

H0 : m … m0
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Consider our previous example concerning the filling of cereal packages. Suppose 
that industry regulations state that if the mean package weight is not 16 ounces or more 
for a population of packages with label weight 16 ounces, then the company will be pros-
ecuted. In this situation we, as the regulators, could prosecute only if we found strong 
evidence that the mean package weight was less than 16 ounces. Thus, our objective is to 
prove that the mean package weight, m, is not 16.0 ounces or more. In this case we would 
state the simple null hypothesis as

H0 : m = m0 = 16.0

or, using the composite hypothesis, as

H0 : m Ú m0 = 16.0

And the alternative hypothesis would be

H1 : m 6 m0 = 16.0

for either the simple or the composite hypothesis. By designing our testing rule with sig-
nificance level a, we know that if we reject the null hypothesis, then we have strong evi-
dence that the mean weight is less than 16.0 ounces because the probability of a Type I 
error is a small value, a.

Our test of the population mean uses the sample mean, x. If the sample mean is sub-
stantially less than m0 = 16.0, then we reject the null hypothesis. In order to obtain the 
appropriate decision value, we use the fact that the standard random variable

Z =
X - mu

s>1n

has a standard normal distribution with mean of 0 and variance of 1 when the population 
mean is m0. If z has a large negative value such that

P1Z 6 -za2 = a
then to test the null hypothesis, we can use the following decision rule:

reject H0 if  
x - m0

s>1n
6 -za

It follows that the probability of rejecting a true null hypothesis, H0, is the significance 
level a.

Note that by simple algebraic manipulation we could also state the decision rule as 
follows:

reject H0 if  x 6 xc = m0 - zas>1n

The value xc is the “critical value” for the decision. Note that for every value -za obtained 
from the standard normal distribution, there is also a value xc and either of the preceding 
decision rules provides exactly the same result.

Suppose that for this problem the population standard deviation is s = 0.4 and we 
obtain a random sample of 25. From the standard normal table with a significance level of 
a = 0.05, za = 1.645. In this case our decision rule is

reject H0 if  
x - m0

s>1n
=

x - 16.0
0.4>125

6 -1.645

against the alternative hypothesis

H1 : m 7 m0

is precisely the same as when the null hypothesis is H0 : m = m0. In addition, 
the p-values are also computed in exactly the same way.
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or we could use the following decision rule:

reject H0 if x 6 xc = m0 - zas>1n = 16.0 - 1.645 * 10.4>1252 = 15.868

If we reject H0 using this rule, then we accept the alternative hypothesis that the mean 
weight is less than 16.0 ounces with the probability of Type I error 0.05 or less. This provides 
strong evidence to support our conclusion. This decision rule is illustrated in Figure 9.3.

Figure 9.3 

Normal Probability 
Density Function 
Showing x Values 
for the Decision 
Rule to Test the 
Null Hypothesis 
H0 : m Ú 16.0 versus 
H1 : m 6 16.0

a = 0.05

15.9215.8415.76 16.0 16.08 16.24

15.868
Reject H0

16.16 x–

Note that this hypothesis test is the complement of the first example. The hypothesis-
testing rules for alternative hypotheses dealing with the lower tail are mirror images of 
those dealing with the upper tail of the distribution. This result is summarized in Equa-
tion 9.3. Computation of p-values also follows, using the lower-tail instead of the upper-
tail probabilities. 

The cereal examples presented two different objectives. In the first case we wanted 
strong evidence that the mean weight was greater than 16.1 ounces, and, thus, we defined 
the null hypothesis as follows:

H0 : m … 16.1

In the second case we wanted strong evidence that the mean was less than 16 ounces; 
therefore, we defined the null hypothesis as follows:

H0 : m Ú 16

Possibilities of this type are present in many decision situations, and the decision maker 
is required to determine which option should be used in the particular problem being 
considered.

A Test of the Mean of a Normal Distribution  
(Variance Known): Composite or Simple Null  
and Alternative Hypotheses
The appropriate procedure for testing, at significance level a, the null 
hypothesis

H0 : m = m0 or m Ú m0

against the alternative hypothesis

H1 : m 6 m0

uses the following decision rule:

reject H0 if  
x - m0

s>1n
6 -za
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Equivalently,

 reject H0 if  x 6 xc = m0 - zas>1n (9.3)

where -za is the number for which

P1Z 6 -za2 = a
and Z is the standard normal random variable.

In addition, the p-values can be computed by using the lower-tail 
probabilities.

Example 9.2 Ball Bearing Production  
(Hypothesis Test)

The production manager of Twin Forks Ball Bearing, Inc., has asked your assistance in 
evaluating a modified ball bearing production process. When the process is operating 
properly, the process produces ball bearings whose weights are normally distributed 
with a population mean of 5 ounces and a population standard deviation of 0.1 ounce. 
A new raw-material supplier was used for a recent production run, and the manager 
wants to know if that change has resulted in a lowering of the mean weight of the ball 
bearings. There is no reason to suspect a problem with the new supplier, and the man-
ager will continue to use the new supplier unless there is strong evidence that under-
weight ball bearings are being produced.

Solution In this case we are interested in knowing if there is strong evidence to 
conclude that lower-weight bearings are being produced. Therefore, we will test the 
null hypothesis

H0 : m = m0 = 5

against the alternative hypothesis

H1 : m 6 5

Note how the notion of strong evidence leads us to choose the null and alternative 
hypotheses. We take action only if the null hypothesis is rejected and the alterna-
tive accepted. The significance level is specified as a = 0.05, and, thus, the corre-
sponding lower-tail value for the standard normal random variable is za = -1.645 
from the normal distribution table. For this problem we obtained a random sample 
of n = 16 observations, and the sample mean was 4.962. Our decision rule for this 
problem is

reject H0 if  
x - m0

s>1n
6 -1.645

or

reject H0 if x 6 xc = m0 - za s>1n = 5 - 1.64510.1>1162 = 4.959

We see that we cannot reject the null hypothesis, H, since 
4.962 - 5
0.1>116

= -1.52 and 

x = 4.962 7 xc = 4.959. Thus, we conclude that we do not have strong evidence that 
the production process is producing underweight ball bearings.

We could also compute the p-value for this sample result by noting that for the 
standard normal distribution,

p@value = P1zp 6 -1.522 = 0.0643
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Two-Sided Alternative Hypothesis

There are some problems where deviations either too high or too low are of equal impor-
tance. For example, the diameter of an automobile engine piston cannot be too large or too 
small. In those situations we consider the test of the null hypothesis

H0 : m = m0

against the alternative hypothesis

H1 : m � m0

Here, we have no strong reason for suspecting departures either above or below the hy-
pothesized population mean, m0. The null hypothesis would be doubted if the sample 
mean were much greater or much smaller than m0. Again, if the random variable has a 
normal distribution with known variance s, we obtain a test with significance level a by 
using the result that under the null hypothesis,

P1Z 7 za>22 = a2 and P1Z 6 -za>22 = a2
In this case we have divided the significance level a equally between the two tails of the 
normal distribution. Hence, the probability that Z either exceeds za>2 or is less than -za>2 
is a. The decision rule for a test with significance level a is

reject H0 if  
x - m0

s>1n

is either greater than za>2 or less than -za>2. These results are summarized in Equation 9.4.

A Test of the Mean of a Normal Distribution Against 
Two-Sided Alternative (Variance Known)
The appropriate procedure for testing, at significance level a, the null 
hypothesis

H0 : m = m0

against the alternative hypothesis

H1 : m � m0

is obtained from the decision rule

 reject H0 if  
x - m0

s>1n
6 -za>2 or reject H0 if  

x - m0

s>1n
7 za>2 (9.4)

Equivalently,

reject H0 if  x 6 m0 - za>2 s>1n or reject H0 if x 7 m0 + za>2 s>1n

In addition, the p-values can be computed by noting that the corresponding tail 
probability would be doubled to reflect a p-value that refers to the sum of the 
upper- and lower-tail probabilities for the positive and negative values of Z. 
The p-value for the two-tailed test is

 p@value = 2Pa ` x - m0

s>1n
` 7 zp>2 � H0 : m = m0b  (9.5)

where zp>2 is the standard normal value associated with the smallest 
 probability of rejecting the null hypothesis at either tail of the probability 
distribution.
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Example 9.3 Analysis of Drill Hole Diameters 
(Hypothesis Test)

The production manager of Circuits Unlimited has asked for your assistance in ana-
lyzing a production process. This process involves drilling holes whose diameters are 
normally distributed with a population mean of 2 inches and a population standard 
deviation of 0.06 inch. A random sample of nine measurements had a sample mean of 
1.95 inches. Use a significance level of a = 0.05 to determine if the observed sample 
mean is unusual and, therefore, that the drilling machine should be adjusted.

Solution In this case the diameter could be either too large or too small. Therefore, 
we perform a two-tailed hypothesis test with the null hypothesis

H0 : m = 2.0

and the alternative hypothesis

H1 : m � 2.0

The decision rule is to reject H0 in favor of H1 if

x - m0

s>1n
6 -za>2 or 

x - m0

s>1n
7 za>2

and, for this problem,

x - m0

s>1n
=

1.95 - 2.0
0.06>19

= -2.50

for a 5%-level test a = 0.05 and za>2 = z0.05>2 = 1.96. Thus, since -2.50 is less than 
-1.96, we reject the null hypothesis and conclude that the drilling machine requires 
adjustment.

To compute the p-value, we first find that the probability of obtaining Z less 
than -2.50 from the normal table is 0.0062. Here, we want the p-value for a two-
tailed test, and we must double the one-tail value. Thus, the p-value for this test is 
2 * 0.0062 = 0.0124, and the null hypothesis would have been rejected for a signifi-
cance level above 1.24%.

EXERCISES

Basic Exercises
 9.7 A random sample is obtained from a population with 

variance s2 = 625, and the sample mean is computed. 
Test the null hypothesis H0 : m = 100 versus the alter-
native hypothesis H1 : m 7 100 with a = 0.05. Com-
pute the critical value xc and state your decision rule 
for the following options.

a. Sample size n = 25
b. Sample size n = 16
c. Sample size n = 44
d. Sample size n = 32

 9.8 A random sample of n = 25 is obtained from a popu-
lation with variance s2, and the sample mean is com-
puted. Test the null hypothesis H0 : m = 100 versus 
the alternative hypothesis H1 : m 7 100 with a = 0.05. 

Compute the critical value xc and state your decision 
rule for the following options.

a. The population variance is s2 = 225.
b. The population variance is s2 = 900.
c. The population variance is s2 = 400.
d. The population variance is s2 = 600.

 9.9 A random sample is obtained from a population with a 
variance of s2 = 400, and the sample mean is computed 
to be xc = 70. Consider the null hypothesis H0 : m = 80 
versus the alternative hypothesis H1 : m 6 80. Compute 
the p-value for the following options.

a. Sample size n = 25
b. Sample size n = 16
c. Sample size n = 44
d. Sample size n = 32

We have summarized the various hypothesis-testing alternatives discussed in this 
section in Figure 9.11, located in the chapter appendix. 
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 9.10 A random sample of n = 25 is obtained from a pop-
ulation with variance s2, and the sample mean is 
computed to be x = 70. Consider the null hypoth-
esis H0 : m = 80  versus the alternative hypothesis 
H1 : m 6 80. Compute the p-value for the following 
options.

a. The population variance is s2 = 225.
b. The population variance is s2 = 900.
c. The population variance is s2 = 400.
d. The population variance is s2 = 600.

Application Exercises
 9.11 A manufacturer of detergent claims that the contents 

of boxes sold weigh on average at least 16 ounces. The 
distribution of weight is known to be normal, with a 
standard deviation of 0.4 ounce. A random sample of 
16 boxes yielded a sample mean weight of 15.84 ounces. 
Test at the 10% significance level the null hypothesis 
that the population mean weight is at least 16 ounces.

 9.12 A company that receives shipments of batteries tests 
a random sample of nine of them before agreeing to 
take a shipment. The company is concerned that the 
true mean lifetime for all batteries in the shipment 
should be at least 50 hours. From past experience it 
is safe to conclude that the population distribution 

of lifetimes is normal with a standard deviation of 
3 hours. For one particular shipment the mean lifetime 
for a sample of nine batteries was 48.2 hours. Test at 
the 10% level the null hypothesis that the population 
mean lifetime is at least 50 hours.

 9.13 A pharmaceutical manufacturer is concerned that the 
impurity concentration in pills should not exceed 3%. It 
is known that from a particular production run impu-
rity concentrations follow a normal distribution with a 
standard deviation of 0.4%. A random sample of 64 pills 
from a production run was checked, and the sample 
mean impurity concentration was found to be 3.07%.

a. Test at the 5% level the null hypothesis that the 
population mean impurity concentration is 3% 
against the alternative that it is more than 3%.

b. Find the p-value for this test.
c. Suppose that the alternative hypothesis had been 

two-sided, rather than one-sided, with the null 
hypothesis H0 : m = 3. State, without doing the cal-
culations, whether the p-value of the test would be 
higher than, lower than, or the same as that found in 
part (b). Sketch a graph to illustrate your reasoning.

d. In the context of this problem, explain why a one-
sided alternative hypothesis is more appropriate 
than a two-sided alternative.

9.3  TESTS OF THE MEAN OF A NORMAL DISTRIBUTION: 
POPULATION VARIANCE UNKNOWN

In this section we consider the same form of hypothesis tests discussed in Section 9.2. The 
only difference is that the population variance is unknown; thus, we must use tests based 
on the Student’s t distribution. We introduced the Student’s t distribution in Section 7.3 
and showed its application for developing confidence intervals. Recall that the Student’s 
t distribution depends on the degrees of freedom for computing the sample variance, 
n - 1. In addition, the Student’s t distribution becomes close to the normal distribution as 
the sample size increases. Thus, for sample sizes greater than 100 the normal probability 
distribution can be used to approximate the Student’s t distribution. Using the sample 
mean and variance, we know that the random variable

tn- 1 =
x - m
s>1n

follows a Student’s t distribution, with n - 1 degrees of freedom. The procedures for 
 performing hypothesis tests of the mean of a normal distribution (with population variance 
unknown) are defined in Equations 9.6, 9.7, and 9.8.

Tests of the Mean of a Normal Distribution: Population 
Variance Unknown
We are given a random sample of n observations from a normal population 
with mean m. Using the sample mean and sample standard deviation, x and s, 
respectively, we can use the following tests with significance level a.

1. To test either null hypothesis

H0 : m = m0 or H0 : m … m0
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 against the alternative

H1 : m 7 m0

 the decision rule is

reject H0 if t =
x - m0

s>1n
7 tn- 1,a

 or, equivalently,

 reject H0 if x 7 xc = m0 + tn- 1,as>1n (9.6)

2. To test either null hypothesis

H0 : m = m0 or H0 : m Ú m0

 against the alternative

H1 : m 6 m0

 the decision rule is

 reject H0 if t =
x - m0

s>1n
6 - tn- 1,a (9.7)

 or, equivalently,

reject H0 if x 6 xc = m0 - tn- 1,as>1n

3. To test the null hypothesis

H0 : m = m0

 against the alternative hypothesis

H1 : m � m0

 the decision rule is

 reject H0 if 
x - m0

s>1n
6 - tn- 1,a>2 or reject H0 if 

x - m0

s>1n
7 tn- 1,a>2 (9.8)

 or, equivalently,

reject H0 if  x 6 m0 - tn- 1,a>2 s>1n or reject H0 if  x 7 m0 + tn- 1,a>2 s>1n

where tn -1,a>2 is the Student’s t value for n - 1 degrees of freedom and the tail 
probability is a>2.

The p-values for these tests are computed in the same way as we did for 
tests with known variance except that the Student’s t value is substituted for 
the normal Z value. To obtain the p-value we often need to interpolate in the 
t table or use a computer package.

Example 9.4 Analysis of Weekly Sales  
of Frozen Broccoli (Hypothesis Test)

Grand Junction Vegetables is a producer of a wide variety of frozen vegetables. The 
company president has asked you to determine if the weekly sales of 16-ounce packages 
of frozen broccoli has increased. The mean weekly number of sales per store has been 
2,400 packages over the past 6 months. You have obtained a random sample of sales 
data from 134 stores for your study. The data are contained in the data file Broccoli.
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Solution Given the project objectives, you decide that the null hypothesis test is that 
population mean sales are 2,400 versus the alternative that sales have increased using a 
significance level a = 0.05. The null hypothesis is

H0 : m = 2,400

versus the alternative hypothesis

H1 : m 7 2,400

Figure 9.4 shows the Minitab output containing the sample mean and variance. 
From the Minitab output we see that the sample mean is much larger than the median 
and that the the distance between the third quartile and the maximum sales is quite 
large. Thus, it is clear that the distribution of the individual observations is not a nor-
mal distribution. But the sample size is large, and, thus, by applying the central limit 
theorem from Chapter 6, we can assume that the sampling distribution for the sample 
mean is normal. Therefore, a Student’s t test would be appropriate for the hypothesis 
test. We see that the sample mean is 3,593 and the sample standard deviation is 4,919. 
The test statistic is as follows:

t =
3,593 - 2,400
4,919>1134

=
3,593 - 2,400

425
= 2.81

Figure 9.4 Broccoli Sales (Descriptive Statistics)

Descriptive Statistics: Broccoli

Variable N N* Mean SE Mean StDev Minimum Q1 Median Q3 Maximum
Broccoli 134 0 3593 425 4919 156 707 2181 2300 27254

The value of t for n - 1 = 133 degrees of freedom and a = 0.05 for the upper tail is 
approximately 1.645. Based on this result, we reject the null hypothesis and conclude 
that mean sales have increased.

EXERCISES

Basic Exercises
 9.14 Test the hypotheses

H0 : m … 100

H1 : m 7 100

  using a random sample of n = 25, a probability of Type I 
error equal to 0.05, and the following sample statistics.

a.  x = 106;  s = 15
b.  x = 104;  s = 10
c.  x = 95;  s = 10
d.  x = 92;  s = 18

 9.15 Test the hypotheses

H0 : m = 100

H1 : m 6 100

  using a random sample of n = 36, a probability of 
Type I error equal to 0.05, and the following sample 
statistics.

a.  x = 106;  s = 15
b.  x = 104;  s = 10
c.  x = 95;  s = 10
d.  x = 92;  s = 18

Minitab and most good statistical packages have options for computing the critical 
values and performing the hypothesis test following the previous procedure. However, to 
properly use the option, you must understand how to formulate the hypothesis following 
the discussion in Section 9.2. You will have a better understanding if you initially follow the 
computation details in the preceding examples. Then, after you are comfortable with the 
procedure, you can use the computational options to carry out the computational details.

The tests presented in this section are summarized in Figure 9.10, located in the chapter 
appendix.
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Application Exercises
 9.16 An engineering research center claims that through 

the use of a new computer control system, automo-
biles should achieve, on average, an additional 3 miles 
per gallon of gas. A random sample of 100 automo-
biles was used to evaluate this product. The sample 
mean increase in miles per gallon achieved was 2.4, 
and the sample standard deviation was 1.8 miles per 
gallon. Test the hypothesis that the population mean 
is at least 3 miles per gallon. Find the p-value of this 
test, and interpret your findings.

 9.17 A random sample of 1,562 undergraduates enrolled in 
management ethics courses was asked to respond on 
a scale from 1 (strongly disagree) to 7 (strongly agree) 
to this proposition: Senior corporate executives are in-
terested in social justice. The sample mean response 
was 4.27, and the sample standard deviation was 1.32. 
Test at the 1% level, against a two-sided alternative, 
the null hypothesis that the population mean is 4.

 9.18 You have been asked to evaluate single-employer 
plans after the establishment of the Health Benefit 
Guarantee Corporation. A random sample of 76 per-
centage changes in promised health benefits was ob-
served. The sample mean percentage change was 
0.078, and the sample standard deviation was 0.201. 
Find and interpret the p-value of a test of the null hy-
pothesis that the population mean percentage change 
is 0 against a two-sided alternative.

 9.19 A random sample of 172 marketing students was 
asked to rate, on a scale from 1 (not important) to 5 
(extremely important), health benefits as a job char-
acteristic. The sample mean rating was 3.31, and the 
sample standard deviation was 0.70. Test at the 1% 
significance level the null hypothesis that the popula-
tion mean rating is at most 3.0 against the alternative 
that it is larger than 3.0.

 9.20 A random sample of 170 people was provided with a 
forecasting problem. Each sample member was given, 
in two ways, the task of forecasting the next value of 
a retail sales variable. The previous 20 values were 
presented both as numbers and as points on a graph. 
Subjects were asked to predict the next value. The ab-
solute forecasting errors were measured. The sample 
then consisted of 170 differences in absolute fore-
cast errors (numerical minus graphical). The sample 
mean of these differences was –2.91, and the sample 
standard deviation was 11.33. Find and interpret the 
p-value of a test of the null hypothesis that the popula-
tion mean difference is 0 against the alternative that 
it is negative. (The alternative can be viewed as the 
hypothesis that, in the aggregate, people make better 
forecasts when they use graphs of past history com-
pared to using numerical values from past history.)

 9.21 The accounts of a corporation show that, on average, 
accounts payable are $125.32. An auditor checked a 
random sample of 16 of these accounts. The sample 
mean was $131.78 and the sample standard deviation 
was $25.41. Assume that the population distribution is 
normal. Test at the 5% significance level against a two-
sided alternative the null hypothesis that the popula-
tion mean is $125.32.

 9.22 On the basis of a random sample the null hypothesis

H0 : m = m0

  is tested against the alternative

H1 : m 7 m0

  and the null hypothesis is not rejected at the 5% sig-
nificance level.

a. Does this necessarily imply that m0 is contained in 
the 95% confidence interval for m?

b. Does this necessarily imply that m0 is contained in 
the 90% confidence interval for m if the observed 
sample mean is larger than m0?

 9.23 A company selling licenses for new e-commerce com-
puter software advertises that firms using this soft-
ware obtain, on average during the first year, a yield 
of 10% on their initial investments. A random sample 
of 10 of these franchises produced the following yields 
for the first year of operation:

6.1 9.2 11.5 8.6 12.1 3.9 8.4 10.1 9.4 8.9

  Assuming that population yields are normally distrib-
uted, test the company’s claim.

 9.24 A process that produces bottles of shampoo, when 
operating correctly, produces bottles whose contents 
weigh, on average, 20 ounces. A random sample of 
nine bottles from a single production run yielded the 
following content weights (in ounces):

21.4 19.7 19.7 20.6 20.8 20.1 19.7 20.3 20.9

  Assuming that the population distribution is normal, 
test at the 5% level against a two-sided alternative the 
null hypothesis that the process is operating correctly.

 9.25 A statistics instructor is interested in the ability of stu-
dents to assess the difficulty of a test they have taken. 
This test was taken by a large group of students, and 
the average score was 78.5. A random sample of eight 
students was asked to predict this average score. Their 
predictions were as follows:

72 83 78 65 69 77 81 71

  Assuming a normal distribution, test the null hypoth-
esis that the population mean prediction would be 
78.5. Use a two-sided alternative and a 10% signifi-
cance level.

 9.26 An IT consultancy in Singapore that offers telephony 
solutions to small businesses claims that its new call-
handling software will enable clients to increase suc-
cessful inbound calls by an average of 75 calls per 
week. For a random sample of 25 small-business us-
ers of this software, the average increase in successful 
inbound calls was 70.2 and the sample standard de-
viation was 8.4 calls. Test, at the 5% level, the null hy-
pothesis that the population mean increase is at least 
75 calls. Assume a normal distribution.

 9.27 In contract negotiations a company claims that a new 
incentive scheme has resulted in average weekly earn-
ings of at least $400 for all customer service workers. 
A union representative takes a random sample of 
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15 workers and finds that their weekly earnings have 
an average of $381.35 and a standard deviation of 
$48.60. Assume a normal distribution.

a. Test the company’s claim.

b. If the same sample results had been obtained from 
a random sample of 50 employees, could the com-
pany’s claim be rejected at a lower significance level 
than that used in part a?

9.4 TESTS OF THE POPULATION PROPORTION (LARGE SAMPLES)

Another important set of business and economics problems involves population propor-
tions. Business executives are interested in the percent market share for their products, 
and government officials are interested in the percentage of people that support a pro-
posed new program. Inference about the population proportion based on sample propor-
tions is an important application of hypothesis testing.

From our work in Chapters 5 and 6, we know that the distribution of the sample pro-
portion can be approximated quite accurately by using the normal distribution. In this 
approximation we denote P as the population proportion and pn as the sample proportion. 
Thus, the sample proportion pn estimated from a random sample of size n has an approxi-
mate normal distribution with mean P and variance P11 - P2>n. Then the standard nor-
mal statistic is as follows:

Z =
pn - P1P11 - P2>n

If the null hypothesis is that the population proportion is

H0 : P = P0

it follows that, when this hypothesis is true, the random variable

Z =
pn - P01P011 - P02>n

approximately follows a standard normal distribution. The procedures for tests of a pop-
ulation proportion (large sample sizes) are defined in Equations 9.9, 9.10 and 9.11.

Tests of the Population Proportion (Large Sample Sizes)
We begin by assuming a random sample of n observations from a popula-
tion that has a proportion P whose members possess a particular attribute. If 
nP11 - P2 7 5 and the sample proportion is pn, then the following tests have 
significance level a.

1. To test either the hypothesis

H0 : P = P0 or H0 : P … P0

 against the alternative

H1 : P 7 P0

 the decision rule is as follows:

 reject H0 if 
pn - P01P011 - P02>n 7 za (9.9)

2. To test either null hypothesis

H0 : P = P0 or H0 : P Ú P0

 against the alternative

H1 : P 6 P0



 9.4 Tests of the Population Proportion (Large Samples) 367

 the decision rule is as follows:

 reject H0 if 
pn - P01P011 - P02>n 6 -za (9.10)

3. To test the null hypothesis

H0 : P = P0

 against the two-sided alternative

H1 : P � P0

 the decision rule is as follows:

 reject H0 if 
pn - P01P011 - P02>n 6 -za>2 or 

pn - P01P011 - P02>n 7 za>2 (9.11)

For all these tests, the p-value is the smallest significance level at which 
the null hypothesis can be rejected.

The tests presented here are summarized in Figure 9.11, located in the 
chapter appendix.

Example 9.5 Supermarket Shoppers’ Price 
Knowledge (Hypothesis Test Using Proportions)

Market Research, Inc., wants to know if shoppers are sensitive to the prices of items 
sold in a supermarket. A random sample of 802 shoppers was obtained, and 378 of 
those supermarket shoppers were able to state the correct price of an item immediately 
after putting it into their cart. Test at the 7% level the null hypothesis that at least one-
half of all shoppers are able to state the correct price.

Solution We will let P denote the population proportion of supermarket shoppers 
able to state the correct price in these circumstances. Test the null hypothesis

H0 : P Ú P0 = 0.50

against the alternative

H1 : P 6 0.50

The decision rule is to reject the null hypothesis in favor of the alternative if

pn - P01P011 - P02>n 6 -za

For this example,

n = 802 and pn = 378>802 = 0.471

The test statistic is as follows:

pn - P01P011 - P02>n =
0.471 - 0.510.5011 - 0.502>802

= -1.64

At a 7% significance level test 1a = 0.072, it follows that za = -1.474 and -1.64 is less 
than -1.474. Thus, we reject the null hypothesis at the 7% level and conclude that less 
than one-half of the shoppers can correctly state the price immediately after putting an 
item into their supermarket cart. Using the calculated test statistic value of -1.64, we 
also find that the p-value for the test is 0.051.
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EXERCISES

Basic Exercises
 9.28 A random sample of women is obtained, and each per-

son in the sample is asked if she would purchase a new 
shoe model. The new shoe model would be success-
ful in meeting corporate profit objective if more than 
25% of the women in the population would purchase 
this shoe model. The following hypothesis test can be 
performed at a level of a = 0.03 using pn as the sample 
proportion of women who said yes.

H0 : P … 0.25

H1 : P 7 0.25

  What value of the sample proportion, pn, is required to 
reject the null hypothesis, given the following sample 
sizes?

a. n = 400 c. n = 625
b. n = 225 d. n = 900

 9.29 A company is attempting to determine if it should 
retain a previously popular shoe model. A random 
sample of women is obtained, and each person in 
the sample is asked if she would purchase this exist-
ing shoe model. To determine if the old shoe model 
should be retained, the following hypothesis test is 
performed at a level of a = 0.05 using pn as the sample 
proportion of women who said yes.

H0 : P Ú 0.25

H1 : P 6 0.25

  What value of the sample proportion, pn, is required to 
reject the null hypothesis, given the following sample 
sizes?

a. n = 400 c. n = 625
b. n = 225 d. n = 900

Application Exercises
 9.30 In a random sample of 361 owners of small busi-

nesses that had gone into bankruptcy, 105 reported 
conducting no marketing studies prior to opening the 
business. Test the hypothesis that at most 25% of all 
members of this population conducted no marketing 
studies before opening their businesses. Use a = 0.05.

 9.31 In a random sample of 360 export managers in the UK, 
69 of the sample members indicated some measure of 

disagreement with this statement: The most impor-
tant export market for UK manufacturers in 10 years’ 
time will be the continent of Asia. Test, at the 5% level, 
the hypothesis that at least 25% of all members of this 
population would disagree with this statement.

 9.32 In a random sample of 160 business school students, 
72 sample members indicated some measure of agree-
ment with this statement: Scores on a standardized en-
trance exam are less important for a student’s chance to 
succeed academically than is the student’s high school GPA. 
Test the null hypothesis that one-half of all business 
school graduates would agree with this statement 
against a two-sided alternative. Find and interpret the 
p-value of the test.

 9.33 Of a random sample of 199 auditors, 104 indicated 
some measure of agreement with this statement: 
Cash flow is an important indication of profitability. 
Test at the 10% significance level against a two-
sided alternative the null hypothesis that one-half of 
the members of this population would agree with 
this statement. Also find and interpret the p-value 
of this test.

 9.34 A random sample of 50 university admissions officers 
was asked about expectations in application inter-
views. Of these sample members, 28 agreed that the 
interviewer usually expects the interviewee to have 
volunteer experience doing community projects. Test 
the null hypothesis that one-half of all interviewers 
have this expectation against the alternative that the 
population proportion is larger than one-half. Use 
a = 0.05.

 9.35 Of a random sample of 172 elementary school educa-
tors, 118 said that parental support was the most im-
portant source of a child’s success. Test the hypothesis 
that parental support is the most important source of 
a child’s success for at least 75% of elementary school 
educators against the alternative that the population 
percentage is less than 75%. Use a = 0.05.

 9.36 A random sample of 202 business faculty members 
was asked if there should be a required foreign lan-
guage course for business majors. Of these sample 
members, 140 felt there was a need for a foreign lan-
guage course. Test the hypothesis that at least 75% 
of all business faculty members hold this view. Use 
a = 0.05.

9.5 ASSESSING THE POWER OF A TEST

In Sections 9.2 through 9.4 we developed various hypothesis tests with significance level 
a. In all these tests we developed decision rules for rejecting the null hypothesis in favor 
of an alternative hypothesis. In carrying out these various tests, we know that the prob-
ability of committing a Type I error when we reject the null hypothesis is less than or 
equal to a small value a. In addition, we may also compute the p-value for the test, and, 
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thus, we know the smallest significance level at which the null hypothesis can be rejected. 
When we reject the null hypothesis, we conclude that there is strong evidence to support 
our conclusion. But if we fail to reject the null hypothesis, we know that either the null 
hypothesis is true or that we have committed a Type II error by failing to reject the null 
hypothesis when the alternative is true.

In this section we consider the characteristics of some of our tests when the null hy-
pothesis is not true. We learn how to compute the probability of a Type II error and also 
how to determine the power of the hypothesis test. Of course, a Type II error can occur 
only if the alternative hypothesis is true. Thus, we consider a Type II error and power for 
specific values of the population parameter that are included in the alternative hypothesis.

Tests of the Mean of a Normal Distribution: Population  
Variance Known

Following the procedures of Section 9.2, we want to test the null hypothesis that the mean 
of a normal population is equal to a specific value, m0.

Determining the Probability of Type II Error
Consider the test

H0 : m = m0

against the alternative

H1 : m 7 m0

Using the decision rule

reject H0 if  
x - m0

s>1n
7 za or x 7 xc = m0 + zas>1n

determine the values of the sample mean that result in failing to reject the null 
hypothesis. Now, for any value of the population mean defined by the alter-
native hypothesis, H1, find the probability that the sample mean will be in the 
nonrejection region for the null hypothesis. This is the probability of Type II 
 error. Thus, we consider m = m* such that m* 7 m0. Then, for m*, the probabil-
ity of Type II error is

 b = P1x 6 xc �m = m*2 = Paz 6
xc - m*
s>1n

b  (9.12)

and

Power = 1 - b

The value of b and the power will be different for every m*.

Consider an example where we are testing the null hypothesis that the population 
mean weight of ball bearings from a production process is 5 ounces versus the alternative 
hypothesis that the population mean weight is greater than 5 ounces. We conduct the test 
with a random sample of 16 observations and a significance level of 0.05. The population 
distribution is assumed to be a normal distribution with a standard deviation of 0.1 ounce. 
Thus, the null hypothesis is

H0 : m = 5

versus the alternative hypothesis

H1 : m 7 5



370 Chapter 9 Hypothesis Tests of a Single Population

and the decision rule is as follows:

reject H0 if  
x - 5

0.1>116
7 1.645 or x 7 5 + 1.64510.1>1162 = 5.041

Now, if the sample mean is less than or equal to 5.041, then, using our rule, we will fail to 
reject the null hypothesis.

Suppose that we want to determine the probability that the null hypothesis will not 
be rejected if the true mean weight is 5.05 ounces. Clearly, the alternative hypothesis is 
correct, and we want to determine the probability that we will fail to reject the null hy-
pothesis and thus have a Type II error. That is, we want to determine the probability 
that the sample mean is less than 5.041 if the population mean is actually 5.05. Using the 
16  observations we compute the probability of Type II error as follows:

 b = P1x … 5.041 �m = 5.052 = Paz …
5.041 - 5.05

0.1>116
b

 = P1z … -0.362
 = 0.3594

Thus, using the preceding decision rule, we determine that the probability, b, of Type II 
error when the population mean is 5.05 ounces is 0.3594. Since the power of a test is 
1 minus the probability of Type II error, when the population mean is 5.05, we have the 
following:

power = 1 - b = 1 - 0.3594 = 0.6406

These power calculations are shown in Figure 9.5. In part (a), we see that, when the 
population mean is 5, the probability that the sample mean exceeds 5.041 is 0.05—the sig-
nificance level of the test. Part (b) of the figure shows the density function of the sampling 
distribution of the sample mean when the population mean is 5.05. The shaded area in 
this figure shows the probability that the sample mean exceeds 5.041 when the population 
mean is 5.05—the power of the test. Similar calculations could be made to determine the 
power and probability of a Type II error for any value of m greater than 5.0.

Figure 9.5 

Sampling 
Distribution of 
Sample Mean for  
16 Observations  
with s = 0.1

a = .05

xμ0 = 5.00 5.041

1 – b = .6406

x5.041 μ1 = 5.05

(a) (b)

By computing the power of a test for all values of m included in the alternative 
hypothesis, the power function can be generated, as shown in Figure 9.6.

Figure 9.6 Power 
Function for Test 
H0 : m = 5 Against 
H1 : m 7 5 1a = 0.05, 
s = 0.1, n = 162
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The power function has the following features:

 1. The farther the true mean is from the hypothesized mean m0, the greater is the power 
of the test—everything else being equal. Figure 9.6 illustrates this result.

 2. The smaller the significance level (a) of the test, the smaller the power—everything 
else being equal. Thus, reducing the probability of Type I error (a) increases the 
probability of Type II error 1b2, but reducing a by 0.01 does not generally increase b 
by 0.01; the changes are not linear.

 3. The larger the population variance, the lower the power of the test—everything else 
being equal.

 4. The larger the sample size, the greater the power of the test—everything else being 
equal. Note that larger sample sizes reduce the variance of the sample mean and, 
thus, provide a greater chance that we will reject H0 when it is not correct. Figure 9.7 
presents a set of power curves at sample sizes of 4, 9, and 16 that illustrate the effect.

 5. The power of the test at the critical value equals 0.5 because the probability that a 
sample mean is above 1xc2 is, of course, 0.50.

Figure 9.7 Power 
Functions for Test 
H0 : m = 5 Against 
H1 : m 7 5 1a = 0.05, 
s = 0.12 for Sample 
Sizes 4, 9, and 16
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Many statistical computer packages have computational routines to compute the 
power of a test. For example, Figure 9.8 presents the Minitab output for the discussion 
example. The small differences in the power values are the result of rounding differences.

Figure 9.8 

Computer 
Computation of 
Power (Minitab)

Power and Sample Size

1-Sample Z test

Testing mean = null (versus > null)
Calculating power for mean = null + difference
Alpha = 0.05 Assumed standard deviation = 0.1

 Sample
Difference Size Power
0.05 16 0.638760

Power of Population Proportion Tests (Large Samples)

In Section 9.4 we developed hypothesis tests and decision rules for testing if the popula-
tion proportion had certain values. Using methods similar to those in the previous section, 
we can also develop the probability of Type II error for proportion tests. The probability, 
b, of making a Type II error for any given population proportion P1 included in H1 is 
found as follows:

 1. From the test decision rule, find the range of values of the sample proportion leading 
to failure to reject the null hypothesis.

 2. Using the value P1 for the population proportion—where P1 is included in the al-
ternative hypothesis—find the probability that the sample proportion will be in the 
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nonrejection region determined in step 1 for samples of n observations when the 
population proportion is P1.

We demonstrate this procedure in the following example.

Example 9.6 Forecasts of Corporate Earnings for 
Electronic Investors Inc. (Power and Type II Error)

The president of Electronic Investors, Inc., has asked you to prepare an analysis of the 
forecasts of corporate earnings per share that were made by a group of financial ana-
lysts. These researchers were equally interested in the proportion of forecasts that ex-
ceeded the actual level of earnings and the proportion of forecasts that were less than 
the actual level of earnings.

Solution Begin your analysis by constructing a hypothesis test to determine if there 
was strong evidence to conclude that the proportion of forecasts that were above or 
below actual earnings was different from 50%. Using P to denote the proportion of 
forecasts that exceeded the actual level, the null hypothesis is

H0 : P = P0 = 0.50

and the alternative hypothesis is

H1 : P � 0.50

The decision rule is as follows:

reject H0 if 
pn - P01P011 - P02>n 6 -za>2 or 

pn - P01P011 - P02>n 7 +za>2
A random sample of n = 600 forecasts was obtained, and it was determined that 382 
exceeded actual earnings. Using a significance level of a = 0.05, the decision rule is to 
reject the null hypothesis if

pn - P01P011 - P02>n 6 -1.96 or 
pn - P01P011 - P02>n 7 1.96

Also, H0 is rejected if

pn 7 0.50 + 1.9610.5011 - 0.502>600 = 0.50 + 0.04 = 0.54

or

pn 6 0.50 - 0.04 = 0.46

The observed sample proportion is

pn =
382
600

= 0.637

and, thus, the null hypothesis is rejected at the 5% level.
Now, we want to determine the probability of a Type II error when this decision 

rule is used. Suppose that the true population proportion was P1 = 0.55. We want to 
determine the probability that the sample proportion is between 0.46 and 0.54 if the 
population proportion is 0.55. Thus, the probability of Type II error is as follows:

 P10.46 … pn … 0.542 = P£ 0.46 - P1

AP111 - P12
n

… Z …
0.54 - P1

AP111 - P12
n

§
 = P£ 0.46 - 0.55

A10.55210.452
600

… Z …
0.54 - 0.55

A10.55210.452
600

§
 = P1 -4.43 … Z … -0.492 = 0.3121
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Given the decision rule, the probability of a Type II error involved in failing to reject 
the null hypothesis when the true proportion is 0.55 is b = 0.3121. The power of the 
test when the true population proportion is 0.55 as follows:

power = 1 - b = 0.6879

This probability can be calculated for any proportion P1. Figure 9.9 shows the 
power function for this example. Because the alternative hypothesis is two-sided, 
the power function differs in shape from that of Figure 9.6. Here, we are consider-
ing possible values of the population proportion on either side of the hypothesized 
value, 0.50. As we see, the probability of rejecting the null hypothesis when it is false 
increases as the true population proportion becomes more distant from the hypoth-
esized value.

Figure 9.9 Power Function for Test of H0 : P = 0.50 versus H1 : P � 0.50
(a = 0.05, n = 600)
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EXERCISES

Basic Exercises
 9.37 Consider a problem with the hypothesis test

H0 : m = 5

H1 : m 7 5

  and the following decision rule:

reject H0 if 
x - 5

0.1>116
7 1.645 or 

x 7 5 + 1.64510.1>1162 = 5.041

  Compute the probability of Type II error and the 
power for the following true population means.

a. m = 5.10
b. m = 5.03
c. m = 5.15
d. m = 5.07

 9.38 Consider Example 9.6 with the null hypothesis

H0 : P = P0 = 0.50

  and the alternative hypothesis

H0 : P � 0.50

  The decision rule is

pnx - 0.5010.5011 - 0.502>600
6 -1.96 or 

 
pnx - 0.5010.5011 - 0.502>600

7 1.96

  with a sample size of n = 600. What is the probability 
of Type II error if the actual population proportion is 
each of the following?

a. P = 0.52
b. P = 0.58
c. P = 0.53
d. P = 0.48
e. P = 0.43

Application Exercises
 9.39 A company that receives shipments of batteries tests 

a random sample of nine of them before agreeing to 
take a shipment. The company is concerned that the 
true mean lifetime for all batteries in the shipment 
should be at least 50 hours. From past experience it 
is safe to conclude that the population distribution 
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of lifetimes is normal with a standard deviation of 
3 hours. For one particular shipment the mean lifetime 
for a sample of nine batteries was 48.2 hours.

a. Test, at the 10% level, the null hypothesis that the 
population mean lifetime is at least 50 hours.

b. Find the power of a 10%-level test when the true 
mean lifetime of batteries is 49 hours.

 9.40 A pharmaceutical manufacturer is concerned that the 
impurity concentration in pills does not exceed 3%. 
It is known that from a particular production run, 
impurity concentrations follow a normal distribution 
with standard deviation 0.4%. A random sample of 
64 pills from a production run was checked, and the 
sample mean impurity concentration was found to 
be 3.07%.

a. Test, at the 5% level, the null hypothesis that the 
population mean impurity concentration is 3% 
against the alternative that it is more than 3%.

b. Find the probability of a 5%-level test rejecting the 
null hypothesis when the true mean impurity con-
centration is 3.10%.

 9.41 A random sample of 1,562 undergraduates enrolled 
in management ethics courses was asked to respond, 
on a scale from 1 (strongly disagree) to 7 (strongly 
agree), to this proposition: Senior corporate execu-
tives are interested in social justice. The sample mean 
response was 4.27, and the sample standard devia-
tion was 1.32.

a. Test at the 1% level, against a two-sided alter-
native, the null hypothesis that the population 
mean is 4.

b. Find the probability of a 1%-level test accepting  
the null hypothesis when the true mean response 
is 3.95.

 9.42 A random sample of 802 supermarket shoppers de-
termined that 378 shoppers preferred generic-brand 
items. Test at the 10% level the null hypothesis that 
at least one-half of all shoppers preferred generic-
brand items against the alternative that the population 
proportion is less than one-half. Find the power of a 
10%-level test if, in fact, 45% of the supermarket shop-
pers preferred generic brands.

 9.43 In a random sample of 340 export managers in Malay-
sia, 61 of the sample members indicated some mea-
sure of disagreement with this statement: The most 
important export market for Malaysian manufacturers 
in 10 years’ time will be Europe.

a. Test, at the 5% level, the null hypothesis that at 
least 25% of all members of this population would 
disagree with this statement.

b. Find the probability of rejecting the null hypothesis 
with a 5% level test if, in fact, 20% of all members of 
this population would disagree with the statement.

 9.44 Of a random sample of 199 auditors, 104 indicated 
some measure of agreement with this statement: Cash 
flow is an important indication of profitability.

a. Test, at the 10% significance level against a  
two-sided alternative, the null hypothesis that 

one-half of the members of this population would 
agree with this statement. Also find and interpret 
the p-value of this test.

b. Find the probability of accepting the null hypothesis 
with a 10%-level test if, in fact, 60% of all auditors 
agree that cash flow is an important indicator of 
profitability.

 9.45 Each day, a fast-food chain tests that the average 
weight of its “two-pounders” is at least 32 ounces. The 
alternative hypothesis is that the average weight is less 
than 32 ounces, indicating that new processing proce-
dures are needed. The weights of two-pounders can be 
assumed to be normally distributed, with a standard 
deviation of 3 ounces. The decision rule adopted is to 
reject the null hypothesis if the sample mean weight is 
less than 30.8 ounces.

a. If random samples of n = 36 two-pounders are 
selected, what is the probability of a Type I error, 
using this decision rule?

b. If random samples of n = 9 two-pounders are 
selected, what is the probability of a Type I error, 
using this decision rule? Explain why your answer 
differs from that in part a.

c. Suppose that the true mean weight is 31 ounces. If 
random samples of 36 two-pounders are selected, 
what is the probability of a Type II error, using this 
decision rule?

 9.46 A wine producer claims that the proportion of its 
customers who cannot distinguish its product from 
frozen grape juice is, at most, 0.09. The producer de-
cides to test this null hypothesis against the alternative 
that the true proportion is more than 0.09. The deci-
sion rule adopted is to reject the null hypothesis if the 
sample proportion of people who cannot distinguish 
between these two flavors exceeds 0.14.

a. If a random sample of 100 customers is chosen, 
what is the probability of a Type I error, using this 
decision rule?

b. If a random sample of 400 customers is selected, 
what is the probability of a Type I error, us-
ing this decision rule? Explain, in words and 
 graphically, why your answer differs from that  
in part a.

c. Suppose that the true proportion of customers  
who cannot distinguish between these flavors  
is 0.20. If a random sample of 100 customers is  
selected, what is the probability of a Type II  
error?

d. Suppose that, instead of the given decision rule, it 
is decided to reject the null hypothesis if the sample 
proportion of customers who cannot distinguish 
between the two flavors exceeds 0.16. A random 
sample of 100 customers is selected.

 i.  Without doing the calculations, state whether the 
probability of a Type I error will be higher than, 
lower than, or the same as in part a.

ii.  If the true proportion is 0.20, will the probability 
of a Type II error be higher than, lower than, or 
the same as in part c?
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9.6 TESTS OF THE VARIANCE OF A NORMAL DISTRIBUTION

In addition to the need for tests based on the sample mean, there are a number of situa-
tions where we want to determine if the population variance is a particular value or set 
of values. In modern quality-control work, this need is particularly important because a 
process that, for example, has an excessively large variance can produce many defective 
items. Here, we will develop procedures for testing the population variance, s2, based 
on the sample variance, s2, computed using a random sample of n observations from a 
normally distributed population. If the null hypothesis is that the population variance is 
equal to some specified value, that is,

H0 : s2 = s2
0

then when this hypothesis is true, the random variable

x2
n- 1 =

1n - 12s2

s2
0

has a chi-square distribution with 1n - 12 degrees of freedom. Hypothesis tests are based 
on computed values of this statistic. If the alternative hypothesis were

H1 : s2 7 s2
0

we would reject the null hypothesis if the sample variance greatly exceeded s2
0. Thus, a high 

computed value of x2
n -1 would result in the rejection of the null hypothesis. Conversely, if 

the alternative hypothesis were

H1 : s2 6 s2
0

we would reject the null hypothesis if the value of x2
n -1 were small. For a two-sided 

alternative

H1 : s2 � s2
0

we would reject the null hypothesis if the computed x2
n -1 were either unusually high or 

unusually low.
The chi-square distribution tests are more sensitive to the assumption of normality 

in the underlying distribution compared to the standard normal distribution tests. Thus, 
if the underlying population deviates considerably from the normal, the significance 
levels computed using the chi-square distribution and the hypothesis tests may not be 
correct.

We should note that in most applied situations, and especially in quality-control 
work, the concern is about variances that are larger than anticipated. A variance that is 
smaller than anticipated results in hypothesis tests with greater power and confidence in-
tervals that are narrower than anticipated. The opposite is true when the variance is larger 
than anticipated. Therefore, in most applied situations we are interested in the first of the 
three cases just noted.

The rationale for the development of appropriate tests uses the chi-square distribu-
tion notation developed in Section 7.5. We denote x2

v,a as the number that is exceeded with 
probability a by a chi-square random variable with v degrees of freedom. That is,

P1x2
v 7 x2

v,a2 = a
or

P1x2
v 6 x2

v,1 -a2 = a
and, for two-tailed tests,

P1x2
v 7 x2

v,a>2 or x2
v 6 x2

v,1 -a>22 = a
These probabilities are shown in Figure 9.10. The various procedures for tests of the vari-
ance of a normal population are summarized in Equations 9.13, 9.14, and 9.15.
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Figure 9.10 

Chi-Square 
Distribution for n - 1 
Degrees of Freedom 
and 11 - a2% 
Confidence Level

1 – a

x2
n–1,1–a/2 x2

n–1,a/2

a–2
a–2

It is also possible to determine p-values for the chi-square test for variances. From the 
general result just stated, the p-value for the chi-square test is the probability of getting a 
value at least as extreme as the one obtained, given the null hypothesis.

Tests of Variance of a Normal Population
We are given a random sample of n observations from a normally distributed 
population with variance s2. If we observe the sample variance s2, then the 
 following tests have significance level a.

1. To test either null hypothesis

H0 : s2 = s2
0 or H0 : s2 … s2

0

 against the alternative

H1 : s2 7 s2
0

 the decision rule is as follows:

 reject H0 if  
1n - 12s2

s2
0

7 x2
n- 1,a (9.13)

2. To test either null hypothesis

H0 : s2 = s2
0 or H0 : s2 Ú s2

0

 against the alternative

H1 : s2 6 s2
0

 the decision rule is as follows:

 reject H0 if  
1n - 12s2

s2
0

6 x2
n- 1,1 -a (9.14)

3. To test the null hypothesis

H0 : s2 = s2
0

 against the two-sided alternative

H1 : s2 � s2
0

 the decision rule is

 reject H0 if  
1n - 12s2

s2
0

7 x2
n- 1,a>2 or 

1n - 12s2

s2
0

6 x2
n- 1,a>2 (9.15)

 where x2
n -1 is a chi-square random variable and P1x2

n -1 7 x2
n -1,a2 = a. 

The p-value for these tests is the probability of getting a value at least as 
extreme as the one obtained, given the null hypothesis.
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Example 9.7 Variance of Chemical Impurities 
(Hypothesis Tests of Population Variances)

The quality control manager of Stonehead Chemicals has asked you to determine if the 
variance of impurities in its shipments of fertilizer is within the established standard. 
This standard states that for 100-pound bags of fertilizer, the variance in the pounds of 
impurities cannot exceed 4.

Solution A random sample of 20 bags is obtained, and the pounds of impurities are 
measured for each bag. The sample variance is computed to be 6.62. In this problem we 
are testing the null hypothesis

H0 : s2 … s2
0 = 4

against the alternative

H1 : s2 7 4

Based on the assumption that the population has a normal distribution, the decision 
rule for a test of significance level a, is to reject H0 in favor of H1 if1n - 12s2

s2
0

7 x2
n -1,a

For this test, with a = 0.05 and 19 degrees of freedom, the critical value of the chi-
square variable is 30.144, from Appendix Table 7. Then, using the test data, we find the 
following: 1n - 12s2

s2
0

=
120 - 1216.622

4
= 31.445 7 x2

n -1,a = 30.144

Therefore, we reject the null hypothesis and conclude that the variability of the impu-
rities exceeds the standard. As a result, we recommend that the production process 
should be studied and improvements made to reduce the variability of the product 
components.

The p-value for this test is the probability of obtaining a chi-square statistic with 19 
degrees of freedom that is greater than the observed 31.445:

p@value = Pa 120 - 12
s2

0

7 x2
19 = 31.445b = 0.036

The p-value of 0.036 was computed using the Minitab probability distribution function 
for the chi-square distribution.

EXERCISES

Basic Exercises
 9.47 Test the hypotheses

H0 : s2 … 100

H1 : s2 7 100

  using the following results from the following random 
samples.

a. s2 = 165; n = 25 c. s2 = 159; n = 25
b. s2 = 165; n = 29 d. s2 = 67; n = 38

Application Exercises
 9.48 At the insistence of a government inspector, a new 

safety device is installed in an assembly-line opera-
tion. After the installation of this device, a random 
sample of 8 days’ output gave the following results for 
numbers of finished components produced:

618 660 638 625 571 598 639 582

  Management is concerned about the variability of 
daily output and views any variance above 500 as 
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 undesirable. Test, at the 10% significance level, the 
null hypothesis that the population variance for daily 
output does not exceed 500.

 9.49 Plastic sheets produced by a machine are periodically 
monitored for possible fluctuations in thickness. If the 
true variance in thicknesses exceeds 2.25 square milli-
meters, there is cause for concern about product qual-
ity. Thickness measurements for a random sample of 
10 sheets produced in a particular shift were taken, 
giving the following results (in millimeters):

226 226 232 227 225 228 225 228 229 230

a. Find the sample variance.
b. Test, at the 5% significance level, the null hypothesis 

that the population variance is at most 2.25.

 9.50 One way to evaluate the effectiveness of a teach-
ing assistant is to examine the scores achieved by his 
or her students on an examination at the end of the 
course. Obviously, the mean score is of interest. How-
ever, the variance also contains useful information—
some teachers have a style that works very well with 
more-able students but is unsuccessful with less-able 
or poorly motivated students. A professor sets a stan-
dard examination at the end of each semester for all 
sections of a course. The variance of the scores on this 
test is typically very close to 300. A new teaching as-
sistant has a class of 30 students whose test scores had 
a variance of 480. Regarding these students’ test scores 
as a random sample from a normal population, test, 

against a two-sided alternative, the null hypothesis 
that the population variance of their scores is 300.

 9.51 A company produces electric devices operated by a 
thermostatic control. The standard deviation of the 
temperature at which these controls actually operate 
should not exceed 2.0°F. For a random sample of 20 
of these controls, the sample standard deviation of op-
erating temperatures was 2.36°F. Stating any assump-
tions you need to make, test, at the 5% level, the null 
hypothesis that the population standard deviation is 
2.0 against the alternative that it is larger.

 9.52 An instructor has decided to introduce a greater com-
ponent of independent study into an intermediate mi-
croeconomics course as a way of motivating students 
to work independently and think more carefully about 
the course material. A colleague cautions that a pos-
sible consequence may be increased variability in stu-
dent performance. However, the instructor responds 
that she would expect less variability. From her 
 records she found that in the past, student scores on 
the final exam for this course followed a normal distri-
bution with standard deviation 18.2 points. For a class 
of 25 students using the new approach, the standard 
deviation of scores on the final exam was 15.3 points. 
Assuming that these 25 students can be viewed as a 
random sample of all those who might be subjected 
to the new approach, test the null hypothesis that the 
population standard deviation is at least 18.2 points 
against the alternative that it is lower.
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editions.com/newbold to access the data files.

c. One-sided and two-sided alternatives
d. Type I and Type II errors
e. Significance level and power

 9.54 Carefully explain what is meant by the p-value of a 
test, and discuss the use of this concept in hypothesis 
testing.

 9.53 Explain carefully the distinction between each of the 
following pairs of terms.

a. Null and alternative hypotheses
b. Simple and composite hypotheses
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 9.55 A random sample of 10 students contains the follow-
ing observations, in hours, for time spent studying in 
the week before final exams:

28 57 42 35 61 39 55 46 49 38

  Assume that the population distribution is normal.

a. Find the sample mean and standard deviation.
b. Test, at the 5% significance level, the null hypoth-

esis that the population mean is 40 hours against 
the alternative that it is higher.

 9.56 State whether each of the following is true or false.

a. The significance level of a test is the probability 
that the null hypothesis is false.

b. A Type I error occurs when a true null hypothesis 
is rejected.

c. A null hypothesis is rejected at the 0.025 level but 
is not rejected at the 0.01 level. This means that the 
p-value of the test is between 0.01 and 0.025.

d. The power of a test is the probability of accepting a 
null hypothesis that is true.

e. If a null hypothesis is rejected against an alternative 
at the 5% level, then using the same data, it must be 
rejected against that alternative at the 1% level.

f. If a null hypothesis is rejected against an alterna-
tive at the 1% level, then using the same data, it 
must be rejected against the alternative at the 5% 
level.

g. The p-value of a test is the probability that the null 
hypothesis is true.

 9.57 An insurance company employs agents on a commis-
sion basis. It claims that in their first-year agents will 
earn a mean commission of at least $40,000 and that 
the population standard deviation is no more than 
$6,000. A random sample of nine agents found for 
commission in the first year,

a
9

i=1
xi = 333 and a

9

i=1
1xi - x22 = 312

  where xi is measured in thousands of dollars and the 
population distribution can be assumed to be normal. 
Test, at the 5% level, the null hypothesis that the pop-
ulation mean is at least $40,000.

 9.58 Supporters claim that a new windmill can generate 
an average of at least 800 kilowatts of power per day. 
Daily power generation for the windmill is assumed 
to be normally distributed with a standard devia-
tion of 120 kilowatts. A random sample of 100 days is 
taken to test this claim against the alternative hypoth-
esis that the true mean is less than 800 kilowatts. The 
claim will not be rejected if the sample mean is 776 
kilowatts or more and rejected otherwise.

a. What is the probability a of a Type I error using 
the decision rule if the population mean is, in fact, 
800 kilowatts per day?

b. What is the probability b of a Type II error using 
this decision rule if the population mean is, in fact, 
740 kilowatts per day?

c. Suppose that the same decision rule is used, but 
with a sample of 200 days rather than 100 days.

  i.  Would the value of a be larger than, smaller 
than, or the same as that found in part a?

 ii.  Would the value of b be larger than, smaller 
than, or the same as that found in part b?

d. Suppose that a sample of 100 observations was 
taken, but that the decision rule was changed so 
that the claim would not be rejected if the sample 
mean was at least 765 kilowatts.

  i.  Would the value of a be larger than, smaller 
than, or the same as that found in part a?

 ii.  Would the value of b be larger than, smaller 
than, or the same as that found in part b?

 9.59 In a random sample of 545 accountants engaged in 
preparing county operating budgets for use in plan-
ning and control, 117 indicated that estimates of cash 
flow were the most difficult element of the budget to 
derive.

a. Test at the 5% level the null hypothesis that at least 
25% of all accountants find cash flow estimates the 
most difficult estimates to derive.

b. Based on the procedure used in part a, what is 
the probability that the null hypothesis would 
be rejected if the true percentage of those finding 
cash flow estimates most difficult was each of the 
following?

   i. 20%

  ii. 25%

 iii. 30%

 9.60 A random sample of 104 marketing vice presidents 
from large Fortune 500 corporations was questioned 
on future developments in the business environment. 
Of those sample members, 50 indicated some mea-
surement of agreement with this statement: Firms will 
concentrate their efforts more on cash flow than on profits. 
What is the lowest level of significance at which the 
null hypothesis, which states that the true proportion 
of all such executives who would agree with this state-
ment is one-half, can be rejected against a two-sided 
alternative?

 9.61 Of a random sample of 95 small-business owners in 
Rome, Italy 54 said they liked statistical work. Test the 
null hypothesis that one-half of all members of this 
population like statistics against the alternative that 
the population proportion is bigger than one-half.

 9.62 In a random sample of 150 business graduates 
50 agreed or strongly agreed that businesses should 
focus their efforts on innovative e-commerce strate-
gies. Test at the 5% level the null hypothesis that at 
most 25% of all business graduates would be in agree-
ment with this assertion.

 9.63 Of a random sample of 142 admissions counselors on 
college campuses 39 indicated that, on average, they 
spent 15 minutes or less studying each résumé. Test 
the null hypothesis that at most 20% of all admissions 
counselors spend this small amount of time studying 
résumés.

 9.64 Northeastern Franchisers, Ltd., has a number of 
clients that use their process for producing exotic 
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9.68 Big River, Inc., a major Alaskan fish processor, 
is attempting to determine the weight of 

salmon in the northwest Green River. A random 
sample of salmon was obtained and weighed. The 
data are stored in the file labeled Bigfish. Use a clas-
sical hypothesis test to determine if there is strong 
evidence to conclude that the population mean 
weight for the fish is greater than 40. Use a probabil-
ity of Type I error equal to 0.05.

Prepare a power curve for the test. (Hint: Determine 
the population mean values for b = 0.50, b = 0.25,
b = 0.10, and b = 0.05, and plot those means versus the 
power of the test.)

 9.69 A process produces cable for the local telephone com-
pany. When the process is operating correctly, cable 
diameter follows a normal distribution with mean 1.6 
inches and standard deviation 0.05 inch. A random 
sample of 16 pieces of cable found diameters with a 
sample mean of 1.615 inches and a sample standard 
deviation of 0.086 inch.

a. Assuming that the population standard devia-
tion is 0.05 inch, test, at the 10% level against a 
two-sided alternative, the null hypothesis that 
the population mean is 1.6 inches. Find also the 
lowest level of significance at which this null 
hypothesis can be rejected against the two-sided 
alternative.

b. Test, at the 10% level, the null hypothesis that the 
population standard deviation is 0.05 inch against 
the alternative that it is bigger.

 9.70 When operating normally, a manufacturing process 
produces tablets for which the mean weight of the ac-
tive ingredient is 5 grams, and the standard deviation 
is 0.025 gram. For a random sample of 12 tablets the 
following weights of active ingredient (in grams) were 
found:

5.01 4.69 5.03 4.98 4.98 4.95

5.00 5.00 5.03 5.01 5.04 4.95

a. Without assuming that the population variance is 
known, test the null hypothesis that the popula-
tion mean weight of active ingredient per tablet 
is 5 grams. Use a two-sided alternative and a 5% 
significance level. State any assumptions that you 
make.

b. Stating any assumptions that you make, test the 
null hypothesis that the population standard 
deviation is 0.025 gram against the alternative 
hypothesis that the population standard deviation 
exceeds 0.025 gram. Use a 5% significance level.

 9.71 An insurance company employs agents on a commis-
sion basis. It claims that, in their first year, agents will 
earn a mean commission of at least $40,000 and that 
the population standard deviation is no more than 
$6,000. A random sample of nine agents found for 
commission in the first year,

a
9

i=1
xi = 333,000 and a

9

i=1
1xi - x22 = 312,000,000

Norwegian dinners for customers throughout New 
England. The operating cost for the franchised pro-
cess has a fixed cost of $1,000 per week plus $5 for ev-
ery unit produced. Recently, a number of restaurant 
owners using the process have complained that the 
cost model is no longer valid and, in fact, the weekly 
costs are higher. Your job is to determine if there is 
strong evidence to support the owners’ claim. To do 
so, you obtain a random sample of n = 25 restaurants 
and determine their costs. You also find that the num-
ber of units produced in each restaurant is normally 
distributed with a mean of m = 400 and a variance 
of s2 = 625. The random sample mean 1n = 252 for 
weekly costs was $3,050. Prepare and implement an 
analysis to determine if there is strong evidence to 
conclude that costs are greater than those predicted 
by the cost model.

 9.65 Prairie Flower Cereal, Inc., has asked you to study 
the variability of the weights of cereal bags produced 
in plant 2, located in rural Malaysia. The package 
weights are known to be normally distributed. Using 
a random sample of n = 71, you find that the sample 
mean weight is 40 and the sample variance is 50.

The marketing vice president claims that there 
is a very small probability that the population mean 
weight is less than 39. Use an appropriate statistical 
analysis and comment on his claim.

 9.66 You have been hired by the National Nutri-
tion Council to study nutrition practices in the 

United States. In particular they want to know if 
their nutrition guidelines are being met by people in 
the United States. These guidelines indicate that per 
capita consumption of fruits and vegetables should 
be more than 170 pounds per year, per capita con-
sumption of snack foods should be less than 114 
pounds, per capita consumption of soft drinks 
should be less than 65 gallons, and per capita con-
sumption of meat should be more than 70 pounds. 
As part of your research you have developed the 
data file Food Nutrition Atlas, which contains a 
number of nutrition and population variables col-
lected by county over all states. Variable descrip-
tions are located in the chapter appendix. It is true 
that some counties do not report all the variables. 
Perform an analysis of the available data and pre-
pare a short report indicating how well the nutrition 
guidelines are being met. Your conclusions should 
be supported by rigorous statistical analysis.

 9.67 A recent report from a study of health concerns 
indicated that there is strong evidence of a na-

tion’s overall health decay if the percent of obese 
adults exceeds 28%. In addition, if the low-income 
preschool obesity rate exceeds 13%, there is great con-
cern about long-term health. You are asked to conduct 
an analysis to determine if the U.S. population exceeds 
that rate. Use the data file Food Nutrition Atlas as the 
basis for your statistical analysis. Variable descrip-
tions are located in the chapter appendix. Prepare a 
rigorous analysis and a short statement that reports 
your statistical results and your conclusions.
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  measured in thousands of dollars. The population dis-
tribution can be assumed to be normal. Test, at the 10% 
level, the null hypothesis that the population standard 
deviation is at most $6,000.

 9.72 A recent report from a health-concerns study 
indicated that there is strong evidence of a na-

tion’s overall health decay if the percent of obese 
adults exceeds 28%. In addition, if the low-income 
preschool obesity rate exceeds 13%, there is great con-
cern about long-term health. You are asked to conduct 
an analysis to determine if the U.S. population exceeds 
that rate. Your analysis is restricted to those counties 
where the adult participation in physical activity ex-
ceeds 64.3%. To do this you will first need to obtain a 
subset of the data file using the capabilities of your 
statistical analysis computer program. Use the data 
file Food Nutrition Atlas as the basis for your statisti-
cal analysis. Variable descriptions are located in the 
chapter appendix. Prepare a rigorous analysis and a 
short statement that reports your statistical results and 
your conclusions.

 9.73 A recent report from a health-concerns study 
indicated that there is strong evidence of a na-

tion’s overall health decay if the percent of obese 
adults exceeds 28%. In addition, if the low-income 
preschool obesity rate exceeds 13%, there is great 
concern about long-term health. You are asked to 
conduct an analysis to determine if the U.S. popula-
tion exceeds that rate. Your analysis is restricted to 
those counties in the following states: California, 
Michigan, Minnesota, and Florida. Conduct your 
analysis for each state. To do this, you will first need 
to obtain a subset of the data file using the capabili-
ties of your statistical analysis computer program. 
Use the data file Food Nutrition Atlas as the basis 
for your statistical analysis. Variable descriptions 
are located in the chapter appendix. Prepare a rigor-
ous analysis and a short statement that reports your 
statistical results and your conclusions.

  Nutrition Research–Based Exercises
  The Economic Research Service (ERS), a prestigious 

think tank research center in the U.S. Department of 
Agriculture, is conducting a series of research studies 
to determine the nutrition characteristics of people in 
the United States. This research is used for both nu-
trition education and government policy designed to 
improve personal health. See for example, Carlson, A, 
et al. 2010.

The data file HEI Cost Data Variable Subset con-
tains considerable information on randomly selected 
individuals who participated in an extended interview 
and medical examination. There are two observations 
for each person in the study. The first observation, 
identified by daycode = 1, contains data from the first 
interview and the second observation, daycode = 2,
contains data from the second interview. This data 
file contains the data for the following exercises. The 
variables are described in the data dictionary in the 
 Chapter 10 appendix.

 9.74 The body mass index (variable BMI) provides 
an indication of a person’s level of body fat as 

follows: healthy weight, 20–25; overweight, >25–30; 
obese, greater than 30. Excess body weight is, of 
course, related to diet, but, in turn, what we eat de-
pends on who we are in terms of culture and our en-
tire life experience. Based on an analysis, can you 
conclude that based on mean weight, men are not 
obese? Can you conclude that based on mean weight, 
women are not obese? You will do the analysis based 
first on the data from the first interview, create a sub-
set from the data file using daycode = 1, and a sec-
ond time using data from the second interview, 
create a subset from the data file using daycode = 2. 
Note differences in the results between the first and 
second interviews.

 9.75 The body mass index (variable BMI) pro-
vides an indication of a person’s level of 

body fat as follows: healthy weight, 20–25; over-
weight, >25–30; obese, greater than 30. Excess body 
weight is, of course, related to diet, but, in turn, 
what we eat depends on who we are in terms of cul-
ture and our entire life experience. Based on an 
analysis can you conclude that based on mean 
weight, immigrants are not obese? You will do the 
analysis based first on the data from the first inter-
view, create a subset from the data file using day-
code = 1, and a second time using data from the 
second interview, create a subset from the data file 
using daycode = 2. Note differences in the results 
between the first and second interviews.

 9.76 The body mass index (variable BMI) provides 
an indication of a person’s level of body fat as 

follows: healthy weight, 20–25; overweight, >25–30; 
obese, greater than 30. Excess body weight is, of 
course, related to diet, but, in turn, what we eat de-
pends on who we are in terms of culture and our en-
tire life experience. Based on an analysis using mean 
weight, can you conclude that white people have a 
healthy weight? Can you conclude that based on 
mean weight, white people are overweight? You will 
do the analysis based first on the data from the first 
interview, create a subset from the data file using 
daycode = 1, and a second time using data from the 
second interview, create a subset from the data file 
using daycode = 2. Note that there are differences 
in the responses between the first and second 
interviews.

 9.77 The body mass index (variable BMI) pro-
vides an indication of a person’s level of 

body fat as follows: healthy weight, 20–25; over-
weight, >25–30; obese, greater than 30. Excess body 
weight, is of course, related to diet, but, in turn, 
what we eat depends on who we are in terms of 
culture and our entire life experience. Based on an 
analysis using mean weight, can you conclude that 
Hispanic people have a healthy weight? Can you 
conclude that based on mean weight, Hispanic 
people are overweight? You will do the analysis 
based first on the data from the first interview, create 
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a subset from the data file using daycode = 1, and a 
second time using data from the second interview, 
create a subset from the data file using daycode = 2.
Note  differences in the results between the first and 
second interviews.

 9.78 The body mass index (variable BMI) provides 
an indication of a person’s level of body fat as 

follows: healthy weight, 20–25; overweight, >25–30; 
obese, greater than 30. Excess body weight, is of course, 
related to diet, but, in turn, what we eat depends on 
who we are in terms of culture and our entire life 
 experience. Based on an analysis using mean weight, 

can you conclude that people who have been 
 diagnosed with high blood pressure have a healthy 
weight? Can you conclude that using mean weight, 
people who have been diagnosed with high blood 
pressure are obese? You will do the analysis based first 
on the data from the first interview, create a subset 
from the data file using  daycode = 1, and a second 
time using data from the second interview, create a 
subset from the data file using daycode = 2. Note dif-
ferences in the results  between the first and second 
interviews.

Appendix 

State the hypotheses:
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VARIABLES AND DESCRIPTION FOR 
FOOD NUTRITION ATLAS DATA FILE

Data Were Obtained from the Economic Research Service, U.S. Dept of Agriculture

Variable_Code Variable_Name
GROCPC Grocery stores per 1,000 pop
SNAPStoresPerThous SNAP-authorized stores per 1,000 pop
SNAPRedempPerStore SNAP redemption/SNAP-authorized stores
AMB_PAR06 Average monthly SNAP $ benefits
PCT_FREE_LUNCH % Students free-lunch eligible
PCT_REDUCED_LUNCH % Students reduced-price-lunch eligible
PC_FRUVEG Lbs per capita fruit&veg
PC_SNACKS Lbs per capita pkg sweetsnacks
PC_SODA Gals per capita soft drinks
PC_MEAT Lbs per capita meat&poultry
PC_FATS Lbs per capita solid fats
PC_PREPFOOD Lbs per capita prepared foods
MILK_PRICE Relative price of low-fat milk 
SODA_PRICE Relative price of sodas
PCT_DIABETES_ADULTS Adult diabetes rate
PCT_OBESE_ADULTS Adult obesity rate
PCT_Child_Obesity Low-income preschool obesity rate
PcTNHWhite08 % White
PcTNHBlack08 % Black

Figure 9.12 
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 10.1 Tests of the Difference Between Two Normal Population Means: 
Dependent Samples
Two Means, Matched Pairs

 10.2 Tests of the Difference Between Two Normal Population Means: 
Independent Samples
Two Means, Independent Samples, Known Population Variances
Two Means, Independent Samples, Unknown Population 
 Variances Assumed to Be Equal
Two Means, Independent Samples, Unknown Population 
 Variances Not Assumed to Be Equal

 10.3 Tests of the Difference Between Two Population Proportions 
(Large Samples)

 10.4 Tests of the Equality of the Variances Between Two Normally 
 Distributed Populations

 10.5 Some Comments on Hypothesis Testing

Introduction

In this chapter we develop procedures for testing the differences between two 
population means, proportions, and variances. This form of inference compares 
and complements the estimation procedures developed in Chapter 8. Our dis-
cussion in this chapter follows the development in Chapter 9, and we assume 
that the reader is familiar with the hypothesis-testing procedure developed in 
Section 9.1. The process for comparing two populations begins with an investi-
gator forming a hypothesis about the nature of the two populations and the dif-
ference between their means or proportions. The hypothesis is stated clearly as 
involving two options concerning the difference. These two options are the only 
possible outcomes. Then a decision is made based on the results of a statistic 
computed from random samples of data from the two populations. Hypothesis 
tests involving variances are also becoming more important as business firms 
work to reduce process variability in order to ensure high quality for every unit 
produced. Consider the following two examples as typical problems:

1.  An instructor is interested in knowing if assigning case studies increases 
students’ test scores in her course. To answer her question, she could first  
assign cases in one section and not in the other. Then, by collecting data 
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from each class, she could determine if there is strong evidence that the 
use of case studies increases exam scores.

To provide strong evidence that the use of cases increases learning, 
she would begin by assuming that completing assigned cases does not 
increase overall examination scores. Let m1 denote the mean final exami-
nation score in the class that used case studies, and let m2 denote the 
mean final examination score in the class that did not use case studies. 
For this study the null hypothesis is the composite hypothesis

H0 : m1 - m2 … 0

which states that the use of cases does not increase the average ex-
amination score. The alternative topic of interest is that the use of cases 
actually increases the average examination score, and, thus, the alterna-

tive hypothesis is as follows:

H1 : m1 - m2 7 0

In this problem the instructor would decide to assign cases only if there 
is strong evidence that using cases increases the mean examination 
score. Strong evidence results from rejecting H0 and accepting H1.

Note that this hypothesis test could also be expressed as

H0 : m1 … m2

H1 : m1 7 m2

and continue to maintain the same decision process.
2.  A news reporter wants to know if a tax reform appeals equally to men and 

women. To test this, he obtains the opinions of randomly selected men 
and women. These data are used to provide an answer. The reporter 
might hold, as a working null hypothesis, that a new tax proposal is 
equally appealing to men and women. Using P1, the proportion of men 
favoring the proposal, minus P2, the proportion of women favoring the 
proposal, the null hypothesis is as follows:

H0 : P1 = P2

or

H0 : P1 - P2 = 0

If the reporter has no good reason to suspect that the bulk of support 
comes from either men or women, then the null hypothesis would be 
tested against the two-sided composite alternative hypothesis:

H1 : P1 ? P2

or

H1 : P1 - P2 ? 0

In this example, rejection of H0 would provide strong evidence that there 
is a difference between men and women in their response to the tax 
proposal.

Once we have specified the null and alternative hypotheses and 
 collected sample data, a decision concerning the null hypothesis must be 
made. We can either reject the null hypothesis and accept the alternative 
hypothesis or fail to reject the null hypothesis. When we fail to reject the 
null hypothesis, then either the null hypothesis is true or our test procedure 
was not strong enough to reject it and an error has been committed. To 
reject the null hypothesis, a decision rule based on sample evidence needs 
to be developed. We present specific decision rules for various problems in 
the remainder of this chapter.
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10.1  TESTS OF THE DIFFERENCE BETWEEN TWO NORMAL 
POPULATION MEANS: DEPENDENT SAMPLES

There are a number of applications where we wish to draw conclusions about the differences 
between population means instead of conclusions about the absolute levels of the means. For 
example, we might want to compare the output of two different production processes for 
which neither population mean is known. Similarly, we might want to know if one market-
ing strategy results in higher sales than another without knowing the population mean sales 
for either. These questions can be handled effectively by various different hypothesis-testing 
procedures.

As we saw in Section 8.1, several different assumptions can be made when confidence 
intervals are computed for the differences between two population means. These assump-
tions generally lead to specific methods for computing the population variance for the 
difference between sample means. There are parallel hypothesis tests that involve similar 
methods for obtaining the variance. We organize our discussion of the various hypothesis-
testing procedures in parallel with the confidence interval estimates in Section 8.1. In Sec-
tion 10.1 we treat situations where the two samples can be assumed to be dependent. In 
these cases the best design, if we have control over data collection, is using two matched 
pairs as shown below. Then in Section 10.2 we treat a variety of situations where the sam-
ples are independent.

Two Means, Matched Pairs

Here, we assume that a random sample of n matched pairs of observations is obtained from 
populations with means mx and my. The observations are denoted 1x1,  y12, 1x2, y22, . . . , 1xn, yn2. When we have matched pairs and the pairs are positively correlated, the variance 
of the difference between the sample means,

d = x - y

will be reduced compared to using independent samples. This results because some of the 
characteristics of the pairs are similar, and, thus, that portion of the variability is removed from 
the total variability of the differences between the means. For example, when we consider mea-
sures of human behavior, differences between twins will usually be less than the differences 
between two randomly selected people. In general, the dimensions for two parts produced 
on the same specific machine will be closer than the dimensions for parts produced on two 
different, independently selected machines. Thus, whenever possible, we would prefer to use 
matched pairs of observations when comparing measurements from two populations because 
the variance of the difference will be smaller. With a smaller variance, there is a greater prob-
ability that we will reject H0 when the null hypothesis is not true. This principle was developed 
in Section 9.5 in the discussion of the power of a test. The specific decision rules for different 
forms of the hypothesis test are summarized in Equations 10.1, 10.2, and 10.3.

Tests of the Difference Between Population Means: 
Matched Pairs
Suppose that we have a random sample of n matched pairs of observations 
from distributions with means mx and my. Let d and sd denote the observed 
sample mean and standard deviation for the n differences 1xi - yi2. If the 
population distribution of the differences is a normal distribution, then the 
 following tests have significance level a:

1. To test either null hypothesis

H0 : mx - my = 0 or H0 : mx - my … 0
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 against the alternative

H1 : mx - my 7 0

 the decision rule is as follows:

 reject H0 if 
d

sd>1n
7 tn- 1,a (10.1)

2. To test either null hypothesis

H0 : mx - my = 0 or H0 : mx - my Ú 0

 against the alternative

H1 : mx - my 6 0

 the decision rule is as follows:

 reject H0 if 
d

sd>1n
6 - tn- 1,a (10.2)

3. To test the null hypothesis

H0 : mx - my = 0

 against the two-sided alternative

H1 : mx - my ? 0

 the decision rule is as follows:

 reject H0 if 
d

sd>1n
6 - tn- 1,a>2 or 

d
sd>1n

7 tn- 1,a>2 (10.3)

 Here, tn -1,a is the number for which

P1tn- 1 7 tn- 1,a2 = a
  where the random variable tn -1 follows a Student’s t distribution with 

(n - 1) degrees of freedom.

For all these tests, p-values are interpreted as the probability of getting a 
value at least as extreme as the one obtained, given the null hypothesis.

Example 10.1 Analysis of Alternative  
Turkey-Feeding Programs (Hypothesis  
Test for Differences Between Means)

Marian Anderson, production manager of Turkeys Unlimited, has been conducting a 
study to determine if a new feeding process produces a significant increase in mean 
weight of turkeys produced in the facilities of Turkeys Unlimited LLC. In the process 
she obtains a random set of matched turkey chicks hatched from the same hen. One 
group of chicks is from the hens fed using the old feeding method and the second 
group of chicks is from the same hens fed using the new method. The weights for each 
of the turkeys and the differences between the matched pairs are shown in Table 10.1. 
These data are contained in the data file Turkey Feeding. Perform the necessary analy-
sis to determine if the new feeding process produces a significant 1a = 0.0252 increase 
in turkey weight.
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Table 10.1 Finish Weight of Turkeys for Old and New Feeding Programs

OLD NEW DIFFERENCE HEN

17.76 18.15   0.38  1

18.66 19.92   1.26  2

21.84 23.60   1.76  3

16.64 17.96   1.33  4

17.37 16.25 -1.12  5

16.75 17.50   0.74  6

18.01 20.79   2.77  7

22.00 22.89   0.89  8

17.68 20.25   2.57  9

18.23 20.95   2.72 10

20.63 22.76   2.13 11

20.03 20.64   0.61 12

15.90 14.67 -1.23 13

15.89 16.15   0.25 14

18.53 22.56   4.03 15

13.92 15.46   1.54 16

18.60 16.33 -2.26 17

20.09 21.03   0.94 18

18.04 18.51   0.47 19

19.87 22.32   2.45 20

19.00 24.53   5.53 21

18.59 21.15   2.56 22

21.02 26.36   5.35 23

15.62 18.56   2.94 24

15.41 14.02 -1.39 25

Solution In this study we are attempting to determine if the new feeding process 
results in a significantly greater weight compared to the old feeding process. Define the 
weights from the new feeding process by the random variable X and the weights from 
the old feeding process by the random variable Y. The null and alternative processes 
for this study are, thus,

H0 : mx - my … 0
H1 : mx - my 7 0

The null hypothesis states that there was no increase in weight for the new process 
over the old. The alternative hypothesis states that there was an increase. If we reject 
the null hypothesis, then we can conclude that the new feeding process does result in 
higher turkey weights. We perform the test using the Student’s t test for matched pairs 
with a critical value a = 0.025. Figure 10.1 provides the Minitab computation for the 
mean difference (1.489), the standard deviation of the mean differences (0.385), and 
the  Student’s t. The Student’s t statistic for the test can be computed as

t =
d

sd>1n
=

1.489
1.926>125

=
1.489
0.385

= 3.86
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Figure 10.1 Hypothesis Testing for Differences Between New and Old 
Turkey Weights

Paired T for New – old

New
old
Difference

N
25
25
25

95% lower bound for mean difference: 0.829
T-Test of mean difference = 0 (vs > 0): T-Value = 3.86  P-Value = 0.000

Mean
19.732
18.244

1.489

StDev
3.226
2.057
1.926

SE Mean
0.645
0.411
0.385

Paired  T-Test and CI: New, Old

The computed value of Student’s t is greater than the critical value with a = 0.025 and 
24 degrees of freedom, equal to 2.064 from the Student’s t table (Appendix Table 8).

From this analysis we see that there is strong evidence to conclude that the new 
feeding method increases the weight of turkeys more than the old method.

Note also that the variance of the difference between the matched pairs could be 
computed as follows (the correlation between the pairs is 0.823) using Equation 5.27:

 S2
d = 10.41122 + 10.64522 - 2 * 10.823210.411210.6452 = 0.146

 Sd = 0.385

This is the standard deviation of the differences as computed in the computer output.

EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

as m1 and process 2 has a mean defined as m2. The null 
and alternative hypotheses are as follows:

H0 : m1 - m2 Ú 0

H1 : m1 - m2 6 0

  Using a random sample of 25 paired observations, the 
standard deviation of the difference between sample 
means is 25. Can you reject the null hypothesis using a 
probability of Type I error a = 0.05 in each case?

a. The sample means are 56 and 50
b. The sample means are 59 and 50
c. The sample means are 56 and 48
d. The sample means are 54 and 50

Application Exercises
 10.3 In a study comparing banks in Germany and Great Brit-

ain, a sample of 145 matched pairs of banks was formed. 
Each pair contained one bank from Germany and one 
from Great Britain. The pairings were made in such a 
way that the two members were as similar as possible 
in regard to such factors as size and age. The ratio of to-
tal loans outstanding to total assets was calculated for 
each of the banks. For this ratio, the sample mean dif-
ference (German – Great Britain) was 0.0518, and the 
sample standard deviation of the differences was 0.3055. 

Basic Exercises
 10.1 You have been asked to determine if two different 

production processes have different mean numbers 
of units produced per hour. Process 1 has a mean 
 defined as m1  and process 2 has a mean defined 
as m2. The null and alternative hypotheses are as 
follows:

H0 : m1 - m2 = 0

H1 : m1 - m2 7 0

  Using a random sample of 25 paired observations, the 
sample means are 50 and 60 for populations 1 and 
2, respectively. Can you reject the null hypothesis 
using a probability of Type I error a = 0.05 in each 
case?

a. The sample standard deviation of the difference is 20
b. The sample standard deviation of the difference is 30
c. The sample standard deviation of the difference is 15
d. The sample standard deviation of the difference is 40

 10.2 You have been asked to determine if two different 
production processes have different mean numbers of 
units produced per hour. Process 1 has a mean  defined 
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Test, against a two-sided alternative, the null hypothesis 
that the two population means are equal.

 10.4 You have been asked to conduct a national study 
of  urban home selling prices to determine if there 

has been an  increase in selling prices over time. There has 
been some concern that housing prices in major urban ar-
eas have not kept up with inflation over time. Your study 
will use data collected from Atlanta, Chicago, Dallas, and 
Oakland, which is contained in the data file House Sell-
ing Price. Formulate an appropriate hypothesis test and 
use your statistical computer package to compute the ap-
propriate statistics for analysis. Perform the hypothesis 
test and indicate your conclusion.

Repeat the analysis using data from only the city of 
Atlanta.

 10.5 An agency offers preparation courses for a 
 graduate school admissions test to students. As 

part of an  experiment to evaluate the merits of the 
course, 12 students were chosen and divided into 6 
pairs in such a way that the members of any pair had 
similar academic records. Before taking the test, one 
member of each pair was assigned at random to take 
the preparation course, while the other member did 
not take a course. The achievement test scores are con-
tained in the Student Pair data file. Assuming that the 
 differences in scores follow a normal distribution, test, 
at the 5% level, the null hypothesis that the two popu-
lation means are equal against the alternative that the 
true mean is higher for students taking the prepara-
tion course.

10.2  TESTS OF THE DIFFERENCE BETWEEN TWO NORMAL 
POPULATION MEANS: INDEPENDENT SAMPLES

Two Means, Independent Samples, Known Population Variances

Now we consider the case where we have independent random samples from two nor-
mally distributed populations. The first population has a mean of mx and a variance of sx

2

and we obtain a random sample of size nx. The second population has a mean of my and a 
variance of sy

2 and we obtain a random sample of size ny.
In Section 8.2, we showed that if the sample means are denoted by x and y, then the 

random variable

Z =
1x - y2 - 1mx - my2

As2
x

nx
+
s2

y

ny

has a standard normal distribution. If the two population variances are known, tests of the dif-
ference between the population means can be based on this result, using the same  arguments 
as before. Generally, we are comfortable using known population variances if the process 
 being studied has been stable over some time and we have obtained similar variance mea-
surements over this time. And because of the central limit theorem, the results presented here 
hold for large sample sizes even if the populations are not normal. For large sample sizes, the 
approximation is quite satisfactory when sample variances are used for population variances. 
The appropriate tests are summarized in Equations 10.4, 10.5, and 10.6.

Tests of the Difference Between Population Means: 
Independent Samples (Known Variances)
Suppose that we have independent random samples of nx and ny observa-
tions from normal distributions with means mx and my and variances s2

x and 
s2

y,  respectively. If the observed sample means are x and y, then the follow-
ing tests have significance level a:

1. To test either null hypothesis

H0 : mx - my = 0 or H0 : mx - my … 0

 against the alternative

H1 : mx - my 7 0
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 the decision rule is as follows:

 reject H0 if  
x - y

As2
x

nx
+
s2

y

ny

7 za (10.4)

2. To test either null hypothesis

H0 : mx - my = 0 or H0 : mx - my Ú 0

 against the alternative

H1 : mx - my 6 0

 the decision rule is as follows:

 reject H0 if 
x - y

As2
x

nx
+
s2

y

ny

6 -za (10.5)

3. To test the null hypothesis

H0 : mx - my = 0

 against the two-sided alternative

H1 : mx - my ? 0

 the decision rule is as follows:

 reject H0 if  
x - y

As2
x

nx
+
s2

y

ny

6 -za>2 or 
x - y

As2
x

nx
+
s2

y

ny

7 za>2 (10.6)

If the sample sizes are large (n 7 100), then a good approximation at signifi-
cance level a can be made if we replace the population variances with the 
sample variances. In addition, the central limit theorem leads to good approxi-
mations even if the populations are not normally distributed. The p-values for 
all these tests are interpreted as the probability of getting a value at least as 
extreme as the one obtained, given the null hypothesis.

Example 10.2 Comparison of Alternative Fertilizers 
(Hypothesis Test for Differences Between Means)

Shirley Brown, an agricultural economist, wants to compare cow manure and turkey 
dung as fertilizers. Historically, farmers had used cow manure on their cornfields. 
Recently, a major turkey farmer offered to sell composted turkey dung at a favorable 
price. The farmers decided that they would use this new fertilizer only if there was 
strong evidence that productivity increased over the productivity that occurred with 
cow manure. Shirley was asked to conduct the research and statistical analysis in order 
to develop a recommendation to the farmers.

Solution To begin the study, Shirley specified a hypothesis test with

H0 : mx - my … 0

versus the alternative that

H1 : mx - my 7 0
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Two Means, Independent Samples, Unknown Population 
Variances Assumed to Be Equal

In those cases where the population variances are not known and the sample sizes are 
 under 100, we need to use the Student’s t distribution. There are some theoretical prob-
lems when we use the Student’s t distribution for differences between sample means. 
However, these problems can be solved using the procedure that follows if we can  assume 
that the population variances are equal. This assumption is realistic in many cases where 
we are comparing groups. In Section 10.4 we present a procedure for testing the equality 
of variances from two normal populations.

The major difference is that this procedure uses a commonly pooled estimator of the 
equal population variance. This estimator is as follows:

s2
p =
1nx - 12s2

x + 1ny - 12s2
y1nx + ny - 22

The degrees of freedom for s2
p and for the Student’s t statistic below is nx + ny - 2. The 

hypothesis test is performed using the Student’s t statistic for the difference between two 
means:

t =
1x - y2 - 1mx - my2

A s2
p

nx
+

s2
p

ny

where mx is the population mean productivity using turkey dung and my is the 
 population mean productivity using cow manure. H1 indicates that turkey dung results 
in higher productivity. The farmers will not change their fertilizer unless there is strong 
evidence in favor of increased productivity. She decided before collecting the data that 
a significance level of a = 0.05 would be used for this test.

Using this design, Shirley implemented an experiment to test the hypothesis. Cow 
manure was applied to one set of ny = 25 randomly selected fields. The sample mean 
productivity was y = 100. From past experience the variance in productivity for these 
fields was assumed to be s2

y = 400. Turkey dung was applied to a second random sam-
ple of nx = 25 fields, and the sample mean productivity was x = 115. Based on pub-
lished research reports, the variance for these fields was assumed to be s2

x = 625. The 
two sets of random samples were independent. The decision rule is to reject H0 in favor 
of H1 if

x - y

As2
x

nx
+
s2

y

ny

7 za

The computed statistics for this problem are as follows:

 nx = 25 x = 115 s2
x = 625

 ny = 25 y = 100 s2
y = 400

 z =
115 - 100

A625
25

+
400
25

= 2.34

Comparing the computed value of z = 2.34 with z0.05 = 1.645, Shirley concluded that 
the null hypothesis is clearly rejected. In fact, we found that the p-value for this test is 
0.0096. As a result, there is overwhelming evidence that turkey dung results in higher 
productivity than cow manure.
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Note that the form for the test statistic is similar to that of the Z statistic, which is used 
when the population variances are known. The various tests using this procedure are 
summarized next.

Tests of the Difference Between Population Means: 
Population Variances Unknown and Equal
In these tests it is assumed that we have an independent random sample of 
size nx and ny observations drawn from normally distributed populations with 
means mx and my and a common variance. The sample variances s2

x and s2
y are 

used to compute a pooled variance estimator:

 s2
p =
1nx - 12s2

x + 1ny - 12s2
y1nx + ny - 22  (10.7)

We emphasize here that s 2
p is the weighted average of the two sample vari-

ances, s 2
x and s2

y.
Then, using the observed sample means x and y, the following tests have 

significance level a:

1. To test either null hypothesis

H0 : mx - my = 0 or H0 : mx - my … 0

 against the alternative

H1 : mx - my 7 0

 the decision rule is as follows:

 reject H0 if 
x - y

A s2
p

nx
+

s2
p

ny

7 tnx + ny - 2,a (10.8)

2. To test either null hypothesis

H0 : mx - my = 0 or H0 : mx - my Ú 0

 against the alternative

H1 : mx - my 6 0

 the decision rule is as follows:

 reject H0 if 
x - y

A s2
p

nx
+

s2
p

ny

6 - tnx + ny - 2,a (10.9)

3. To test the null hypothesis

H0 : mx - my

 against the two-sided alternative

H1 : mx - my ? 0

 the decision rule is as follows:

 reject H0 if 
x - y

A s2
p

nx
+

s2
p

ny

6 - tnx + ny - 2,a>2 or 
x - y

A s2
p

nx
+

s2
p

ny

7 tnx + ny - 2,a>2 (10.10)
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Here, tnx +ny -2,a is the number for which

P 1tnx + ny - 2 7 tnx + ny - 2,a2 = a
Note that the degrees of freedom for the Student’s t is nx + ny - 2 for all of 
these tests.

We interpret p-values for all these tests as the probability of getting a value 
as extreme as the one obtained, given the null hypothesis.

Example 10.3 Retail Sales Patterns (Hypothesis  
Test for Differences Between Means)

A sporting goods store operates in a medium-sized shopping mall. In order to plan 
staffing levels, the manager has asked for your assistance to determine if there is strong 
evidence that Monday sales are higher than Saturday sales.

Solution To answer the question, you decide to gather random samples of 25 
Saturdays and 25 Mondays from a population of several years of data. The samples are 
drawn independently. You decide to test the null hypothesis

H0 : mM - mS … 0

against the alternative hypothesis

H1 : mM - mS 7 0

where the subscripts M and S refer to Monday and Saturday sales. The sample statistics 
are as follows:

 xM = 1078  sM = 633 nM = 25
 yS = 908.2  sS = 469.8  nS = 25

The pooled variance estimate is as follows:

s2
p =
125 - 12163322 + 125 - 121469.822

25 + 25 - 2
= 310,700

The test statistic is then computed as follows:

t =
x

M
- y

S

A s2
p

nx
+

s2
p

ny

=
1078 - 908.2

A310,700
25

+
310,700

25

= 1.08

Using a significance level of a = 0.05 and 48 degrees of freedom, we find that the criti-
cal value of t is 1.677. Therefore, we conclude that there is not sufficient evidence to 
reject the null hypothesis, and, thus, there is no reason to conclude that mean sales on 
Mondays are higher.

Example 10.4 Analysis of Alternative  
Turkey-Feeding Programs (Hypothesis  
Test for Differences Between Means)

In this example we revisit the turkey-feeding problem from Example 10.1. In that 
 example we used a matched-pairs test and concluded that the new feeding program did 
result in greater weight gain than the old program, using a = 0.025. In this  example we 
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Two Means, Independent Samples, Unknown Population 
Variances Not Assumed to Be Equal

Hypothesis tests of differences between population means when the individual vari-
ances are unknown and not equal require modification of the variance computation and 
the degrees of freedom. The computation of sample variance for the difference between 
sample means is changed. There are substantial complexities in the determination of 
degrees of freedom for the critical value of the Student’s t statistic. The specific com-
putational forms were presented in Section 8.2. Equations 10.11–10.14 summarize the 
procedures.

solve the same problem. The hypothesis test from Example 10.1 is exactly the same in 
this example. However, here we assume that the two samples are independent and we 
do not have matched pairs. We use the same data file, Turkey Feeding, which contains 
the sample of weights for the old and new feeding programs.

Solution This solution follows the same general approach as seen in Example 10.1. 
However, we assume that we have independent random samples from populations 
with equal variances. Figure 10.2 contains the computer computation of the statistics 
needed to test the hypothesis. Note that the difference in sample means is still 1.489, 
but the pooled standard deviation for the difference is substantially larger at 2.7052:

 s2
d = a 2.7052125

b2

+ a 2.7052125
b2

= 0.585

 sd = 0.765

and the resulting computed Student’s t is

t =
1.489
0.765

= 1.946

Figure 10.2 Turkey Weight Study: Independent Samples, Population Variances 
Equal (Minitab Output)

Two-sample T for New vs old

New
old

N
25
25

Mean
19.73
18.24

StDev
3.23
2.06

SE Mean
0.65
0.41

Two-Sample T-Test and CI: New, Old

Difference 5 mu (New) 2 mu (Old)
Estimate for difference: 1.489
95% lower bound for difference: 0.205
T-Test of difference 5 0 (vs .): T-Value 5 1.95  P-Value 5 0.029  DF 5 48
Both use Pooled StDev 5 2.7052

Since the degrees of freedom with the independent samples assumption is 48, the criti-
cal value of the Student’s t is 2.01, with a = 0.025. The computed value is smaller, and 
we cannot reject the null hypothesis; thus we cannot conclude that the new feeding 
process results in a greater weight gain. Note that since the variance and standard de-
viation are larger, the resulting test does not have the same power. In Example 10.1 the 
p-value for the hypothesis test with paired observations was 0.00, whereas in Example 
10.4, assuming independent samples, the p-value was 0.029.
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Tests of the Difference Between Population  
Means: Population Variances Unknown  
and Not Equal
These tests assume that we have independent random samples of size nx and 
ny observations from normal populations with means mx and my and unequal 
variances. The sample variances s 2

x and s2
y are used. The number of degrees of 

freedom v for the Student’s t statistic is given by the following:

 v =

c a s2
x

nx
b + a s2

y

ny
b d 2

a s2
x

nx
b2>1nx - 12 + a s2

y

ny
b2>1ny - 12 (10.11)

Then, using the observed sample means x and y, the following tests have sig-
nificance level a:

1. To test either null hypothesis

H0 : mx - my = 0 or H0 : mx - my … 0

 against the alternative

H1 : mx - my 7 0

 the decision rule is as follows:

 reject H0 if  
x - y

A s2
x

nx
+

s2
y

ny

7 tv,a (10.12)

2. To test either null hypothesis

H0 : mx - my = 0 or H0 : mx - my Ú 0

 against the alternative

H1 : mx - my 6 0

 the decision rule is as follows:

 reject H0 if  
x - y

A s2
x

nx
+

s2
y

ny

6 - tv,a (10.13)

3. To test the null hypothesis

H0 : mx - my = 0

 against the two-sided alternative

H1 : mx - my ? 0

 the decision rule is as follows:

 reject H0 if  
x - y

A s2
x

nx
+

s2
y

ny

6 - tv,a>2 or 
x - y

A s2
x

nx
+

s2
y

ny

7 tv,a>2 (10.14)

 Here, tv,a is the number for which

P1tv 7 tv,a2 = a



398 Chapter 10 Two Population Hypothesis Tests

The analysis for Example 10.4 was run again without assuming equal population vari-
ances. The computer output is shown in Figure 10.3. The computational results are all the 
same except that the degrees of freedom are now 40 instead of 48 when we assumed that 
the variances were equal in Example 10.4. The change in critical value of the Student’s t is 
so small that the p-value did not change. And we still do not have evidence to reject the 
null hypothesis and cannot conclude that the new program results in greater weight gain.

Figure 10.3 

Turkey Weight 
Study: Independent 
Samples, Population 
Variances not 
Assumed Equal

Two-sample T for New vs old

New
old

N
25
25

Mean
19.73
18.24

StDev
3.23
2.06

SE Mean
0.65
0.41

Two-Sample T-Test and CI: New, Old

Difference 5 mu (New) 2 mu (Old)
Estimate for difference: 1.489
95% lower bound for difference: 0.200
T-Test of difference 5 0 (vs .): T-Value 5 1.95  P-Value 5 0.029  DF 5 40

EXERCISES

Basic Exercises
 10.6 You have been asked to determine if two different 

production processes have different mean numbers 
of units produced per hour. Process 1 has a mean de-
fined as m1 and process 2 has a mean defined as m2. 
The null and alternative hypotheses are as follows:

H0 : m1 - m2 = 0

H1 : m1 - m2 7 0

  Use a random sample of 25 observations from process 
1 and 28 observations from process 2 and the known 
variance for process 1 equal to 900 and the known vari-
ance for process 2 equal to 1,600. Can you reject the null 
hypothesis using a probability of Type I error a = 0.05 
in each case?

a. The process means are 50 and 60.
b. The difference in process means is 20.
c. The process means are 45 and 50.
d. The difference in process means is 15.

 10.7 You have been asked to determine if two different 
production processes have different mean numbers 
of units produced per hour. Process 1 has a mean de-
fined as m1 and process 2 has a mean defined as m2. 
The null and alternative hypotheses are as follows:

H0 : m1 - m2 … 0

H1 : m1 - m2 7 0

  The process variances are unknown but assumed to 
be equal. Using random samples of 25 observations 
from process 1 and 36 observations from process 2, the 
sample means are 56 and 50 for populations 1 and 2, 
respectively. Can you reject the null hypothesis using 
a probability of Type I error a = 0.05 in each case?

a. The sample standard deviation from process 1 is 30 
and from process 2 is 28.

b. The sample standard deviation from process 1 is 22 
and from process 2 is 33.

c. The sample standard deviation from process 1 is 30 
and from process 2 is 42.

d. The sample standard deviation from process 1 is 15 
and from process 2 is 36.

Application Exercises
 10.8 A screening procedure was designed to measure atti-

tudes toward minorities as managers. High scores indi-
cate negative attitudes and low scores indicate positive 
attitudes. Independent random samples were taken of 
151 male financial analysts and 108 female financial 
analysts. For the former group the sample mean and 
standard deviation scores were 85.8 and 19.13, whereas 
the corresponding statistics for the latter group were 
71.5 and 12.2. Test the null hypothesis that the two 
population means are equal against the alternative that 
the true mean score is higher for male than for female 
financial analysts.

 10.9 For a random sample of 125 British entrepreneurs, the 
mean number of job changes was 1.91 and the sample 
standard deviation was 1.32. For an independent ran-
dom sample of 86 British corporate managers, the 
mean number of job changes was 0.21 and the sample 
standard deviation was 0.53. Test the null hypothesis 
that the population means are equal against the alter-
native that the mean number of job changes is higher 
for British entrepreneurs than for British corporate 
managers.

 10.10 A political science professor is interested in compar-
ing the characteristics of students who do and do not 
vote in national elections. For a random sample of 114 
students who claimed to have voted in the last presi-
dential election, she found a mean grade point aver-
age of 2.71 and a standard deviation of 0.64. For an 
independent random sample of 123 students who did 
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not vote, the mean grade point average was 2.79 and 
the standard deviation was 0.56. Test, against a two-
sided alternative, the null hypothesis that the popula-
tion means are equal.

 10.11 In light of a recent large corporation bankruptcy, 
 auditors are becoming increasingly concerned about 
the possibility of fraud. Auditors might be helped 
in determining the chances of fraud if they care-
fully measure cash flow. To evaluate this possibil-
ity,  samples of midlevel auditors from CPA firms 
were presented with cash-flow information from 
a fraud case, and they were asked to indicate the 
chance of material fraud on a scale from 0 to 100. 
A random sample of 36 auditors used the cash-flow 
information. Their mean assessment was 36.21, 
and the sample standard deviation was 22.93. For 
an  independent random sample of 36 auditors not 
 using the cash-flow information, the sample mean 
and standard deviation were, respectively, 47.56 
and 27.56.  Assuming that the two population dis-
tributions are normal with equal variances, test, 
against a two-sided alternative, the null hypothesis 
that the population means are equal.

 10.12 The recent financial collapse has led to considerable 
concern about the information provided to poten-
tial investors. The government and many researchers 
have pointed out the need for increased regulation of 
financial offerings. The study in this exercise concerns 

the  effect of sales forecasts on initial public  offerings. 
Initial public offerings’ prospectuses were examined. 
In a random sample of 70 prospectuses in which sales 
forecasts were disclosed, the mean debt-to-equity  ratio 
prior to the offering issue was 3.97, and the sample 
standard deviation was 6.14. For an independent ran-
dom sample of 51 prospectuses in which sales earnings 
forecasts were not disclosed, the mean debt-to-equity 
ratio was 2.86, and the sample standard  deviation was 
4.29. Test, against a two-sided alternative, the null 
 hypothesis that population mean debt-to-equity ratios 
are the same for disclosers and nondisclosers of earn-
ings forecasts.

 10.13 A publisher is interested in the effects on sales of 
college texts that include more than 100 data files. 
The publisher plans to produce 20 texts in the busi-
ness area and randomly chooses 10 to have more 
than 100 data files. The remaining 10 are produced 
with at most 100 data files. For those with more than 
100, first-year sales averaged 9,254, and the sample 
standard deviation was 2,107. For the books with at 
most 100, average first-year sales were 8,167, and the 
sample standard deviation was 1,681. Assuming that 
the two population distributions are normal with 
the same variance, test the null hypothesis that the 
population means are equal against the alternative 
that the true mean is higher for books with more than 
100 data files.

10.3  TESTS OF THE DIFFERENCE BETWEEN TWO POPULATION 
PROPORTIONS (LARGE SAMPLES)

Next, we develop procedures for comparing two population proportions. We consider a 
standard model with a random sample of nx observations from a population with a pro-
portion Px of successes and a second independent random sample of ny observations from 
a population with a proportion Py of successes.

In Chapter 5 we saw that, for large samples, proportions can be approximated as nor-
mally distributed random variables, and, as a result,

Z =
1pnx - pny2 - 1Px - Py2

APx11 - Px2
nx

+
Py11 - Py2

ny

has a standard normal distribution.
We want to test the hypothesis that the population proportions Px and Py are equal.

H0 : Px - Py = 0 or H0 : Px = Py

Denote their common value by P0. Then under this hypothesis

Z =
1pnx - pny2

AP011 - P02
nx

+
P011 - P02

ny

follows to a close approximation a standard normal distribution.
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Finally, the unknown proportion P0 can be estimated by a pooled estimator defined 
as follows:

pn0 =
nxpnx + nypny

nx + ny

The null hypothesis in these tests assumes that the population proportions are equal. If 
the null hypothesis is true, then an unbiased and efficient estimator for P0 can be obtained 
by combining the two random samples, and, as a result, pn0 is computed using this equa-
tion. Then, we can replace the unknown P0 by pn0 to obtain a random variable that has a 
distribution close to the standard normal for large sample sizes.

The tests are summarized as follows.

Testing the Equality of Two Population Proportions 
(Large Samples)
We are given independent random samples of size nx and ny with proportion 
of successes pnx and pny. When we assume that the population proportions are 
equal, an estimate of the common proportion is as follows:

pn0 =
nxpnx + nypny

nx + ny

For large sample sizes—nP0(1 - P0) 7 5—the following tests have significance 
level a:

1. To test either null hypothesis

H0 : Px - Py = 0 or H0 : Px - Py … 0

 against the alternative

H1 : Px - Py 7 0

 the decision rule is as follows:

 reject H0 if  
1pnx - pny2

Apn011 - pn02
nx

+
pn011 - pn02

ny

7 za (10.15)

2. To test either null hypothesis

H0 : Px - Py = 0 or H0 : Px - Py Ú 0

 against the alternative

H1 : Px - Py 6 0

 the decision rule is as follows:

 reject H0 if  
1pnx - pny2

Apn011 - pn02
nx

+
pn011 - pn02

ny

6 -za (10.16)

3. To test the null hypothesis

H0 : Px - Py = 0

 against the two-sided alternative

H1 : Px - Py ? 0
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 the decision rule is as follows:

reject H0 if  
1pnx - pny2

Apn011 - pn02
nx

+
pn011 - pn02

ny

6 -za>2 or

      
1pnx - pny2

Apn011 - pn02
nx

+
pn011 - pn02

ny

7 za>2 (10.17)

It is also possible to compute and interpret p-values as the probability 
of getting a value at least as extreme as the one obtained, given the null 
hypothesis.

Example 10.5 Change in Customer Recognition 
of New Products After an Advertising Campaign 
(Hypothesis Tests of Differences Between 
Proportions)

Northern States Marketing Research has been asked to determine if an advertising 
campaign for a new cell phone increased customer recognition of the new World A 
phone. A random sample of 270 residents of a major city were asked if they knew about 
the World A phone before the advertising campaign. In this survey 50 respondents 
had heard of World A. After the advertising campaign, a second random sample of 203 
residents were asked exactly the same question using the same protocol. In this case 81 
respondents had heard of the World A phone. Do these results provide evidence that 
customer recognition increased after the advertising campaign?

Solution Define Px and Py as the population proportions that recognized the 
World A phone before and after the advertising campaign, respectively. The null 
hypothesis is

H0 : Px - Py Ú 0

and the alternative hypothesis is

H1 : Px - Py 6 0

The null hypothesis states that there was no increase in the proportion that recog-
nized the new phone after the advertising campaign and the alternative hypothesis 
states that there was an increase.

The decision rule is to reject H0 in favor of H1 if1pnx - pny2
Apn011 - pn02

nx
+

pn011 - pn02
ny

6 -za

The data for this problem are as follows:

nx = 270 pnx = 50>270 = 0.185 ny = 203 pny = 81>203 = 0.399

The estimate of the common variance P0 under the null hypothesis is as follows:

pn0 =
nxpnx + nypny

nx + ny
=
1270210.1852 + 1203210.3992

270 + 203
= 0.277
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The test statistic is as follows:1pnx - pny2
Apn011 - pn02

nx
+

pn011 - pn02
ny

=
0.185 - 0.399

A10.277211 - 0.2772
270

+
10.277211 - 0.2772

203

= -5.15

For a one-tailed test with a = 0.05, the -z0.05 value is -1.645. Thus, since -5.15 6
-1.645, we reject the null hypothesis and conclude that customer recognition did in-
crease after the advertising campaign.

EXERCISES

Basic Exercise
 10.14 Test the hypotheses

H0 : Px - Py = 0

H1 : Px - Py 6 0

  using the following statistics from random samples.

a.  pnx = 0.42, nx = 500;
   pny = 0.50, ny = 600
b.  pnx = 0.60, nx = 500;
   pny = 0.64, ny = 600
c.  pnx = 0.42, nx = 500;
   pny = 0.49, ny = 600
d.  pnx = 0.25, nx = 500;
   pny = 0.34, ny = 600
e.  pnx = 0.39, nx = 500;
   pny = 0.42, ny = 600

Application Exercises
 10.15 Random samples of 900 people in the United States 

and in Great Britain indicated that 60% of the people 
in the United States were positive about the future 
economy, whereas 66% of the people in Great Britain 
were positive about the future economy. Does this 
provide strong evidence that the people in Great Brit-
ain are more optimistic about the economy?

 10.16 A random sample of 1,556 people in country A were 
asked to respond to this statement: Increased world 
trade can increase our per capita prosperity. Of these sam-
ple members, 38.4% agreed with the statement. When 
the same statement was presented to a random sam-
ple of 1,108 people in country B, 52.0% agreed. Test 
the null hypothesis that the population proportions 
agreeing with this statement were the same in the two 
countries against the alternative that a higher propor-
tion agreed in country B.

 10.17 Small-business telephone users were surveyed 
6 months after access to carriers other than AT&T 
became available for wide-area telephone service. Of 
a random sample of 368 users, 92 said they were at-
tempting to learn more about their options, as did 
37 of an independent random sample of 116 users of 

alternative carriers. Test, at the 5% significance level 
against a two-sided alternative, the null hypothesis 
that the two population proportions are the same.

 10.18 Employees of a building materials chain facing a 
shutdown were surveyed on a prospective employee 
ownership plan. Some employees pledged $10,000 to 
this plan, putting up $800 immediately, while others 
indicated that they did not intend to pledge. Of a ran-
dom sample of 175 people who had pledged, 78 had 
already been laid off, whereas 208 of a random sample 
of 604 people who had not pledged had already been 
laid off. Test, at the 5% level against a two-sided alter-
native, the null hypothesis that the population propor-
tions already laid off were the same for people who 
pledged as for those who did not.

 10.19 Of a random sample of 381 high-quality investment 
equity options, 191 had less than 30% debt. Of an in-
dependent random sample of 166 high-risk invest-
ment equity options, 145 had less than 30% debt. Test, 
against a two-sided alternative, the null hypothesis 
that the two population proportions are equal.

 10.20 Two different independent random samples of con-
sumers were asked about satisfaction with their com-
puter system each in a slightly different way. The 
options available for answer were slightly different 
in the two cases. When asked how satisfied they were 
with their computer system, 138 of the first group of 
240 sample members opted for “very satisfied.” When 
the second group was asked how dissatisfied they 
were with their computer system, 128 of 240 sample 
 members opted for very satisfied. Test, at the 5% sig-
nificance level against the obvious one-sided alter-
native, the null hypothesis that the two population 
proportions are equal.

 10.21 Of a random sample of 1,200 people in Denmark, 480 
had a positive attitude toward car salespeople. Of 
an independent random sample of 1,000 people in 
France, 790 had a positive attitude toward car sales-
people. Test, at the 1% level the null hypothesis that 
the population proportions are equal, against the  
alternative that a higher proportion of French have a 
positive attitude toward car salespeople.
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10.4  TESTS OF THE EQUALITY OF THE VARIANCES BETWEEN  
TWO NORMALLY DISTRIBUTED POPULATIONS

There are a number of situations in which we are interested in comparing the variances 
from two normally distributed populations. For example, the Student’s t test in Section 
10.2 assumed equal variances and used the two sample variances to compute a pooled 
estimator for the common variances. Quality-control studies are often concerned with the 
question of which process has the smaller variance.

In this section we develop a procedure for testing the assumption that population 
variances from independent samples are equal. To perform such tests, we introduce the 
F probability distribution. We begin by letting s2

x be the sample variance for a random 
sample of nx observations from a normally distributed population with population vari-
ance s2

x. A second independent random sample of size ny provides a sample variance of s2
y 

from a normal population with population variance s2
y. Then the random variable

F =
s2

x>s2
x

s2
y>s2

y

follows a distribution known as the F distribution. This family of distributions, which is 
widely used in statistical analysis, is identified by the degrees of freedom for the numera-
tor and the degrees of freedom for the denominator. The number of degrees of freedom 
for the numerator is associated with the sample variance s2

x and equal to 1nx - 12. Simi-
larly, the number of degrees of freedom for the denominator is associated with the sample 
variance s2

y and equal to 1ny - 12.
The F distribution is constructed as the ratio of two chi-square random variables, each 

divided by its degrees of freedom. The chi-square distribution relates the sample and 
population variances for a normally distributed population. Hypothesis tests that use the 
F distribution depend on the assumption of a normal distribution. The characteristics of 
the F distribution are summarized next.

The F Distribution
We have two independent random samples with nx and ny observations from 
two normal populations with variances s2

x and s2
y. If the sample variances are 

s 2
x and s 2

y, then the random variable

 F =
s2

x>s2
x

s2
y>s2

y
 (10.18)

has an F distribution with numerator degrees of freedom (nx - 1) and 
 denominator degrees of freedom (ny - 1).

An F distribution with numerator degrees of freedom v1 and denominator de-
grees of freedom v2 is denoted Fv1,v2

. We denote as Fv1,v2,a the number for which

P 1Fv1,v2
7 Fv1,v2,a2 = a

We need to emphasize that this test is quite sensitive to the assumption of 
normality.

The cutoff points for Fv1,v2,a, for a equal to 0.05 and 0.01, are provided in Appendix Table 9. 
For example, for 10 numerator degrees of freedom and 20 denominator degrees of freedom, 
we see from the table that

F10,20,0.05 = 2.348 and F10,20,0.01 = 3.368

Hence,

P1F10,20 7 2.3482 = 0.05 and P1F10,20 7 3.3682 = 0.01

Figure 10.4 presents a schematic description of the F distribution for this example.  
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Figure 10.4  

F Probability Density 
Function with 10 
Numerator Degrees 
of Freedom and 
20 Denominator 
Degrees of Freedom

0 F1 2
2.348

a 5 0.05

3 4

In practical applications we usually arrange the F ratio so that the larger sample vari-
ance is in the numerator and the smaller is in the denominator. Thus, we need to use only 
the upper cutoff points to test the hypothesis of equality of variances. When the popula-
tion variances are equal, the F random variable becomes

F =
s2

x

s2
y

and this ratio of sample variances becomes the test statistic. The intuition for this test is 
quite simple: If one of the sample variances greatly exceeds the other, then we must con-
clude that the population variances are not equal. The hypothesis tests of equality of vari-
ances are summarized as follows.

Tests of Equality of Variances from Two  
Normal Populations
Let s 2

x and s 2
y be observed sample variances from independent random samples of 

size nx and ny from normally distributed populations with variances s2
x and s2

y. Use 
s 2

x to denote the larger variance. Then the following tests have significance level a:

1. To test either null hypothesis

H0 : s2
x = s2

y or H0 : s2
x … s2

y

 against the alternative

H1 : s2
x 7 s2

y

 the decision rule is as follows:

 reject H0 if F =
s2

x

s2
y

7 Fnx - 1,ny - 1,a (10.19)

2. To test the null hypothesis

H0 : s2
x = s2

y

 against the two-sided alternative

H1 : s2
x ? s2

y

 the decision rule is as follows:

 reject H0 if F =
s2

x

s2
y

7 Fnx - 1,ny - 1,a>2 (10.20)

 where s 2
x is the larger of the two sample variances. Since either sample 

variance could be larger, this rule is actually based on a two-tailed test, 
and, hence, we use a>2 as the upper-tail probability.

Here, Fnx -1, ny -1 is the number for which

P 1Fnx - 1,ny - 1 7 Fnx - 1,ny - 1,a2 = a
 where Fnx -1, ny -1 has an F distribution with (nx - 1) numerator degrees of 

freedom and (ny - 1) denominator degrees of freedom.
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For all these tests a p-value is the probability of getting a value at least as 
extreme as the one obtained, given the null hypothesis. Because of the com-
plexity of the F distribution, critical values are computed for only a few special 
cases. Thus, p-values will be typically computed using a statistical package 
such as Minitab.

Example 10.6 Study of Maturity Variances 
(Hypothesis Tests for the Equality of Two Variances)

The research staff of Investors Now, an online financial trading firm, was interested in 
determining if there is a difference in the variance of the maturities of AAA-rated in-
dustrial bonds compared to CCC-rated industrial bonds.

Solution This question requires that we design a study that compares the population 
variances of maturities for the two different bonds. We will test the null hypothesis

H0 : s2
x = s2

y

against the alternative hypothesis

H1 : s2
x ? s2

y

where s2
x is the variance in maturities for AAA-rated bonds and s2

y is the variance 
in maturities for CCC-rated bonds. The significance level of the test was chosen as 
a = 0.02.

The decision rule is to reject H0 in favor of H1 if

s2
x

s2
y

7 Fnx -1,ny -1,a>2
Note here that either sample variance could be larger, and we place the larger sam-
ple variance in the numerator. Hence, the probability for this upper tail is a>2. A ran-
dom sample of 17 AAA-rated bonds resulted in a sample variance s2

x = 123.35, and 
an independent random sample of 11 CCC-rated bonds resulted in a sample variance 
s2

y = 8.02. The test statistic is as follows:

s2
x

s2
y
=

123.35
8.02

= 15.380

Given a significance level of a = 0.02, we find that the critical value of F, from in-
terpolation in Appendix Table 9, is as follows:

F16,10,0.01 = 4.520

Clearly, the computed value of F (15.380) exceeds the critical value (4.520), and we re-
ject H0 in favor of H1. Thus, there is strong evidence that variances in maturities are dif-
ferent for these two types of bonds.

EXERCISES

Basic Exercise
 10.22 Test the hypothesis

H0 : s2
x = s2

y

H1 : s2
x 7 s2

y

  using the following data.

a. s2
x = 125, ny = 45; s2

y = 51, ny = 41

b. s2
x = 125, ny = 45; s2

y = 235, ny = 44

c. s2
x = 134, ny = 48; s2

y = 51, ny = 41

d. s2
x = 88, ny = 39; s2

y = 167, ny = 25
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10.5 SOME COMMENTS ON HYPOTHESIS TESTING

In this chapter we have presented several important applications of hypothesis-testing 
methodology. In an important sense, this methodology is fundamental to decision mak-
ing and analysis in the face of random variability. As a result, the procedures have great 
applicability to a number of research and management decisions. The procedures are rela-
tively easy to use, and various computer processes minimize the computational effort. 
Thus, we have a tool that is appealing and quite easy to use. However, there are some 
subtle problems and areas of concern that we need to consider to avoid serious mistakes.

The null hypothesis plays a crucial role in the hypothesis-testing framework. In a typ-
ical investigation we set the significance level, a, at a small probability value. Then, we 
obtain a random sample and use the data to compute a test statistic. If the test statistic is 
outside the acceptance region (depending on the direction of the test), the null hypothesis 
is rejected and the alternative hypothesis is accepted. When we do reject the null hypoth-
esis, we have strong evidence—a small probability of error—in favor of the alternative 
hypothesis. In some cases we may fail to reject a drastically false null hypothesis simply 
because we have only limited sample information or because the test has low power. A test 
with low power usually results from a small sample size, poor measurement procedures, 
a large variance in the underlying population, or some combination of these factors. There 

Application Exercises
 10.23 It is hypothesized that the more expert a group of people 

examining personal income tax filings, the more  variable 
the judgments will be about the accuracy. Independent 
random samples, each of 30 individuals, were cho-
sen from groups with different levels of expertise. The 
low-expertise group consisted of people who had just 
completed their first intermediate accounting course. 
Members of the high-expertise group had completed 
undergraduate studies and were employed by repu-
table CPA firms. The sample members were asked to 
judge the accuracy of personal income tax filings. For the 
low-expertise group, the sample variance was 451.770, 
whereas for the high-expertise group, it was 1,614.208. 
Test the null hypothesis that the two population vari-
ances are equal against the alternative that the true 
 variance is higher for the high-expertise group.

 10.24 It is hypothesized that the total sales of a corporation 
should vary more in an industry with active price 
competition than in one with duopoly and tacit col-
lusion. In a study of the merchant ship production 
industry it was found that in 4 years of active price 
competition, the variance of company A’s total sales 
was 114.09. In the following 7 years, during which 
there was duopoly and tacit collusion, this variance 
was 16.08. Assume that the data can be regarded as 
an independent random sample from two normal 
 distributions. Test, at the 5% level, the null hypothesis 
that the two population variances are equal against 
the alternative that the variance of total sales is higher 
in years of active price competition.

 10.25 In light of a number of recent large-corporation bank-
ruptcies, auditors are becoming increasingly concerned 
about the possibility of fraud. Auditors might be helped 
in determining the chances of fraud if they carefully 
measure cash flow. To evaluate this possibility, samples 
of midlevel auditors from CPA firms were presented 
with cash-flow information from a fraud case, and they 

were asked to indicate the chance of material fraud on 
a scale from 0 to 100. A random sample of 36 auditors 
used the cash-flow information. Their mean assessment 
was 36.21, and the sample standard deviation was 22.93. 
For an independent random sample of 36 auditors not 
using the cash-flow information, the sample mean and 
standard deviation were respectively 47.56 and 27.56.

Test the assumption that population variances for 
assessments of the chance of material fraud were the 
same for auditors using cash-flow information as for 
auditors not using cash-flow information against a 
two-sided alternative hypothesis.

 10.26 A publisher is interested in the effects on sales of col-
lege texts that include more than 100 data files. The 
publisher plans to produce 20 texts in the business 
area and randomly chooses 10 to have more than 100 
data files. The remaining 10 are produced with at most 
100 data files. For those with more than 100, first-year 
sales averaged 9,254, and the sample standard devia-
tion was 2,107. For the books with at most 100, average 
first-year sales were 8,167, and the sample standard 
deviation was 1,681. Assuming that the two popula-
tion distributions are normal, test the null hypothesis 
that the population variances are equal against the 
alternative that the population variance is higher for 
books with more than 100 data files.

 10.27 A university research team was studying the rela-
tionship between idea generation by groups with 
and without a moderator. For a random sample of 
four groups with a moderator, the mean number of 
ideas generated per group was 78.0, and the standard 
deviation was 24.4. For a random sample of four 
groups without a moderator, the mean number of 
ideas generated was 63.5, and the standard deviation 
was 20.2. Test the assumption that the two popula-
tion variances were equal against the alternative that 
the population variance is higher for groups with a 
moderator.
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may be important cases where this outcome is appropriate. For example, we would not 
change an existing process that is working effectively unless we had strong evidence that 
a new process clearly would be better. In other cases, however, the special status of the 
null hypothesis is neither warranted nor appropriate. In those cases we might consider 
the costs of making both Type I and Type II errors in a decision process. We might also 
consider a different specification of the null hypothesis— noting that rejection of the null 
provides strong evidence in favor of the alternative. When we have two alternatives, we 
could initially choose either as the null hypothesis. In the  cereal-package-weight example 
at the beginning of Chapter 9, the null hypothesis could be either that

H0 : m Ú 16

or that

H0 : m … 16

In the first case rejection would provide strong evidence that the population mean weight is 
less than 16. In the latter case rejection would provide strong evidence that the population 
mean weight is greater than 16. As we have indicated, failure to reject either of these null 
hypotheses would not provide strong evidence. There are also procedures for controlling 
both Type I and Type II errors simultaneously (see, for example, Carlson and Thorne 1997).

Our work in Chapter 10 considers null hypotheses for the differences between popu-
lation means of the form

H0 : m1 - m2 Ú 16

or

H0 : m1 - m2 … 16

The entire discussion here applies similarly to hypothesis tests on the difference between 
population means.

On some occasions very large amounts of sample information are available, and 
we  reject the null hypothesis even when differences are not practically important. Thus, 
we need to contrast statistical significance with a broader definition of significance. 
 Suppose that very large samples are used to compare annual mean family incomes in two 
cities. One result might be that the sample means differ by $2.67, and that difference might 
lead us to reject a null hypothesis and thus conclude that one city has a higher mean family 
income than the other. Although that result might be statistically significant, it clearly has 
no practical significance with respect to consumption or quality of life.

In specifying a null hypothesis and a testing rule, we are defining the test conditions 
before we look at the sample data that were generated by a process that includes a random 
component. Thus, if we look at the data before defining the null and alternative hypothe-
ses, we no longer have the stated probability of error, and the concept of “strong evidence” 
resulting from rejecting the null hypothesis is not valid. For example, if we decide on the 
significance level of our test after we have seen the p-values, then we cannot interpret our 
results in probability terms. Suppose that an economist compares each of five different in-
come-enhancing programs against a standard minimal level using a  hypothesis test. After 
collecting the data and computing p-values, she determines that the null hypothesis—in-
come not above the standard minimal level—can be rejected for one of the five programs 
with a significance level of a = 0.20. Clearly, this result violates the proper use of hypoth-
esis testing. But we have seen this done by supposedly research professionals.

As statistical computing tools have become more powerful, there are a number of new 
ways to violate the principle of specifying the null hypothesis before seeing the data. The 
recent popularity of data mining—using a computer program to search for  relationships 
between variables in a very large data set—introduces new possibilities for abuse. Data 
mining provides a description of subsets and differences in a particularly large sample of data. 
However, after seeing the results from a data-mining operation, analysts may be tempted to 
define hypothesis tests that will use random samples from the same data set. This clearly vi-
olates the principle of defining the hypothesis test  before seeing the data. A drug company 
may screen large numbers of medical treatment cases and discover that 5 out of 100 drugs 
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have significant effects for the treatment of diseases that were not specified for treatment 
based on initial tests for these drugs. Such a result might legitimately be used to identify 
potential research questions for a new research study with new random samples. However, 
if the original data are then used to test a hypothesis concerning the treatment benefits of the 
five drugs, we have a serious violation of the proper application of hypothesis testing, and 
none of the probabilities of error are correct.

Defining the null and alternative hypotheses requires careful consideration of the ob-
jectives of the analysis. For example, we might be faced with a proposal to introduce a 
specific new production process. In one case the present process might include consider-
able new equipment, well-trained workers, and a belief that the process performs very 
well. In that case we would define the productivity for the present process as the null 
hypothesis and the new process as the alternative. Then, we would adopt the new pro-
cess only if there is strong evidence—rejecting the null hypothesis with a small a—that 
the new process has higher productivity. Alternatively, the present process might be old 
and include equipment that needs to be replaced and a number of workers that require 
supplementary training. In that case we might choose to define the new process produc-
tivity as the null hypothesis. Thus, we would continue with the old process only if there is 
strong evidence that the old process’s productivity is higher.

When we establish control charts for monitoring process quality using acceptance in-
tervals as in Chapter 6, we set the desired process level as the null hypothesis and we 
also set a very small significance level—a 6 0.01. Thus, we reject only when there is very 
strong evidence that the process is no longer performing properly. However, these con-
trol-chart hypothesis tests are established only after there has been considerable work to 
bring the process under control and minimize its variability. Therefore, we are quite con-
fident that the process is working properly, and we do not wish to change in response 
to small variations in the sample data. But, if we do find a test statistic from sample data 
outside the acceptance interval and hence reject the null hypothesis, we can be quite con-
fident that something has gone wrong and we need to carefully investigate the process 
immediately to determine what has changed in the original process.

The tests developed in this chapter are based on the assumption that the underlying 
distribution is normal or that the central limit theorem applies for the distribution of sam-
ple means or proportions. When the normality assumption no longer holds, those probabil-
ities of error may not be valid. Since we cannot be sure that most populations are precisely 
normal, we might have some serious concerns about the validity of our tests. Considerable 
research has shown that tests involving means do not strongly depend on the normality as-
sumption. These tests are said to be “robust” with respect to normality. However, tests in-
volving variances are not robust. Thus, greater caution is required when using hypothesis 
tests based on variances. In Chapter 5 we showed how we can use normal probability plots 
to quickly check to determine if a sample is likely to have come from a normally distrib-
uted population. This should be part of good practice in any statistical study of the types 
discussed in this textbook.
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CHAPTER EXERCISES AND APPLICATIONS

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

make, test, at the 1% level, the null hypothesis that the 
population means are the same against the alternative 
that the mean is higher for eight-member groups.

 10.33 You have been hired by the National Nutrition 
Council to study nutrition practices in the 

United States. In particular they want to know if their 
nutrition guidelines are being met by people in the 
United States. These guidelines indicate that per capita 
consumption of fruits and vegetables should be above 
170 pounds per year, per capita consumption of snack 
foods should be less than 114 pounds, per capita con-
sumption of soft drinks should be less than 65 gallons, 
and per capita consumption of meat should be more 
than 70 pounds. In this project you are to determine if 
the consumption of these food groups are greater in 
the metro compared to the non-metro counties. As part 
of your research you have developed the data file Food 
Nutrition  Atlas—described in the Chapter 9 appen-
dix—which contains a number of nutrition and popu-
lation variables collected by county over all states. It is 
true that some counties do not report all of the vari-
ables. Perform an analysis using the available data and 
prepare a short report indicating how well the nutri-
tion guidelines are being met. Your conclusions should 
be supported by rigorous statistical analysis.

 10.34 A recent report from a health concerns study 
 indicated that there is strong evidence of a na-

tion’s overall health decay if the percent of obese 
adults exceeds 28%. In addition, if the low-income 
preschool obesity rate exceeds 13%, there is great con-
cern about long-term health. You are asked to conduct 
an analysis to determine if there is a difference in these 
two obesity rates in metro versus nonmetro counties. 
Use the data file Food Nutrition Atlas—described in 
the Chapter 9 appendix—as the basis for your statisti-
cal analysis. Prepare a rigorous analysis and a short 
statement that reports your statistical results and your 
conclusions.

 10.35 Independent random samples of business and eco-
nomics faculty were asked to respond on a scale from 
1 (strongly disagree) to 4 (strongly agree) to this state-
ment: The threat and actuality of takeovers of publicly held 
companies provide discipline for boards and managers to 
maximize the value of the company to shareholders. For a 
sample of 202 business faculty, the mean response was 
2.83 and the sample standard deviation was 0.89. For 
a sample of 291 economics faculty, the mean response 
was 3.00 and the sample standard deviation was 0.67. 
Test the null hypothesis that the population means are 
equal against the alternative that the mean is higher for 
economics faculty.

 10.36 Independent random samples of patients who had re-
ceived knee and hip replacement were asked to assess the 
quality of service on a scale from 1 (low) to 7 (high). For a 
sample of 83 knee patients, the mean rating was 6.543 and 
the sample standard deviation was 0.649. For a sample of 
54 hip patients, the mean rating was 6.733 and the sample 
standard deviation was 0.425. Test, against a two-sided 
alternative, the null hypothesis that the population mean 
ratings for these two types of patients are the same.

Note:  If the probability of Type I error is not indicated, select a 
level that is appropriate for the situation described.

 10.28 A statistician tests the null hypothesis that the proportion of 
men favoring a tax reform proposal is the same as the pro-
portion of women. Based on sample data, the null hypoth-
esis is rejected at the 5% significance level. Does this imply 
that the probability is at least 0.95 that the null hypothesis 
is false? If not, provide a valid probability statement.

 10.29 In a study of performance ratings of ex-smokers, a ran-
dom sample of 34 ex-smokers had a mean rating of 2.21 
and a sample standard deviation of 2.21. For an indepen-
dent random sample of 86 long-term  ex-smokers, the 
mean rating was 1.47 and the sample standard deviation 
was 1.69. Find the lowest level of significance at which 
the null hypothesis of equality of the two population 
means can be rejected against a two-sided alternative.

 10.30 Independent random samples of business managers 
and college economics faculty were asked to respond 
on a scale from 1 (strongly disagree) to 7 (strongly 
agree) to this statement: Grades in advanced econom-
ics are good indicators of students’ analytical skills. For 
a sample of 70 business managers, the mean response 
was 4.4 and the sample standard deviation was 1.3. For 
a sample of 106 economics faculty the mean response 
was 5.3 and the sample standard deviation was 1.4.

a. Test, at the 5% level, the null hypothesis that the 
population mean response for business managers 
would be at most 4.0.

b. Test, at the 5% level, the null hypothesis that the 
population means are equal against the alternative 
that the population mean response is higher for 
economics faculty than for business managers.

 10.31 Independent random samples of bachelor’s and mas-
ter’s degree holders in statistics, whose initial job was 
with a major actuarial firm and who subsequently 
moved to an insurance company, were questioned. 
For a sample of 44 bachelor’s degree holders, the mean 
number of months before the first job change was 35.02 
and the sample standard deviation was 18.20. For a 
sample of 68 master’s degree holders, the mean number 
of months before the first job change was 36.34 and the 
sample standard deviation was 18.94. Test, at the 10% 
level against a two-sided alternative, the null hypothe-
sis that the population mean numbers of months before 
the first job change are the same for the two groups.

 10.32 A study was aimed at assessing the effects of group size 
and group characteristics on the generation of adver-
tising concepts. To assess the influence of group size, 
groups of four and eight members were compared. For 
a random sample of four-member groups, the mean 
number of advertising concepts generated per group 
was 78.0 and the sample standard deviation was 24.4. 
For an independent random sample of eight-member 
groups, the mean number of advertising concepts gen-
erated per group was 114.7 and the sample standard 
deviation was 14.6. (In each case, the groups had a 
moderator.) Stating any assumptions that you need to 
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Prepare a rigorous analysis and a short statement that re-
ports your statistical results and your conclusions.

 10.43 National education officials are concerned that 
there may be a large number of low-income stu-

dents who are eligible for free lunches in their schools. 
They also believe that the percentage of students eligi-
ble for free lunches is larger in rural areas.

As part of a larger research study, you have been 
asked to determine if rural counties have a greater 
percentage of students eligible for free lunches com-
pared to urban residents. As your study begins you 
obtain the data file Food Nutrition Atlas—described 
in the Chapter 9 appendix—which contains a number 
of health and nutrition variables measured over coun-
ties in the United States. Perform an analysis to deter-
mine if there is strong evidence to conclude that rural 
residents have higher rates of free-lunch eligibility 
and prepare a short report on your results.

 10.44 You are in charge of rural economic development in a 
rapidly developing country that is using its newfound oil 
wealth to develop the entire country. As part of your re-
sponsibility you have been asked to determine if there is 
evidence that the new rice-growing procedures have in-
creased output per hectare. A random sample of 27 fields 
was planted using the old procedure, and the sample 
mean output was 60 per hectare with a sample variance 
of 100. During the second year the new procedure was 
applied to the same fields and the sample mean output 
was 64 per hectare, with a sample variance of 150. The 
sample correlation between the two fields was 0.38. The 
population variances are assumed to be equal, and that 
assumption should be used for the problem analysis.
a. Use a hypothesis test with a probability of Type I 

error = 0.05 to determine if there is strong evidence 
to support the conclusion that the new process leads 
to higher output per hectare, and interpret the results.

b. Under the assumption that the population variances 
are equal, construct a 95% acceptance interval for 
the ratio of the sample variances. Do the observed 
sample variances lead us to conclude that the popu-
lation variances are the same? Please explain.

 10.45 The president of Amalgamated Retailers Interna-
tional, Samiha Peterson, has asked for your assistance 
in studying the market penetration for the company’s 
new cell phone. You are asked to study two markets 
and determine if the difference in market share remains 
the same. Historically, in market 1 in western Poland, 
Amalgamated has had a 30% market share. Similarly, 
in market 2 in southern Austria, Amalgamated has had 
a 35% market share. You obtain a random sample of 
potential customers from each area. From market 1, 
258 out of a total sample of 800 indicate they will pur-
chase from Amalgamated. From market 2, 260 out of 
700 indicate they will purchase from Amalgamated.
a. Using a probability of error a = 0.03, test the hypoth-

esis that the market shares are equal versus the hy-
pothesis that they are not equal (market 2 – market 1).

b. Using a probability of error a = 0.03, test the hy-
pothesis that the market shares are equal versus 
the hypothesis that the share in market 2 is larger.

 10.46 National education officials are concerned that 
there may be a large number of low-income 

 10.37 Of a random sample of 148 accounting majors, 75 rated 
a sense of humor as a very important trait to their career 
performance. This same view was held by 81 of an inde-
pendent random sample of 178 finance majors.

a. Test, at the 5% level, the null hypothesis that at 
least one-half of all finance majors rate a sense of 
humor as very important.

b. Test, at the 5% level against a two-sided alternative, 
the null hypothesis that the population proportions 
of accounting and finance majors who rate a sense 
of humor as very important are the same.

 10.38 Aimed at finding substantial earnings decreases, a ran-
dom sample of 23 firms with substantial earnings de-
creases showed that the mean return on assets 3 years 
previously was 0.058 and the sample standard devia-
tion was 0.055. An independent random sample of 23 
firms without substantial earnings decreases showed 
a mean return of 0.146 and a standard deviation 0.058 
for the same period. Assume that the two population 
distributions are normal with equal standard devia-
tions. Test, at the 5% level, the null hypothesis that 
the population mean returns on assets are the same 
against the alternative that the true mean is higher for 
firms without substantial earnings decreases.

 10.39 Random samples of employees were drawn in fast-
food restaurants where the employer provides a train-
ing program. Of a sample of 67 employees who had not 
completed high school, 11 had participated in a training 
program provided by their current employer. Of an in-
dependent random sample of 113 employees who had 
completed high school but had not attended college, 27 
had participated. Test, at the 1% level, the null hypoth-
esis that the participation rates are the same for the two 
groups against the alternative that the rate is lower for 
those who have not completed high school.

 10.40 Of a random sample of 69 health insurance firms, 47 
did public relations in-house, as did 40 of an indepen-
dent random sample of 69 casualty insurance firms. 
Find and interpret the p-value of a test of equality of the 
population proportions against a two-sided alternative.

 10.41 Independent random samples were taken of male and fe-
male clients of University Entrepreneurship Centers. These 
clients were considering starting a business. Of 94 male 
clients, 53 actually started a business venture, as did 47 of 
68 female clients. Find and interpret the p-value of a test 
of equality of the population proportions against the alter-
native that the proportion of female clients actually starting 
a business is higher than the proportion of male clients.

 10.42 A recent report from a health concerns study indi-
cated that there is strong evidence of a nation’s 

overall health decay if the percent of obese adults exceeds 
28%. In addition, if the low-income preschool obesity rate 
exceeds 13%, there is great concern about long-term health. 
You are asked to conduct an analysis to determine if there 
is a difference in these two obesity rates in metro versus 
nonmetro counties. Your analysis is restricted to counties 
in the following states; California, Michigan, Minnesota, 
and Florida. Conduct your analysis for each state. Use the 
data file Food Nutrition Atlas—described in the Chapter 9 
appendix—as the basis for your statistical analysis. You 
will first need to obtain a subset of the data file using the 
capabilities of your statistical analysis computer program. 
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weight of 8 ounces with a population variance of 0.04. 
The package of flour B has a population mean weight of 
8 ounces and a population variance of 0.06. The package 
weights have a correlation of 0.40. The A and B packages 
are mixed together to obtain a 16-ounce package of spe-
cial exotic flour. Every 60 minutes a random sample of 
four packages of exotic flour is selected from the process, 
and the mean weight for the four packages is computed. 
Prepare a 99%  acceptance interval for a quality-control 
chart for the sample means from the sample of four pack-
ages. Show all your work and explain your reasoning. Ex-
plain how this acceptance chart would be used to ensure 
that the package weights continue to meet the standard.

 10.50 A study was conducted to determine if there was a 
difference in humor content in British and Ameri-

can trade magazine advertisements. In an independent 
random sample of 270 American trade magazine adver-
tisements, 56 were humorous. An independent random 
sample of 203 British trade magazine advertisements con-
tained 52 humorous ads. Do these data provide evidence 
that there is a difference in the proportion of humorous 
ads in British versus American trade magazines?
Nutrition Research–Based Exercises

  A large research study conducted by the Economic Re-
search Service (ERS), a prestige think tank research cen-
ter in the U.S. Department of Agriculture is conducting 
a series of research studies to determine the nutrition 
characteristics of people in the United States. This re-
search is used for both nutrition education and govern-
ment policy designed to improve personal health.

The U.S. Department of Agriculture (USDA) devel-
oped the Healthy Eating Index (HEI) to monitor the diet 
quality of the U.S. population, particularly how well it 
conforms to dietary guidance. The HEI–2005 measures 
how well the population follows the recommendations 
of the 2005 Dietary Guidelines for Americans. In par-
ticular, it measures, on a 100-point scale, the adequacy 
of consumption of vegetables, fruits, grains, milk, meat 
and beans, and liquid oils. Full credit for these groups is 
given only when the consumer consumes some whole 
fruit, vegetables from the dark green, orange, and le-
gume subgroup, and whole grains. In addition the 
HEI–2005 measures how well the U.S. population limits 
consumption of saturated fat, sodium, and extra calories 
from solid fats, added sugars, and alcoholic beverages. 
You will use the Total HEI–2005 score as the measure of 
the quality of a diet. Further background on the HEI and 
important research on nutrition can be found at the gov-
ernment Web sites indicated at the end of this case-study 
document.

A healthy diet results from a combination of appro-
priate food choices, which are strongly influenced by 
a number of behavioral, cultural, societal, and health 
conditions. We cannot simply tell people to drink or-
ange juice, purchase all food from organic farms, or 
take some new miracle drug. Research and experience 
have developed considerable knowledge, and if we, for 
example, follow the diet guidelines associated with the 
food pyramid, we will be healthier. It is also important 
that we know more about the characteristics that lead to 
healthier diets so that better recommendations and pol-
icies can be developed. And, of course, better diets will 
lead to a higher quality of life and lowered medical-care 

students who are eligible for free lunches in their 
schools. They also believe that the percentage of stu-
dents eligible for free lunches is larger in rural areas.

As part of a larger research study you have been 
asked to determine if rural counties have a greater per-
centage of students eligible for free lunches compared 
to urban residents. In this part of the study you are to 
answer the free-lunch-eligibility question for each of 
the three states, California, Texas, and Florida. For this 
study you will have to learn how to create subsets from 
large data files using your local  statistical  package. 
Assistance for that effort can be obtained from your 
professor, teaching assistant, the Help  option in your 
statistical package, or similar sources. As your study 
begins, you obtain the data file Food Nutrition Atlas—
described in the Chapter 9  appendix—which contains 
a number of health and nutrition variables measured 
over counties in the United States. Perform an analy-
sis to determine if there is strong evidence to conclude 
that rural residents have higher rates of  eligibility for 
free lunches and prepare a short report on your results.

 10.47 You are the product manager for brand 4 in a large 
food company. The company president has 

 complained that a competing brand, called brand 2, has 
higher average sales. The data services group has stored 
the latest product sales (saleb2 and saleb4) and price data 
(apriceb2 and apriceb4) in a file named Storet described in 
Chapter 10 appendix.

a. Based on a statistical hypothesis test, does the pres-
ident have strong evidence to support her com-
plaint? Show all statistical work and reasoning.

b. After analyzing the data, you note that a large 
outlier of value 971 is contained in the sample for 
brand 2. Repeat part a with this extreme observa-
tion removed. What do you now conclude about 
the president’s complaint?

 10.48 Joe Ortega is the product manager for Ole ice 
cream. You have been asked to determine if Ole 

ice cream has greater sales than Carl’s ice cream, which is 
a strong competitor. The data file Ole contains weekly 
sales and price data for the competing brands over the 
year in three different supermarket chains. These sample 
data represent a random sample of all ice cream sales for 
the two brands. The variable names clearly identify the 
variables.

a. Design and implement an analysis to determine 
if there is strong evidence to conclude that Ole ice 
cream has higher mean sales than Carl’s ice cream 1a = 0.052. Explain your procedure and show all 
computations. You may include Minitab output if 
appropriate to support your analysis. Explain your 
conclusions.

b. Design and implement an analysis to determine if 
the prices charged for the two brands are differ-
ent 1a = 0.052. Carefully explain your analysis, 
show all computations, and interpret your results.

 10.49 Mary Peterson is in charge of preparing blended flour for 
exotic bread making. The process is to take two different 
types of flour and mix them together in order to achieve 
high-quality breads. For one of the products, flour A and 
flour B are mixed together. The package of flour A comes 
from a packing process that has a population mean 
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costs. In the following exercises you will apply your un-
derstanding of statistical analysis to perform analysis 
similar to that done by professional researchers.

The data file HEI Cost Data Variable Subset con-
tains considerable information on randomly selected 
 individuals who participated in an extended interview 
and medical examination. There are two observations for 
each person in the study. The first observation, identified 
by daycode = 1, contains data from the first interview, 
and the second observation, daycode = 2, contains data 
from the second interview. This data file contains the data 
for the following exercises. The variables are  described in 
the data dictionary in the  Chapter 10 appendix.

 10.51 Individuals have their HEI measured on two dif-
ferent days with the first and second day indi-

cated by the variable daycode. A number of researchers 
argue that individuals will have a higher-quality diet for 
the second interview because they will adjust their diet 
after the first interview. You are asked to perform an ap-
propriate hypothesis test to determine if there is strong 
evidence to conclude that individuals have a higher HEI 
on the second day compared to the first day.

 10.52 Previous research has suggested that immigrants 
in the United States have a stronger interest in 

good diet compared to the rest of the population. If 
true, this behavior could result from a desire for overall 
life improvement, historical experience from their pre-
vious country, or some other complex rationale. You 
have been asked to determine if immigrants (variable 
immigrant = 1) have healthier diets compared to non-
immigrants 1= 02. Perform an appropriate statistical 
test to determine if there is strong evidence to conclude 
that immigrants have better diets compared to natives.

You will do the analysis based first on the data from 
the first interview, create subsets of the data file using 
daycode = 1; then a second time, using data from the 
second interview, create subsets of the data file using 
daycode = 2. Note differences in the results between 
the first and second interviews.

 10.53 There is an increasing interest in healthier life-
styles, especially among the younger population. 

This is exhibited in the increased interest in exercise 
and a variety of emphases on eating foods that contrib-
ute to a higher-quality diet. You have been asked to de-
termine if people who are physically active (variable 
activity level = 2 or 3) have healthier diets compared 
to those who are not (variable activity level = 1). De-
termine if there is strong evidence for your conclusion. 
You will do the analysis based first on the data from the 
first interview and create subsets of the data file using 
daycode = 1, and then a second time using data from 
the second interview, creating subsets of the data file 
using daycode = 2. Note differences in the results be-
tween the first and second interviews.

 10.54 Various research studies and personal lifestyle ad-
visers argue that increased social interaction is im-

portant for a higher quality of life. You have been asked 
to determine if people who are single (variable single = 1) 
have a healthier diet than those who are married or living 
with a partner. Determine if there is strong evidence for 
your conclusion. You will do the analysis based first on 
the data from the first interview, creating subsets of the 

data file using daycode = 1, and a second time using 
data from the second interview, creating subsets of the 
data file using daycode = 2. Note differences in the re-
sults between the first and second interviews.

 10.55 Throughout society there are various claims of 
behavioral differences between men and women 

on many different characteristics. You have been asked 
to conduct a comparative study of diet quality between 
men and women. The variable female is coded 1 for fe-
males and 0 for males. Perform an appropriate analysis 
to determine if men and women have different diet-
quality levels. You will do the analysis based first on 
the data from the first interview by creating subsets of 
the data file using daycode = 1 and then a second time 
using data from the second interview, creating subsets 
of the data file using daycode = 2. Note differences in 
the results between the first and second interviews.

 10.56 A recent radio commentator argued that his expe-
rience indicated that women believed that pur-

chasing higher-cost food would improve their lifestyle. Is 
there evidence to conclude that women have a lower daily 
food cost compared to men (daily-cost)? Use an appropri-
ate test to determine the answer. You will do the analysis 
based first on the data from the first interview, creating 
subsets of the data file using daycode = 1, and a second 
time using data from the second interview, creating sub-
sets of the data file using daycode = 2. Note differences 
in the results between the first and second interviews.

 10.57 The food stamp program has been part of a long-
term public policy to ensure that lower-income 

families will be provided with adequate nutrition at lower 
cost. Some people argue that providing food income sup-
plements will merely encourage lower-income people to 
purchase more expensive food, without any improve-
ment in their diet. Perform an analysis to determine how 
the nutrition level of people receiving food stamps com-
pares with the rest of the population. Is there evidence that 
people who receive food stamps have a higher-quality 
diet compared to the rest of the population? Is there evi-
dence that they have a lower-quality diet? Is there evi-
dence that people who receive food stamps spend more 
for their food compared to the rest of the population? Is 
there evidence that they spend less for their food? Based 
on your statistical analysis, what do you conclude about 
the food stamp program? You will do the analysis based 
first on the data from the first interview, creating subsets 
of the data file using daycode = 1, and a second time us-
ing data from the second interview, creating subsets of the 
data file using daycode = 2. Note differences in the re-
sults between the first and second interviews.

 10.58 Excess body weight is, of course, related to diet, 
but, in turn, what we eat depends on who we are 

in terms of culture and our entire life experience. Does 
the immigrant population have a lower percentage of 
people that are overweight compared to the remainder 
of the population? Provide strong evidence to support 
your conclusion. You will do the analysis based first on 
the data from the first interview, creating subsets of 
the data file  using daycode = 1, and a second time us-
ing data from the second interview, creating subsets of 
the data file using  daycode = 2. Note differences in the 
results  between the first and second interviews.
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Data File Descriptions
VARIABLE LIST FOR DATA FILE HEI COST DATA 
VARIABLE SUBSET

Variable Label
  1 Suppl Take supplements
  2 doc_bp 1 – Doctor diagnosed high blood pressure
  3 daycode 1 – First interview day, 2 – Second interview day
  4 sr_overweight 1 – Subject reported was overweight
  5 try_wl 1 – Tried to lose weight
  6 try_mw 1 – Trying to maintain weight, active
  7 sr_did_lm_wt 1 – Subject reported did limit weight
  8 daily_cost One day_adjusted_food_cost
  9 HEI2005 TOTAL HEI–2005 SCORE
10 daily_cost2 Daily food cost squared
11 Friday 1 – dietary_recall_occurred_on_Friday
12 weekend_ss 1 – Dietary_recall_occurred_on_Sat_or Sun
13 week_mth 1 – Dietary recall occurred Mon through Thur
14 keeper 1 – Data is complete for 2 days

Figure 10.6 Flow 
Chart for Selecting 
the Appropriate 
Hypothesis Test 
When Comparing 
Two Population 
Proportions
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(continued)

Variable Label

15 WIC 1 – Someone_in_the_HH_participates_in
16 fsp 1 – Someone_in_the_HH_approved_for_food stamps (SNAP program)
17 fsec 1 – Family_has_high_food_security
18 PIR_p Poverty_Income_Ratio_as_Percent (Family Income/Poverty Level Income)
19 PIR_grp Poverty_Income_Ratio_group
20 nhw 1 – Non_Hispanic_White, 0 – Else
21 hisp 1 – Hispanic
22 nhb 1 – Non_Hispanic_Black
23 single 1 – Single__no_partner_in_the_home
24 female 1 – Subject is female
25 waist_cir Waist circumference (cm) separate by male and female
26 waistper Ratio of subject waist measure to waist cutoff for obese
27 age Age at screening adjudicated—Recode
28 hh_size Total number of people in the household
29 WTINT2YR Full Sample 2 Year Interview Weight
30 WTMEC2YR Full Sample 2 Year MEC Exam Weight
31 immigrant 1 – immigrant
32 citizen 1 – U.S citizen
33 native_born 1 – Native born
34 hh_income_est Household income estimated by subject
35 English 1 – Primary Language spoken in Home is English
36 Spanish 1 – Primary Language spoken in Home is Spanish
37 Smoker 1 – Currently smokes
38 doc_chol 1 – Doctor diagnosis of high cholestorol that was made before interview
39 BMI Body Mass Index (kg/m**2) 20–25 Healthy, 26–30 Overweight, 730 Obese
40 doc_dib 1 – Doctor diagnosis diabetes
41 no_days_ph_ng no. of days physical health was not good
42 no_days_mh_ng no. of days mental health was not good
43 doc_ow 1 – Doctor diagnosis overweight was made before interview
44 screen_hours Number of hours in front of computer or TV screen
45 activity_level 1 = Sedentary, 2 = Active, 3 = Very Active
46 total_active_min Active minutes per day
47 waist_large Waist circumference 7  cut_off
48 Pff Percent of calories from fast food, deli, pizza restaurant
49 Prest Percent of Calories from table service restaurant
50 P_Ate_At_Home Percent of Calories eaten at home
51 Hs 1 = High School Graduate
52 Col_grad 1 = College Graduate or Higher
53 Pstore Percent of Calories purchased at store and consumer at home

DESCRIPTION OF DATA FILE STORET

Name Count Description
Weeknum 52 Consecutive week number
saleb1 52 Total unit sales for brand 1
apriceb1 52 Actual retail price for brand 1
rpriceb1 52 Regular or recommended price brand 1
promotb1 52 Promotion code for brand 1

0 No promotion 
1 Newspaper advertising only 
2 In-store display only 
3 Newspaper ad and in-store display
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Name Count Description

saleb2 52 Total unit sales for brand 2
apriceb2 52 Actual retail price for brand 2
rpriceb2 52 Regular or recommended price for brand 2
promotb2 52 Promotion code for brand 2
saleb3 52 Total unit sales for brand 3
apriceb3 52 Actual retail price for brand 3
rpriceb3 52 Regular or recommended price for brand 3
promotb3 52 Promotion code for brand 3
saleb4 52 Total unit sales for brand 4
apriceb4 52 Actual retail price for brand 4
rpriceb4 52 Regular or recommended price for brand 4
promotb4 52 Promotion code for Brand 4
saleb5 52 Total unit sales for Brand 5
apriceb5 52 Actual retail price for Brand 5
rpriceb5 52 Regular or recommended price for Brand 5
promotb5 52 Promotion code for Brand 5
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 11.2 Linear Regression Model
 11.3 Least Squares Coefficient Estimators

Computer Computation of Regression Coefficients
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Introduction

Our study to this point has focused on analysis and inference related to a 
single variable. In this chapter we extend our analysis to relationships be-
tween variables. Our analysis builds on the descriptive relationships using 
scatter plots and covariance/correlation coefficients developed in Chapter 2. 
We assume that the reader is familiar with that material.

The analysis of business and economic processes makes extensive 
use of relationships between variables. These relationships are expressed 
mathematically as

Y = f1X2
where the function can follow linear and nonlinear forms. In many applications 
the form of the relationship is not precisely known. Here, we present analy-
ses based on linear models developed using least squares regression. In many 
cases linear relationships provide a good model of the process. In other cases 
we are interested in a limited portion of a nonlinear relationship that can be 
approximated by a linear relationship. In Section 12.7 we show how some im-
portant nonlinear relationships can also be analyzed using regression analysis.
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Thus, the regression procedures have a broad range of applications, in-
cluding many in business and economics, as indicated in the following 
examples:

• The president of Amalgamated Materials, a manufacturer of dry wall 
building material, believes that the mean annual quantity of dry wall 
sold, Y, in his region is a linear function of the total value of building 
permits issued, X, during the previous year.

• A grain dealer wants to know the effect of total output on price per ton 
so that she can develop a prediction model using historical data.

• The marketing department analysts need to know how gasoline price, X, 
affects total sales of gasoline, Y. By using weekly price and sales data, 
they plan to develop a linear model that will tell them how much sales 
change as the result of price changes.

Each of these relationships can be expressed as a linear model,

Y = b0 + b1X

where b0 and b1 are numerical coefficients for each specific model.
With the advent of many high-quality statistical packages and spread-

sheets such as Excel, it is now possible for almost anyone to compute the 
required coefficients and other regression statistics. Unfortunately, we can-
not interpret and use these computer results correctly without understand-
ing the methodology of regression analysis. In this and the following two 
chapters you will learn key insights that will guide your use of regression 
analysis.

11.1 OVERVIEW OF LINEAR MODELS

In Chapter 2 we saw how the relationship between two variables can be described by us-
ing scatter plots to provide a picture of the relationship and correlation coefficients to pro-
vide a numerical measure. In many economic and business problems, a specific functional 
relationship is needed to obtain numerical results.

• A manager would like to know what mean level of sales can be expected if the price 
is set at $10 per unit.

• If 250 workers are employed in a factory, how many units can be produced during an 
average day?

• If a developing country increases its fertilizer production by 1,000,000 tons, how 
much increase in grain production should it expect?

In many cases we can adequately approximate the desired functional relationships by 
a linear equation,

Y = b0 + b1X

where Y is the dependent, or endogenous, variable, X is the independent, or exogenous, 
variable, b0 is the Y-intercept, and b1 is the slope of the line, or the change in Y for every 
unit change in X. Figure 11.1 is an example of a typical simple regression model showing 
the number of tables produced, Y, using different numbers of workers, X. The assump-
tion made in developing the least squares regression procedure is that for each value of 
X, there will be a corresponding mean value of Y that results because of the underlying 
linear relationship in the process being studied. The linear equation model computes the 
mean of Y for every value of X and is the basis for obtaining many economic and business 
relationships including demand functions, production functions, consumption functions, 
and sales forecasts.
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The slope coefficient b1 is extremely important for many business and economic 
 applications because it indicates the change in an output or endogenous variable for each 
unit change in an input or exogenous variable. The relationship in Figure 11.1

yn = -13.02 + 2.545x

shows that each additional worker, X, increases the number of tables produced, Y, by 
2.545. The intercept, -13.02, merely adjusts the regression line up or down and has no real 
meaning for this application result. This equation is valid only over the range of X, from 
11 to 30. Under certain specific situations the management might have good reasons— 
other than just the estimated regression model—to believe that the linear relationship will 
hold above or below the range of X (11–30). In those cases they might extend the model 
beyond the range of X based on their additional management knowledge.

By using the regression model, management can determine if the value of the in-
creased output is greater than the cost of an additional worker.

We use regression to determine the best linear relationship between Y and X for 
a particular application. This requires us to find the best values for the coefficients b0 
and b1. We use the data available from the process to compute “estimates” or numeri-
cal values for the coefficients, b0, and b1. These estimates—defined as b0 and b1—are 
computed by using least squares regression, a technique widely implemented in statistical 
packages such as Minitab, SPSS, SAS, and STATA and in spreadsheets such as Excel. 
Coefficients are computed for the best-fit line given a set of data points, such as shown 
in Figure 11.1.

Least Squares Regression
The least squares regression line based on sample data is

 yn = b0 + b1x (11.1)

b1 is the slope of the line, or change in y for every unit change in x, and 
 calculated as

 b1 =
Cov1x, y2

s2
x

= r 
sy

sx
 (11.2)

and b0 is the y-intercept calculated as

 b0 = y - b1x (11.3)

Figure 11.1
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Using the following results from Chapter 2,

 s2
x = a 1xi - x22

n - 1

 s2
y = a 1yi - y22

n - 1

 Cov1x, y2 = a 1xi - x21yi - y2
n - 1

 r =
Cov1x, y2

sxsy

Example 11.1 Manufacturing Plant  
(Regression Line)

The Rising Hills Manufacturing Company in Redwood Falls regularly collects data to 
monitor its operations. These data are stored in the data file Rising Hills. The number of 
workers, X, and the number of tables, Y, produced per hour for a sample of 10 workers is 
shown in Figure 11.1. If management decides to employ 25 workers, estimate the  expected 
number of tables that are likely to be produced.

Solution Using the data, we computed the descriptive statistics:

Cov1x, y2 = 106.93, s2
x = 42.01, y = 41.2, x = 21.3

From the covariance we see that the direction of the relationship is positive.
Using the descriptive statistics, we compute the sample regression coefficients:

 b1 =
Cov1x, y2

s2
x

=
106.93
42.01

= 2.545

 b0 = y - b1x = 41.2 - 2.545121.32 = -13.02

From this, the sample regression line is as follows:

yn = b0 + b1x = -13.02 + 2.545x

For 25 employees we would expect to produce

yn = -13.02 + 2.5451252 = 50.605

or approximately 51 tables. In most situations we use a statistical software package 
such as Minitab or a spreadsheet such as Excel to obtain the regression coefficients to 
reduce the work load and improve computational accuracy.

Because the number of workers in the Rising Hill Manufacturing Plant ranged 
from 11 to 30, we cannot predict the number of tables produced per hour if 100 workers 
were employed.

EXERCISES

Basic Exercises
 11.1 Complete the following for the 1x, y2 pairs of data 

points (1, 5), (3, 7), (4, 6), (5, 8), and (7, 9).

a. Prepare a scatter plot of these data points.
b. Compute b1.

c. Compute b0.
d. What is the equation of the regression line?

 11.2 The following data give X, the price charged per 
piece of plywood, and Y, the quantity sold (in 
thousands).
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Price per Piece, X Thousands of Pieces Sold, Y
$6 80

  7 60

  8 70

  9 40

10   0

a. Prepare a scatter plot of these data points.
b. Compute the covariance.
c. Compute and interpret b1.
d. Compute b0.
e. What quantity of plywood would you expect to sell 

if the price were $7 per piece?

 11.3 A random sample of data for 7 days of operation pro-
duced the following (price, quantity) data values:

Price per Gallon of Paint, X Quantity Sold, Y
10 100

  8 120

  5 200

  4 200

10   90

  7 110

  6 150

a. Prepare a scatter plot of the data.
b. Compute and interpret b1.
c. Compute and interpret b0.
d. How many gallons of paint would you expect to sell 

if the price is $7 per gallon?

Application Exercises
 11.4 A large consumer goods company has been studying the 

effect of advertising on total profits. As part of this study, 
data on advertising expenditures and total sales were 
collected for a five-month period and are as follows:110, 1002 115, 2002 17, 802112, 1202 114, 1502

The first number is advertising expenditures and the 
second is total sales.

a. Plot the data.
b. Does the plot provide evidence that advertising 

has a positive effect on sales?
c. Compute the regression coefficients, b0 and b1.

 11.5 Abdul Hassan, president of Floor Coverings Unlim-
ited, has asked you to study the relationship between 
market price and the tons of rugs supplied by his com-
petitor, Best Floor, Inc. He supplies you with the fol-
lowing observations of price per ton and number of 
tons, obtained from his secret files:12, 5214, 10213, 8216, 18213, 6215, 15216, 20212, 42
The first number for each observation is price and the 
second is quantity.

a. Prepare a scatter plot.
b. Determine the regression coefficients, b0 and b1.
c. Write a short explanation of the regression equa-

tion that tells Abdul how the equation can be used 
to describe his competition. Include an indica-
tion of the range over which the equation can be 
applied.

 11.6 The following ordered pairs provide data about 
some Nestlé snacks, where the first number is grams 
of sugar and the second is the number of calories for 
each snack.13, 1102, 114, 1802, 113, 1502, 111, 1202, 18, 1002,15, 702, 17, 1402, 115, 2002, 112, 1302
a. Construct a scatter plot of the data. Does a 

clear linear relationship exist between the two 
variables?

b. Estimate the regression equation and identify the 
value of the slope.

c. Which conclusion can you draw from your 
results?

11.2 LINEAR REGRESSION MODEL

Using basic economics we know that the quantity of goods purchased, Y, in a specific 
market can be modeled as a linear function of the disposable income, X. If income is a 
specific level, xi, purchasers respond by purchasing a quantity, yi. In the real world we 
know there are other factors that influence the actual quantity purchased. These include 
identifiable factors, such as the price of the goods in question, advertising, and the prices 
of competing goods. In addition, there are other unknown factors that can influence the 
actual quantity purchased.

In a simple linear equation we model the effect of all factors, other than the X variable—
in this example disposable income—are assumed to be part of the random error term, 
labeled as e. This random error term is a random variable (Chapter 5) with mean 0 and a 
probability distribution—often modeled by a normal distribution. Thus, the model is as 
follows:

Y = b0 + b1X + e
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Least squares regression provides us with an estimated model of the linear relationship 
between an independent, or exogenous, variable and a dependent, or endogenous, vari-
able. We begin the process of regression modeling by assuming a population model that 
has predetermined X values, and for every X there is a mean value of Y plus a random er-
ror term. We use the estimated regression equation—as shown in Figure 11.1—to estimate 
the mean value of Y for every value of X. Individual points vary about this line because 
the random error term, e, has a mean of 0 and a common variance for all values of X. The 
random error represents all the influences on Y that are not represented by the linear rela-
tionship between Y and X. Effects of these factors, which are assumed to be independent 
of X, behave like a random variable whose population mean is 0. The random deviations 
ei about the linear model are shown in Figure 11.2, and they are combined with the mean 
of Yi for every Xi to obtain the observed value yi.

Figure 11.2
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Figure 11.2 presents an example of a set of observations that were generated by an 
underlying linear model of a process. The mean level of Y, for every X, is represented by 
the population equation

Y = b0 + b1X

The linear regression model provides the expected value of the random variable Y 
when X takes on a specific value. The assumption of linearity implies that this expectation 
can be written as

E1Y u X = x2 = b0 + b1x

where b0 represents the Y intercept of the equation and b1 is the slope. b0 and b1 are 
parameters of the model whose values are not known, but estimated values can be com-
puted from the data. The actual observed value of Y for a given value of X is modeled as 
the computed value of Y plus a random error, e, that has a mean of 0 and a variance of s2:

yi = b0 + b1xi + ei

The random error term e represents the variation in y that is not estimated by the linear 
relationship. The following assumptions are used to make inferences about the popula-
tion linear model by using the estimated model coefficients.

Linear Regression Assumptions

1. The Y’s are linear functions of X plus a random error term

yi = b0 + b1xi + ei
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The linear equation represented by the line is the best-fit linear equation. We see that 
individual data points are above and below the line and that the line has points with 
both positive and negative deviations. The distance—in the Y or vertical dimension—for 
each point 1xi, yi2 from the linear equation is defined as the residual, ei. We would like to 
choose the equation so that the positive and negative residuals are as small as possible as 
we find estimates for the coefficients, b0 and b1, which we label as b0 and b1. Equations 
to compute these estimates are developed using the least squares regression procedure. 
Least squares regression chooses b0 and b1 such that the sum of the squared residuals is 
minimized. The least squares procedure is intuitively rational and provides estimators 
that have good statistical properties.

Linear Regression Population Model
In the application of regression analysis, the process being studied is represented 
by a population model, and an estimated least squares regression model is com-
puted, utilizing available data. The population model is specified as

 yi = b0 + b1xi + ei (11.4)

where b0 and b1 are the population model coefficients and ei is a random 
error term. For every observed value xi, an observed value yi is generated by 
the population model. For purposes of statistical inference, which we develop 
in Section 11.5, e is assumed to have a normal distribution with a mean of 0 
and a variance of s2. Later we see that the central limit theorem can be used to 
relax the assumption of a normal distribution. The model of the linear relation-
ship between Y and X is defined by the two coefficients b0 and b1. Figure 11.2 
represents the model schematically.

2. The x values are fixed numbers, or they are realizations of random vari-
able X that are independent of the error terms, ei(i = 1, . . . , n). In the lat-
ter case inference is carried out conditionally on the observed values of 
xi(i = 1, . . . , n).

3. The error terms are random variables, ei(i = 1, . . . , n), which have a mean 
of 0 and variance s2. This property is called homoscedasticity, or uniform 
variance:

E3ei4 = 0 and E3e2
i 4 = s2 for 1 i = 1, . . . , n2

4. The random error terms, ei, are not correlated with one another, so that

E3eiej4 = 0 for all i ? j

Figure 11.3
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In the least squares regression model, we assume that values of the independent vari-
able, xi, are selected, and for each xi there is a population mean of Y. The observed values 
of yi contain the mean and the random deviation ei. A set of n points is observed and used 
to obtain estimates of the model coefficients using the least squares procedure. We extend 
the concepts of classical inference developed in Chapters 7–10 to make inferences about 
the underlying population model by using the estimated regression model. In Chapter 12 
we see how several independent variables can be considered simultaneously using mul-
tiple regression.

The estimated linear regression model as shown schematically in Figure 11.3 is given 
by the equation

yi = b0 + b1xi + ei

where b0 and b1 are the estimated values of the coefficients and ei is the difference between 
the predicted value Y on the regression line, defined as

yni = b0 + b1xi

and the observed value yi. The difference between yi and yni for each value of X is defined 
as the residual

 ei = yi - yni

 = yi - 1b0 + b1xi2
Thus, for each observed value of X there is a predicted value of Y from the estimated 
model and an observed value. The difference between the observed and predicted val-
ues of Y is defined as the residual, ei. The residual, ei, is not the model error, ei, but is the 
combined measure of the model error and errors that result because b0 and b1 are sample 
results and, thus, subject to random variation or error; in turn, this leads to variation or 
error in estimating the predicted value.

We determine the estimated regression model by obtaining estimates b0 and b1 of 
the population coefficients using the process called least squares analysis, which we 
develop in Section 11.3. These coefficients are, in turn, used to obtain predicted values 
of Y for every value of X. Regression analysis produces a number of random variables 
such as b0, b1, yn, which are linear functions of e, the error-term random variable in linear 
regression.

Linear Regression Outcomes
Linear regression provides two important results:

1. Predicted values, yn, of the dependent, or endogenous, variable as a func-
tion of the independent or exogenous variable

2. Estimated marginal change in the endogenous variable, b1, that results 
from a one-unit change in the independent, or exogenous, variable

Early mathematicians struggled with the problem of developing a procedure for 
estimating the coefficients for the linear equation. Simply minimizing the deviations was 
not useful because the deviations have both positive and negative signs. Various proce-
dures using absolute values have also been developed, but none has proven as useful 
or as popular as least squares regression. We will learn later that the coefficients devel-
oped using this procedure also have very useful statistical properties. One important 
caution for least squares is that extreme outlier points can have such a strong influence 
on the regression line that the line is shifted toward this point. Thus, you should always 
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Example 11.2 Sales Prediction for Northern 
Household Goods (Regression Model Estimation)

The president of Northern Household Goods has asked you to develop a model that 
will predict total sales for proposed new retail store locations. Northern is a rapidly 
expanding general retailer, and it needs a rational strategy for determining where new 
stores should be located. As part of the project you need to estimate a linear equation 
that predicts retail sales per household as a function of household disposable income 
for their customers. The company has obtained data from a sampling survey of house-
holds in each of the target sales areas for their existing stores, and the variables retail 
sales (Y) and income (X) per household will be used to develop the model.

Solution Figure 11.4 is a scatter plot that shows the relationship between retail sales 
and disposable income for families. The actual data are shown in Table 11.1 and stored 
in a data file named Retail Sales. From economic theory we know that sales should 
increase with increases in disposable income, and the plot strongly supports that 
theory. Regression analysis provides us with a linear model that can be used to predict 
retail sales per household for various levels of disposable income. A line drawn on the 
graph represents the simple regression model

Y = 559 + 0.3815X

where Y is retail sales per household and X is disposable income per household. Thus, 
the regression equation provides us with the best linear model for predicting sales 
for a given disposable income based on the data. Notice that this model tells us that 
every $1 increase in per capita disposable family income, X, is associated with an in-
crease in the expected value of retail sales, Y, of $0.38. Clearly, that result is impor-
tant for predicting household retail sales and, in turn, for goods sold by Northern. 
For example, we find that a family income of $55,000 would predict retail sales at 
+21,5421+559 + +55,000 *  0.38152.
Figure 11.4 Retail Sales per Household versus Per Capita Disposable Income
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examine scatter plots to be sure that the regression relationship is not based on just a 
few extreme points.

Our discussion continues with an example that indicates a typical application of re-
gression analysis and the kind of results that can be obtained.
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At this point we need to emphasize that the regression results summarize the informa-
tion contained in the data and do not “prove” that increased income “causes” increased 
sales. Economic theory suggests that there is causation, and the estimated regression 
model supports that theory. Scatter plots, correlations, and regression equations cannot 
prove causation, but they can provide supporting evidence. Thus, in order to establish 
conclusions, we need a combination of theory—experience in business management and 
economics—and good statistical analysis.

EXERCISES

Basic Exercises
 11.7 Given the regression equation

Y = 100 + 10X

a. What is the change in Y when X changes by +3?
b. What is the change in Y when X changes by -4?
c. What is the predicted value of Y when X = 12?
d. What is the predicted value of Y when X = 23?
e. Does this equation prove that a change in X causes a 

change in Y?

 11.8 Given the regression equation

Y = -50 + 12X

a. What is the change in Y when X changes by +3?
b. What is the change in Y when X changes by -4?
c. What is the predicted value of Y when X = 12?
d. What is the predicted value of Y when X = 23?
e. Does this equation prove that a change in X causes a 

change in Y?

 11.9 Given the regression equation

Y = 43 + 10X

a. What is the change in Y when X changes by +8?
b. What is the change in Y when X changes by -6?

c. What is the predicted value of Y when X = 11?
d. What is the predicted value of Y when X = 29?
e. Does this equation prove that a change in X causes a 

change in Y?

 11.10 Given the regression equation

Y = 100 + 21X

a. What is the change in Y when X changes by +5?
b. What is the change in Y when X changes by -7?
c. What is the predicted value of Y when X = 14?
d. What is the predicted value of Y when X = 27?
e. Does this equation prove that a change in X causes a 

change in Y?

Application Exercises
 11.11 In Example 11.1 a linear regression model was devel-

oped. Use that model to answer the following.

a. Interpret the coefficient b1 = 2.545 for the plant 
manager.

b. How many tables would be produced on average 
with 19 workers?

c. Suppose you were asked to estimate the number of 
tables produced if only five workers were available. 
Discuss your response to this request.

Table 11.1 Data on Disposable Income per Household (X) and Retail Sales per 
 Household (Y)

RETAIL STORE INCOME (X) RETAIL SALES (Y) RETAIL STORE INCOME (X) RETAIL SALES (Y)

 1 $55,641 $21,886 12 $57,850 $22,301

 2 $55,681 $21,934 13 $57,975 $22,518

 3 $55,637 $21,699 14 $57,992 $22,580

 4 $55,825 $21,901 15 $58,240 $22,618

 5 $55,772 $21,812 16 $58,414 $22,890

 6 $55,890 $21,714 17 $58,561 $23,112

 7 $56,068 $21,932 18 $59,066 $23,315

 8 $56,299 $22,086 19 $58,596 $22,865

 9 $56,825 $22,265 20 $58,631 $22,788

10 $57,205 $22,551 21 $58,758 $22,949

11 $57,562 $22,736 22 $59,037 $23,149
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11.3 LEAST SQUARES COEFFICIENT ESTIMATORS

The population regression line is a useful theoretical construct, but for applications we 
need to determine an estimate of the model using available data. Suppose that we have 
n pairs of observations, 1x1, y12, 1x2, y22, c, 1xn, yn2. We would like to find the straight 
line that best fits these points. To do this, we need to find estimators of the unknown coef-
ficients b0 and b1 of the population regression line.

We obtain the least squares coefficient estimators b0 and b1 with equations derived 
by using the least squares procedure. As shown in Figure 11.3, there is a deviation, ei, 
between the observed value, yi, and the predicted value, yni, in the estimated regression 
equation for each value of X, where ei = yi - yni. We then compute a mathematical func-
tion that represents the effect of squaring all the residuals and computing the sum of the 
squared residuals. This function—whose left side is labeled SSE—includes the coefficients 
b0 and b1. The quantity SSE is defined as the error sum of squares. The coefficient estimators 
b0 and b1 are selected as the estimators that minimize the error sum of squares.

Least Squares Procedure
The least squares procedure obtains estimates of the linear equation coeffi-
cients b0 and b1 in the model

 yni = b0 + b1xi (11.5)

by minimizing the sum of the squared residuals ei:

 SSE = a
n

i=1
e2

i

  = a
n

i=1
1yi - yni22 (11.6)

The coefficients b0 and b1 are chosen so that the quantity

  SSE = a
n

i=1
e2

i

  = a
n

i=1
1yi - 1b0 + b1xi222 (11.7)

 11.12 As the new market manger for Blue Crunchies break-
fast cereal, you are asked to estimate the demand for 
next month using regression analysis. Two months 
ago the target market had 20,000 families and sales 
were 3,780 boxes and, 1 month ago the target market 
was 40,000 families and sales were 5,349 boxes. Next 
month you plan to target 75,000 families. How would 
you respond to the request to use regression analysis 
and the currently available data to estimate sales next 
month?

 11.13 Consider the sales prediction model developed for 
Northern Household Goods in Example 11.2.

a. Estimate per capita sales if the mean disposable 
income is $56,000.

b. Interpret the coefficients b0 and b1 for Northern’s 
management.

c. You have been asked to estimate per capita sales if 
mean disposable income grows to $64,000. Discuss 
how you would proceed and indicate your cautions.

 11.14 What is the difference between a population linear 
model and an estimated linear regression model?

 11.15 Explain the difference between the residual ei and the 
model error ei.

 11.16 Suppose that we obtained an estimated equation for 
the regression of weekly sales of palm pilots and the 
price charged during the week. Interpret the constant 
b0 for the product brand manager.

 11.17 A regression model of total grocery sales on dispos-
able income was estimated using data from small, 
isolated towns in the western United States. Prepare 
a list of factors that might contribute to the random 
error term.
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The resulting coefficient estimator is as follows:

 b1 =
a
n

i=1
1xi - x21yi - y2
a
n

i=1
1xi - x22

 =
Cov1x, y2

s2
x

 = r 
sy

sx

 =
a
n

i=1
1xi - x2

a
n

i=1
1xi - x2xi

 yi

Note that the numerator of the estimator is the sample covariance of X and Y and the 
denominator is the sample variance of X. The fourth line shows that the coefficient b1 is a 
linear function of the Ys. We spend considerable time with the slope coefficient because 
for many applications, this is the key result. The slope coefficient b1 is an estimate of the 
change in Y when X changes by one unit. For example, if Y is total output and X is number 
of workers, then b1 is an estimate of the marginal increase in output for each new worker. 
Results such as this explain why regression has become such an important analysis tool.

In the chapter appendix we also show that the constant estimator is as follows:

b0 = y - b1x

Substituting this value for b0 into the linear equation, we have the following:

 y = y - b1x + b1x

 y - y = b11x - x2
From this equation we see that when x = x, then y = y and that the regression equation 
always passes through the point 1x, y2. The estimated value of the dependent variable, yni, 
is then obtained by using

yni = b0 + b1xi

or by using

yni = y + b11xi - x2
This latter form emphasizes that the regression line goes through the means of X and Y.

Least Squares Derived Coefficient Estimators
The slope coefficient estimator is

b1 =
a
n

i=1
1xi - x21yi - y2
a
n

i=1
1xi - x22 = r 

sY

sX

is minimized. We use differential calculus to obtain the coefficient estimators 
that minimize SSE. The derivation of the estimators using calculus is pre-
sented in the chapter appendix.
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The second of these assumptions—where x values are fixed and independent of the 
model error—is generally, with justification, taken to be true, although in some advanced 
econometric work, it is untenable. (The assumption fails to hold, for example, when the xi 
cannot be measured precisely or when the regression is part of a system of interdependent 
equations.) Here, however, we will take this assumption as given.

Assumptions 3 and 4 concern the error terms, ei, in the regression equation. The  expected 
error term is 0, and all error terms have the same variance. Thus, we do not  expect the vari-
ances of the error terms to be higher for some observations than for others. Figure 11.2 shows 
this pattern with the errors for all X values being sampled from populations with the same 
variance. Finally, it is assumed that the instances of ei 1 i = 1, . . . , n2 are not  correlated 
with one another. Thus, for example, the occurrence of a large positive discrepancy at 
one  observation point does not help us predict the values of any of the other error terms. 
 Assumptions 3 and 4 will be satisfied if the error terms, ei, can be viewed as a random sample 
from a population with a mean of 0. In the remainder of this chapter, these assumptions will 
hold. With larger sample sizes we can show that the central limit theorem can be applied to 
the coefficient estimators and they can be treated just as we did sample means in various 
forms of inference in Chapters 7–10. Thus, the assumption of normality can be relaxed. The 
possibility for relaxing some of the other assumptions is considered in Chapter 13.

Computer Computation of Regression Coefficients

Extensive application of regression analysis has been made possible by statistical com-
puter packages and Excel. As you might suspect, the computations to obtain the regres-
sion coefficient estimates are lengthy and thus we typically use a computer. Excel can be 
used to obtain the basic regression output without too much difficulty. But if you wish to 
use some of the advanced applied regression analysis procedures or insightful graphical 
analysis, then you should use a good statistical computer package. Since we are primar-
ily interested in applications, our most important task is proper analysis of the regression 
computations for these applications. This analysis is guided by knowing the estimator 
equations and the related discussion. However, we assign the computation to computers—our 
tasks are to think, analyze, and make recommendations.

There are numerous statistical packages, and your school probably has several available. 
Your teacher may have a favorite package, and you are most likely best served by using that 
package. We cannot possibly present examples from every statistical package but will present 
example output from Minitab and Excel in generic form. You will recognize similar estimates 
from whichever package you actually use. Data sets for exercises and examples are presented 
in Excel spreadsheet format and can be easily used by your local computer package.

Figure 11.5 presents a portion of the Minitab output for the retail sales example. Note 
the location of the estimates for the constant, b0, and the slope coefficient, b1, in the com-
puter output. The remaining items on each line help interpret the quality of the estimates 
and are developed in subsequent sections.

and the constant or intercept estimator is

b0 = y - b1x

We also note that the regression line always goes through the mean 1x, y2.
The least squares procedure could be used to compute coefficient esti-

mates b0 and b1 using any set of paired data. However, in most applications we 
want to make inferences about the underlying population model that is part 
of our economic or business problem. In order to make inferences it is neces-
sary that we agree on the linear regression assumptions given in Section 11.2. 
Given these assumptions, it can be shown that the least squares coefficient 
estimators are unbiased and have minimum variance.
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In this regression the estimated constant, b0, is 559 and the estimated slope coefficient, 
b1, is 0.382. These values were computed using the coefficient estimator equations previ-
ously developed. The estimated equation can be written as

yn = 559 + 0.382x

or, using the means x = 57,342 and y = 22,436, as

yni = 22,436 + 0.3821xi - 57,3422
Typically, regression models should be used only over the range of the observed X 

values where we have information about the relationship because the relationship may 
not be linear outside this range. The second form of the regression model is centered on 
the data means with a rate of change equal to b1. By using this form, we focus on the mean 
location of the regression model and not on the intercept with the Y-axis. Naïve users of 
regression analysis will sometimes attempt interpretations of the constant b0, claiming cer-
tain conclusions about the dependent variable when the independent variable has a value 
of 0. Consider the example regression of retail sales on disposable income. Would we re-
ally claim that retail sales are $559 when disposable income is 0? In fact, we simply do not 
have data to support any sales amount when disposable income is 0. This is another ex-
ample of the importance of good analysis instead of silly interpretations. As professional 
analysts we must be careful not to claim results that simply do not exist.

Figure 11.5

Regression Analysis 
for Retail Sales 
Using Minitab

Regression Analysis: Y  Retail Sales versus X  Income

The regression equation is
Y  Retail Sales = 559 + 0.382 X  Income

Predictor     Coef  SE Coef      T      P
Constant       559     1451   0.39  0.704
X  Income  0.38152   0.02529  15.08  0.000

S = 147.670   R-Sq = 91.9%   R-Sq(adj) = 91.5%

Analysis of Variance

Source          DF       SS       MS       F      P
Regression       1  4961434  4961434  227.52  0.000
Residual Error  20   436127    21806
Total           21  5397561

Unusual Observations

                Y  Retail
Obs  X  Income      Sales      Fit  SE Fit  Residual  St Resid
 12      57850    22301.0  22630.2    34.0    -329.2     -2.29R

R denotes an observation with a large standardized residual

Coefficients b0, b1

EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

d. x = 10, y = 50, sx = 100, sy = 75, rxy = 0.4, n = 60
e. x = 90, y = 200, sx = 80, sy = 70, rxy = 0.6, n = 60

Application Exercises
 11.19 A company sets different prices for a particular DVD 

system in eight different regions of the country. The 
accompanying table shows the numbers of units sold 
and the corresponding prices (in dollars).

Sales 420 380 350 400 440 380 450 420
Price 104 195 148 204  96 256 141 109

Basic Exercise
 11.18 Compute the coefficients for a least squares regression 

equation and write the equation, given the following 
sample statistics.

a. x = 50, y = 100, sx = 25, sy = 75, rxy = 0.6, n = 60
b. x = 60, y = 210, sx = 35, sy = 65, rxy = 0.7, n = 60
c. x = 20, y = 100, sx = 60, sy = 78, rxy = 0.75, n = 60
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11.4  THE EXPLANATORY POWER OF A LINEAR  
REGRESSION EQUATION

The estimated regression model that we have developed can be viewed as a method for 
explaining the changes in a dependent variable Y that results from changes in an indepen-
dent variable X. If we had observations only of the dependent variable, Y, then the central 
tendency of Y would be represented by the mean y, and the total variability about the cen-
tral tendency Y would be represented by the numerator of the sample variance estimator, 

a 1yi - y22. When we also have measures of X, we have shown that the central tendency 
of Y can now be expressed as a function of X. We expect that the linear equation would 
be closer to the individual values of Y, and, thus, the variability about the linear equation 
would be smaller than the variability about the mean.

Now we are ready to develop measures that indicate how effectively the variable X 
explains the behavior of Y. In our retail sales example shown in Figure 11.4, retail sales, 
Y, tend to increase with disposable income, X, and, thus, disposable income explains 
some of the differences in retail sales. The points, however, are not all on the line, so the 

a. Graph these data, and estimate the linear regres-
sion of sales on price.

b. What effect would you expect a $50 increase in price 
to have on sales?

 11.20 For a sample of 20 monthly observations, a finan-
cial analyst wants to regress the percentage rate of 
return (Y) of the common stock of a corporation on 
the percentage rate of return (X) of the Standard 
& Poor’s 500 index. The following information is
available:

a
20

i=1
yi = 22.6 a

20

i=1
xi = 25.4 a

20

i=1
x2

i = 145.7 a
20

i=1
xiyi = 150.5

a. Estimate the linear regression of Y on X.
b. Interpret the slope of the sample regression line.
c. Interpret the intercept of the sample regression line.

 11.21 A corporation administers an aptitude test to all new 
sales representatives. Management is interested in the 
extent to which this test is able to predict sales repre-
sentatives’ eventual success. The accompanying table 
records average weekly sales (in thousands of dollars) 
and aptitude test scores for a random sample of eight 
representatives.

Weekly sales 10 12 28 24 18 16 15 12
Test score 55 60 85 75 80 85 65 60

a. Estimate the linear regression of weekly sales on 
aptitude test scores.

b. Interpret the estimated slope of the regression line.

 11.22 In Wanchai Computer Centers in Hong Kong, there 
are dozens of computer shops selling multiple lap-
top brands. After a survey in one of them, 10 were 
 selected. The ordered pairs show the speed of each 

computer’s CPU in gigahertz and its price in Hong 
Kong dollars (1 USD = 7.78 HKD).11.8, 14,5002, 11.6, 12,2902, 12.0, 17,5002, 11.6, 16,5002,11.8, 19,6502, 12.4, 21,0002, 11.2, 7,5002, 11.4, 12,5002,11.6, 14,6502, 12.0, 18,3502
a. Determinate the regression equation of the 

sample.
b. Find the intercept and the slope of the equation.
c. Compute the coefficient of determination and in-

terpret its meaning in this specific context.

It is recommended that the following exercises be solved by 
using a computer.

 11.23 Refer to the data file Dow Jones, which contains 
percentage change (X) in the Dow Jones index 

over the first five trading days of the year and percent-
age change (Y) in the index over the whole year.

a. Estimate the linear regression of Y on X.
b. Provide interpretations of the intercept and slope of 

the sample regression line.

 11.24 On Friday, November 13, 1989, prices on the 
New York Stock Exchange fell steeply; the Stan-

dard & Poor’s 500-share index was down 6.1% on that 
day. The data file New York Stock  Exchange Gains 
and Losses shows the percentage losses (y) of the 25 
largest mutual funds on November 13, 1989. Also 
shown are the percentage gains (x), assuming rein-
vested dividends and capital gains, for these same 
funds for 1989 through November 11.

a. Estimate the linear regression of November 13 losses 
on pre–November 13, 1989, gains.

b. Interpret the slope of the sample regression line.
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explanation is not perfect. Here, we develop measures based on the partitioning of vari-
ability that measure the capability of X to explain Y in a specific regression application.

The analysis of variance, ANOVA, for least squares regression is developed by par-
titioning the total variability of Y into an explained component and an error component. 
In Figure 11.6 we show that the deviation of an individual Y value from its mean can be 
partitioned into the deviation of the predicted value from the mean and the deviation of 
the observed value from the predicted value:

yi - y = 1yni - y2 + 1yi - yni2
Figure 11.6

Partitioning of 
Variability

1

y

SST 

X

Y

ŷ 5 b0 1 b1x

SSEei 5 yi 2 ŷ i

SSRŷi 2 y

yi 2 y

xix

We square each side of the equation—because the sum of deviations about the mean is 
equal to 0—and sum the result over all n points:

a
n

i=1
1yi - y22 = a

n

i=1
1yni - y22 + a

n

i=1
1yi - yn 22

Some of you may note the squaring of the right-hand side should include the cross prod-
uct of the two terms in addition to their squared quantities. It can be shown that the cross-
product term goes to 0. This equation is expressed as follows:

SST = SSR + SSE

Here, we see that the total variability—SST—can be partitioned into a component—SSR—
that represents variability that is explained by the slope of the regression equation. (The 
mean of Y is different at different levels of X.) The second component—SSE—results from 
the random or unexplained deviation of points from the regression line. This variability 
provides an indication of the uncertainty that is associated with the regression model. We 
define the left side as the sum of squares total:

SST = a
n

i=1
1yi - y22

The amount of variability explained by the regression equation is defined as the sum of 
squares regression and is computed as follows:

SSR = a
n

i=1
1yni - y22 = b2

1a
n

i=1
1xi - x22

We see that the variability explained by the regression depends directly on the size of the 
coefficient b1 and on the spread of the independent, X, variable data. The deviations about 
the regression line, ei, that are used to compute the unexplained or sum of squares error can 
be defined using the following algebraic forms:

SSE = a
n

i=1
1yi - 1b0 + b1xi222 = a

n

i=1
1yi - yni22 = a

n

i=1
e2

i
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For a given set of observed values of the dependent variables, Y, the SST is fixed as the total 
variability of all observations from the mean. We see that in this partitioning, larger values of 
SSR and hence smaller values of SSE indicate a regression equation that “fits,” or comes closer 
to, the observed data. This partitioning is shown graphically in Figure 11.6. From the equation 
for SSR we see that explained variability, SSR, is directly related to the deviations from the 
mean for the independent or X variable. Thus, as we are thinking about regression applica-
tions, we know that we should try to obtain data that have a large range for the independent 
variable so that the resulting regression model will have a smaller unexplained variability.

Analysis of Variance
The total variability in a regression analysis, SST, can be partitioned—analysis 
of variance—into a component explained by the regression, SSR, and a com-
ponent due to unexplained error, SSE,

 SST = SSR + SSE (11.8)

with the components defined as follows:

Sum of squares total

 SST = a
n

i=1
1yi - y22 (11.9)

Sum of squares error

 SSE = a
n

i=1
1yi - 1b0 + b1xi222 = a

n

i=1
1yi - yni22 = a

n

i=1
e2

i  (11.10)

Sum of squares regression

 SSR = a
n

i=1
1yni - y22 = b2

1a
n

i=1
1xi - x22 (11.11)

With this background let us return to our retail sales example (Example 11.2) with data 
file Retail Sales and look at how we use the partitioned variability to determine how well 
our model explains the process being studied. Table 11.2 shows the detailed calculations of 
residuals, ei; deviations of Y from the mean, and deviations of predicted values of Y from the 
mean. These provide us with the components to compute SSE, SST, and SSR. The sum of 
squared residuals for column 5 is SSE = 436,127. The sum of squared deviations from the 
mean for column 6 is SST = 5,397,565. Finally, the sum of squared deviations—predicted 
values minus the mean—for column 7 is SSR = 4,961,438. Figure 11.7 presents the Minitab 
and Excel regression outputs with the analysis of variance section included.

Coefficient of Determination, R2

We have seen that the fit of the regression equation to the data is improved as SSR in-
creases and SSE decreases. The ratio of the sum of squares regression, SSR, divided by the 
total sum of squares, SST, provides a descriptive measure of the proportion, or percent, of 
the total variability that is explained by the regression model. This measure is called the 
coefficient of determination—or, more generally, R2:

R2 =
SSR
SST

= 1 -
SSE
SST

The coefficient of determination is often interpreted as the percent of variability in y that is 
explained by the regression equation. Previously, we showed that SSR increases directly 
with the deviations from the mean of the independent variable X:

SSR = a
n

i=1
1yni - y22 = b2

1a
n

i=1
1xi - x22
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Table 11.2 Actual and Predicted Values for Retail Sales per Household and Residuals from Its Linear Regression 
on Income per Household

 
Retail  
 Store

 
Income 

(X)

Retail  
Sales  

(Y)

 
Predicted 

Retail Sales

 
 

Residual

Observed 
Deviation from 

the Mean

Predicted  
Deviation from  

the Mean

 1 55,641 21,886 21,787 99 -550 -649

 2 55,681 21,934 21,803 131 -502 -633

 3 55,637 21,699 21,786 -87 -737 -650

 4 55,825 21,901 21,858 43 -535 -578

 5 55,772 21,812 21,837 -25 -624 -599

 6 55,890 21,714 21,882 -168 -722 -554

 7 56,068 21,932 21,950 -18 -504 -486

 8 56,299 22,086 22,039 48 -350 -398

 9 56,825 22,265 22,239 26 -171 -197

10 57,205 22,551 22,384 167 115 -52

11 57,562 22,736 22,520 216 300 84

12 57,850 22,301 22,630 -329 -135 194

13 57,975 22,518 22,678 -160 82 242

14 57,992 22,580 22,684 -104 144 248

15 58,240 22,618 22,779 -161 182 343

16 58,414 22,890 22,845 45 454 409

17 58,561 23,112 22,902 211 676 465

18 59,066 23,315 23,094 221 879 658

19 58,596 22,865 22,915 -50 429 479

20 58,631 22,788 22,928 -140 352 492

21 58,758 22,949 22,977 -28 513 541

22 59,037 23,149 23,083 66 713 647

Sum of squared values 436,127 5,397,565 4,961,438

Regression Analysis: Y  Retail Sales versus X  Income

The regression equation is
Y  Retail Sales = 559 + 0.382 X  Income

Predictor     Coef  SE Coef      T      P
Constant       559     1451   0.39  0.704
X  Income  0.38152   0.02529  15.08  0.000

S = 147.670   R-Sq = 91.9%   R-Sq(adj) = 91.5%

Analysis of Variance

Source          DF       SS       MS       F      P
Regression       1  4961434  4961434  227.52  0.000
Residual Error  20   436127    21806
Total           21  5397561

Unusual Observations

                Y  Retail
Obs  X  Income      Sales      Fit  SE Fit  Residual  St Resid
 12      57850    22301.0  22630.2    34.0    -329.2     -2.29R

R denotes an observation with a large standardized residual.

se, Standard error of the estimate

s2
e, Model error variance

R2, Coefficient of determination

SSR = 4,961,434
SSE = 436,127
SST = 5,397,561

Figure 11.7

Regression Analysis 
for Retail Sales on 
Disposable Income
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Thus, we see that R2 also increases directly with the deviations from the mean of the in-
dependent variable. When you are seeking data to estimate a regression model, it is im-
portant to choose the observations of the independent variable that provide the largest 
possible range in X so that we obtain a regression model with the highest R2.

Coefficient of Determination R2

The coefficient of determination, R2, for a regression equation is defined as 
follows:

 R2 =
SSR
SST

= 1 -
SSE
SST

 (11.12)

This quantity varies from 0 to 1, and higher values indicate a better regression. 
Caution should be used in making general interpretations of R2 because a high 
value can result from either a small SSE, a large SST, or both.

R2 can vary from 0 to 1, since SST is fixed and 0 6 SSR 6 SST. A larger R2 implies a 
better regression, everything else being equal. In the regression output—Figure 11.7—we 
see that the R2 for the retail sales regression is 0.919, or 91.9%. One popular interpretation 
is that R2 is the percent explained variability.

Global interpretations of R2 that apply to all regression equations are dangerous. 
The second form of the equation emphasizes that R2 depends on the ratio of SSE di-
vided by SST. We can have a high R2 because there is a small SSE—the desired goal—
or because there is a large SST, or both Two regression models with the same set of 
observed yi values can always be compared using R2, and the model with the larger R2 
provides a better explanation of Y. But global comparisons of R2—stating that a model 
is good because its R2 is above a particular value—are misleading. Generally, expe-
rienced analysts have found that R2 is 0.80 or above for models based on time-series 
data. Cross-section data models (e.g., cities, states, firms) have values in the 0.40 to 0.60 
range, and models based on data from individual people often have R2 values in the 
0.10 to 0.20 range.

To illustrate the danger of global interpretations of R2, consider two regression 
models—whose plots are shown in Figure 11.8—each of which is based on a total of 25 
observations. Both models have SSE equal to 17.89, so the fit of the regression equation 
to the data points is the same. But the first model has a total sum of squares equal to 
5,201.05, whereas the second has SST equal to 68.22. The R2 values for the two models 
are as follows:

Model 1

R2 = 1 -
SSE
SST

= 1 -
17.89

5, 201.05
= 0.997

Model 2

R2 = 1 -
SSE
SST

= 1 -
17.89
68.22

= 0.738

Since both models have the same SSE, and thus the same goodness of fit, one cannot claim 
that Model 1 fits the data better. Yet Model 1 has a substantially higher R2 compared to 
Model 2. As we see here, one should be very careful about global interpretations of R2. 
Note that the different values for SST result from the two different vertical axis intervals 
in Figure 11.8. Figure 11.8(a) has a Y-variable range from 10 to 60, whereas Figure 11.8(b) 
has a range from 9 to 16.

The correlation coefficient can also be linked with R2, as shown, by noting that the 
correlation squared is equal to the coefficient of determination and, therefore, the percent 
explained variability.
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Correlation and R2

The coefficient of determination, R2, for simple regression is equal to the simple 
correlation squared:

 R2 = r2 (11.13)

This provides an important link between correlation and R2, the regression model.

Figure 11.8

Comparison of R2 
for Two Regression 
Models

(a)

(b)

250 2015105
X

60

50

40

30

20

10

Y
1

S 5 0.881993      R-Sq 5 99.7%      R-Sq(adj) 5 99.6%

Y1 5 10.3558 1 1.99676 X

Regression Model with High R Squared

250 2015105
X

16

15

13

11

10

9

Y
2

S 5 0.881993      R-Sq 5 73.8%      R-Sq(adj) 5 72.6%

Y2 5 10.3558 1 1.96759 X

Regression Model with Low R Squared

14

12

The sum-of-squares error is used to obtain an estimate of the variance of the model 
 error ei, which, in turn, is used for regression-model statistical inference. Recall that we 
have assumed that the population error, ei, is a random error with a mean of 0 and a vari-
ance of s2. The estimator for s2 is computed in the following section.
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Estimation of Model Error Variance
The quantity SSE is a measure of the total squared deviation about the estimated 
regression line, and ei is the residual. Estimation of model error variance uses 
this unbiased estimator for the variance of the population model error which is:

sn 2 = s2
e =

a
n

i=1
e2

i

n - 2
=

SSE
n - 2

 (11.14)

Division by n - 2 instead of n - 1 results because the simple regression 
model uses two estimated parameters, b0 and b1, instead of one. In the next 
section we see that this variance estimator is the basis for statistical inference 
in the regression model.

EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

f.  Using the result in part a, show that

a
n

i=1
ei 1xi - x2 = 0

 11.27 Let

R2 =
SSR
SST

denote the coefficient of determination for the sample 
regression line.

a. Using part d of the previous exercise, show that

R2 = b2
1  
a
n

i=1
1xi - x22

a
n

i=1
1yi - y22

b. Using the result in part a, show that the coefficient 
of determination is equal to the square of the sam-
ple correlation between X and Y.

c. Let b1 be the slope of the least squares regression of 
Y on X, b*1 be the slope of the least squares regression 
of X on Y, and r be the sample correlation between X 
and Y. Show that b1

# b*1 = r2

 11.28 Find and interpret the coefficient of determination for 
the regression of DVD system sales on price, using the 
following data.

Sales 420 380 350 400 440 380 450 420
Price   98 194 244 207   89 261 149 198

 11.29 Find and interpret the coefficient of determi-
nation for the regression of the percentage 

change in the Dow Jones index in a year based on the 
percentage change in the index over the first five 
trading days of the year. Compare your answer with 
the sample correlation found for these data. Use the 
data file Dow Jones.

 11.30 Find the proportion of the sample variability in 
 mutual fund percentage losses on November 13, 

1989,  explained by their linear dependence on 1989 
 percentage gains through November 12, based on the 

Basic Exercises
 11.25 Compute SSR, SSE, se

2, and the coefficient of determi-
nation, given the following statistics computed from a 
random sample of pairs of X and Y observations.

a. a
n

i=1
1yi - y22 = 100,000, R2 = 0.50, n = 52

b. a
n

i=1
1yi - y22 = 90,000, R2 = 0.70, n = 52

c. a
n

i=1
1yi - y22 = 240, R2 = 0.80, n = 52

d. a
n

i=1
1yi - y22 = 200,000, R2 = 0.30, n = 74

e. a
n

i=1
1yi - y22 = 60,000, R2 = 0.90, n = 40

Application Exercises
 11.26 Let the sample regression line be

yi = b0 + b1xi + ei = yni + ei  1 i = 1, 2, c, n2
and let x and y denote the sample means for the inde-
pendent and dependent variables, respectively.

a. Show that

ei = yi - y - b1xi - x2
b. Using the result in part a, show that

a
n

i=1
ei = 0

c. Using the result in part a, show that

a
n

i=1
e2

i = a
n

i=1
1yi - y22 - b2a

n

i=1
1xi - x22

d. Show that

yni - y = bi1xi - x2
e. Using the results in parts c and d, show that

SST = SSR + SSE
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11.5  STATISTICAL INFERENCE: HYPOTHESIS TESTS  
AND CONFIDENCE INTERVALS

Now that we have developed the coefficient estimators and an estimator for s2, we are 
ready to make population model inferences. The basic approach follows that developed in 
Chapters 7–10. We develop variance estimators for the coefficient estimators, b0 and b1, and 
then use the estimated parameters and variances to test hypotheses and compute confidence 
intervals using the Student’s t distribution. Inferences from regression analysis will help us 
understand the process being modeled and make decisions about the process. Initially, we 
assume that random model errors, e, are normally distributed. Later, this assumption will 
be replaced by the central limit theorem assumption. We begin by developing variance esti-
mators and useful test forms. Then we apply these using our retail sales data.

In Section 11.2 we defined the population model for simple regression as

yi = b0 + b1xi + ei

with the xi’s being predetermined values and not random variables. From our work in 
Chapters 4 and 5 on linear functions of random variables, we know that, if ei is a normally 
distributed random variable with variance s2, then yi is also normally distributed with the 
same variance. The right-hand side is a linear function of X and the random variable ei. 
If we add the fixed value b0 + b1xi to a random variable, we do not change the variance.

In Section 11.3 we found that the estimator for the slope coefficient, b1, is

 b1 =
a
n

i=1
1xi - x21yi - y2
a
n

i=1
1xi - x22

 = a a 1xi - x2
a 1xi - x22 byi

 = a aiyi

where

ai =
1xi - x2

a
n

i=1
1xi - x22

In this estimator we see that b1 is a linear function of the independent random variables 
yi, whose variances are all s2. Thus, the variance of b1 is a simple transformation of the vari-
ance of Y. Using the results from Chapter 5, the linear function can be written as follows:

 b1 = a
n

i=1
aiyi

 ai =
1xi - x2

a
n

i=1
1xi - x22

 s2
b1
= a

n

i=1
a2

is
2

data in the data file New York Stock Exchange Gains 
and Losses.

 11.31 In a study it was shown that for a sample of 353 college 
faculty, the correlation was 0.11 between annual raises 

and teaching evaluations. What would be the coeffi-
cient of determination of a regression of annual raises 
on teaching evaluations for this sample? Interpret your 
result.
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 s2
b1
= a

n

i=1 ° 1xi - x2
a
n

i=1
1xi - x22¢2

s2

 =
a
n

i=1
1xi - x22

aan
i=1
1xi - x22b2 s2

 =
s2

a
n

i=1
1xi - x22

Since yi is normally distributed and b1 is a linear function of independent normal vari-
ables, this linear function implies that b1 is also normally distributed. From this analysis 
we can derive the population and sample variances.

Sampling Distribution of the Least Squares Coefficient 
Estimator
If the standard least squares assumptions hold, then b1 is an unbiased estima-
tor for b1 and has a population variance

 s2
b1
=

s2

a
n

i=1
1xi - x22 =

s21n - 12s2
x
 (11.15)

and an unbiased sample variance estimator

 s2
b1
=

s2
e

a
n

i=1
1xi - x22 =

s2
e1n - 12s2

x
 (11.16)

The regression constant estimator, b0, is also a linear function of the random variable 
yi, and, thus, it can be shown to be normally distributed, and its variance estimator can be 
derived as

s2
b0
= a 1

n
+

x21n - 12s2
x

bs2
e

It is important to observe that the variance of the slope coefficient, b1, depends on two 
important quantities:

 1. The distance of the points from the regression line measured by s2
e . Higher values  imply 

greater variance for b1.
 2. The total deviation of the X values from the mean, which is measured by 1n - 12s2

x. 
Greater deviations in the X values and larger sample sizes result in a smaller variance 
for the slope coefficient.

These two results are very important as we think about choices of data for a regression 
model. Previously, we noted that a wider spread in the independent, X, variable resulted 
in a higher R2, indicating a stronger relationship. Now, we see that a wider spread in the in-
dependent variable—measured by s2

x—results in a smaller variance for the estimated slope 
coefficient, b1. It follows that smaller-variance estimators of the slope coefficient imply a 
better regression model. We need to also add that many research conclusions and policy 
decisions are based on the change in Y that results from a change in X, as estimated by b1. 
Thus, we would like to have the variance of this important decision variable, b1, be as small 
as possible.
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The equation that computes the estimated coefficients for b1 assumes that the variances 
of the error terms ei are uniform or equal over the range of the independent variables. 
This is the condition defined as homoscedasticity. However, there are a number of situ-
ations where homoscedasticity does not apply and we say that the errors are defined as 
heteroscedastic—that is, the variances of the ei’s are not uniform. For example, the varia-
tion in annual household consumption generally increases with increasing levels of house-
hold disposable income, because with higher incomes, households have greater flexibility 
between consumption and saving. A plot of annual household consumption versus dis-
posable income would show the data “fanning out” around a linear trend as disposable 
income increases. Similarly, the variance in factory output could increase as additional 
workers are added if the additional workers have less experience and training. When the 
variance of the instances of ei are not uniform or heteroscedastic we can show that the 
estimated coefficients are still unbiased. However, the estimated coefficient variances, s2

bi
, 

are not correct and need to be adjusted. In Section 13.6 we discuss heteroscedasticity and 
indicate modifications to the inference procedures when the errors fan out or the variances 
of the instances of ei are not uniform.

In applied regression analysis, we first would like to know if there is a relationship. In 
the regression model we see that if b1 is 0, then there is no linear relationship between X 
and Y—Y would not continuously increase or decrease with increases in X. To determine 
if there is a linear relationship, we can test the hypothesis

H0 : b1 = 0

versus

H1 : b1 ? 0

Given that b1 is normally distributed, we can test this hypothesis using the Student’s t 
statistic

t =
b1 - b1

sb1

=
b1 - 0

sb1

=
b1

sb1

that is distributed as Student’s t with 1n - 22 degrees of freedom. The hypothesis test can 
also be performed for values of b1 other than 0. One rule of thumb is to conclude that a 
relationship exists if the absolute value of the t statistic is greater than 2. This result holds 
exactly for a two-tailed test with a = 0.05 and 60 degrees of freedom and provides a close 
approximation when n 7 30.

Basis for Inference about the Population  
Regression Slope
Let b1 be a population regression slope and b1 be its least squares estimate 
based on n pairs of sample observations. Then, if the standard regression 
 assumptions hold and it can also be assumed that the errors, ei, are normally 
distributed, the random variable

 t =
b1 - b1

sb1

 (11.17)

is distributed as Student’s t with (n - 2) degrees of freedom. In addition, the 
central limit theorem enables us to conclude that this result is approximately 
valid for a wide range of nonnormal distributions and large-enough sample 
sizes, n.

The coefficient standard deviation and Student’s t statistic—for b1 = 0—are rou-
tinely computed in most regression programs. Example output from Minitab is shown in 
Figure 11.9.
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For the retail sales model, the slope coefficient is b1 = 0.382 with a standard deviation 
of sb1

= 0.02529. To decide if there is a relationship between retail sales, Y, and disposable 
income, X, we can test the hypothesis

H0 : b1 = 0

versus

H1 : b1 ? 0

Under the null hypothesis the ratio of the coefficient estimator, b1, to its standard devia-
tion has a Student’s t distribution. For the retail sales example we find that the computed 
Student’s t statistic is as follows:

t =
b1 - b1

sb1

=
b1 - 0

sb1

=
0.38152 - 0

0.02529
= 15.08

The resulting Student’s t statistic, t = 15.08, as shown in the regression output, provides 
strong evidence to reject the null hypothesis and conclude that there is a strong relation-
ship between retail sales and disposable income. We also note that the p-value for b1 is 
0.000, providing alternative evidence that b1 is not equal to 0. Recall from Chapter 9 that 
the p-value is the smallest significance level at which the null hypothesis can be rejected, 
or the p-value is the probability that the null hypothesis is true.

Hypothesis tests could also be performed on the equation constant, b0, using the stan-
dard deviation previously developed and shown in the Minitab output. However, be-
cause we are usually interested in rates of change—measured by b1—tests involving the 
constant are generally less important.

If the sample size is large enough for the central limit theorem to apply, then we can 
perform such hypothesis tests even if the errors, ei, are not normally distributed. The key 
question concerns the distribution of b1. If b1 has an approximately normal distribution, 
then the hypothesis test can be performed. In most applications b1 has an approximate 
normal distribution and the test procedure does apply.

Figure 11.9

Retail Sales  Model: 
Coefficient Variance 
 Estimators  (Minitab 
Output)

Regression Analysis: Y  Retail Sales versus X  Income

The regression equation is
Y  Retail Sales = 559 + 0.382 X  Income

Predictor     Coef  SE Coef      T      P
Constant       559     1451   0.39  0.704
X  Income  0.38152   0.02529  15.08  0.000

S = 147.670   R-Sq = 91.9%   R-Sq(adj) = 91.5%

Analysis of Variance

Source          DF       SS       MS       F      P
Regression       1  4961434  4961434  227.52  0.000
Residual Error  20   436127    21806
Total           21  5397561

Unusual Observations

                Y  Retail
Obs  X  Income      Sales      Fit  SE Fit  Residual  St Resid
 12      57850    22301.0  22630.2    34.0    -329.2     -2.29R

R denotes an observation with a large standardized residual.

sb1
, Slope coefficient standard error

b1, Slope coefficient

tb1
, Student’s t statistic

s2
e, Model error variance

se, Standard error of the estimate

SSE, Error sum of squares

SSR, Regression sum of squares

SST,  Total Sum of Squares
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We can derive confidence intervals for the slope b1 of the population regression line 
by using the coefficient and variance estimators we have developed and the rationale pre-
sented in Chapter 7.

Confidence Interval for the Population Regression 
Slope B1
If the regression errors, ei, are normally distributed or if the distribution of b1 
is  approximately normal and the standard regression assumptions hold, a 
100(1 - a)% confidence interval for the population regression slope B1 is given by

 b1 - t1n- 2, a>22sb1
6 b1 6 b1 + t1n- 2, a>22sb1

 (11.21)

Tests of the Population Regression Slope B1
If the regression errors, ei, are normally distributed and the standard least squares 
assumptions hold (or if the distribution of b1 is approximately normal), the follow-
ing tests of the population regression slope B1 have significance level a.

1. To test either null hypothesis

H0 : b1 = b*1 or H0 : b1 … b*1

 against the alternative

H1 : b1 7 b*1

 the decision rule is as follows:

 Reject H0 if 
b1 - b*1

sb1

Ú tn- 2,a (11.18)

2. To test either null hypothesis

H0 : b1 = b*1 or H0 : b1 Ú b*1

 against the alternative

H1 : b1 6 b*1

 the decision rule is as follows:

 Reject H0 if 
b1 - b*1

sb
… - tn- 2,a (11.19)

3. To test the null hypothesis

H0 : b1 = b*1

 against the two-sided alternative

H1 : b1 ? b*1

 the decision rule is as follows:

 Reject H0 if 
b1 - b*1

sb1

Ú tn- 2, a>2 or 
b1 - b*1

sb1

… - tn- 2, a>2 (11.20)

If, in these tests, b*1 = 0, rejection of the null hypothesis implies that there 
is a relationship between X and Y. Note that for a two-tailed test (Test 3) with 
a = 0.05 and n 7 60, a Student’s t statistic with an absolute value greater than 
2.0 indicates that there is a relationship. This provides a useful rule of thumb 
when screening regression analysis output.
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From the regression output for the retail sales on disposable income regression in 
Figure 11.9, we know that

n = 22 b1 = 0.3815 sb1
= 0.0253

For a 99% confidence interval for b1 we have 1 - a = 0.99 and n - 2 = 20 degrees of 
freedom; thus, from Appendix Table 8

tn- 2,a>2 = t20,0.005 = 2.845

Therefore, we have the 99% confidence interval

0.3815 - 12.845210.02532 6 b1 6 0.3815 + 12.845210.02532
or

0.3095 6 b1 6 0.4535

We see that the 99% confidence interval for the expected increase in retail sales per house-
hold associated with a $1 increase in disposable income per household covers the range 
from $0.3095 to $0.4353. Figure 11.10 shows the 90%, 95%, and 99% confidence intervals 
for the population regression slope.

where tn -2, a>2 is the number for which

P1tn- 2 7 tn- 2,a>22 = a>2
and the random variable tn -2 follows a Student’s t distribution with (n - 2) 
degrees of freedom.

Figure 11.10

Confidence Intervals 
for the Retail 
Sales Population 
Regression Slope at 
Confidence Levels, 
90%, 95%, and 99%

90% Confidence Interval 

95% Confidence Interval 

99% Confidence Interval 

0.3379 0.3815

0.3815

0.38150.3095 0.4535

0.3287 0.4343

0.4251

Hypothesis Test for Population Slope Coefficient Using  
the F Distribution

There is an alternative test for the hypothesis that the slope coefficient, b1, is equal to 0:

 H0 : b1 = 0

 H1 : b1 ? 0

This test is based on the partitioning of variability that we developed in Section 11.4. The 
assumption for this test is that if the null hypothesis is true, then both SSE and SSR can 
be used to obtain independent estimators of the model error variance s2. To perform this 
test, we obtain two sample estimates of the population standard deviation s. These are 
defined as mean square terms. The regression sum of squares, SSR, has 1 degree of free-
dom, since it refers to the single slope coefficient, and the mean square for regression, 
MSR, is as follows:

MSR =
SSR

1
= SSR
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If the null hypothesis—no relationship—is true, then MSR is an estimate of the overall 
model variance, s2. We also use the sum-of-squares error as before to obtain the mean 
square for error, MSE:

MSE =
SSE

n - 2
= s2

e

In Section 10.4 we introduced the F distribution as the ratio of independent sample 
estimates of variance, given equal population variances. It can be shown that MSR and 
MSE are independent and that under H0 both are estimates of the population variance, s2. 
Thus, if H0 is true, then we can show that the ratio

F =
MSR
MSE

=
SSR

s2
e

has an F distribution with 1 degree of freedom for the numerator and 1n - 22 degrees of free-
dom for the denominator. It should also be noted that the F statistic is equal to the squared t 
statistic for the slope coefficient. This can be shown algebraically. From distribution theory we 
can show that a squared Student’s t with 1n - 22 degrees of freedom and the F with 1 degree 
of freedom for the numerator and 1n - 22 degrees of freedom for the denominator are equal:

Fa,1,n- 2 = t2
n- 2,a>2

The analysis of variance for the retail sales regression from the Minitab output is 
shown in Figure 11.9. In our retail sales example the sum-of-squares error is divided by 
the 20 degrees of freedom to compute the MSE:

MSE =
436,127

20
= 21,806

Then the F ratio is computed as the ratio of the two mean squares:

F =
MSR
MSE

=
4,961,434

21,806
= 227.52

This F ratio is substantially larger than the critical value for a = 0.01 with 1 degree of free-
dom for the numerator and 20 degrees of freedom for the denominator 1F1,20,0.01 = 8.102 
from Table 9 in the appendix. The Minitab output—Figure 11.9—for the retail sales re-
gression shows the p-value for this computed F as 0.000, providing alternative evidence to 
reject H0. Also note that the F statistic is equal to t2 where the Student’s t statistic is com-
puted for the slope coefficient, b1:

 F = t2

 227.52 = 15.082

F Test for Simple Regression Coefficient
We can test the hypothesis

H0 : b1 = 0

against the alternative

H1 : b1 ? 0

using the F statistic

 F =
MSR
MSE

=
SSR

s2
e

 (11.22)

The decision rule is as follows:

 Reject H0 if F Ú F1,n- 2,a (11.23)



Exercises 445

From this result we see that hypothesis tests relating to the population slope coeffi-
cient will provide exactly the same result when using either the Student’s t or the F distri-
bution. From the discussion of the hypothesis test using Student’s t, we noted that a value 
of t greater than 2 indicates a relationship; thus, from Equation 11.24 we can also see that 
a value of F greater than 4 also indicates a relationship between X and Y (with a = 0.05
and n 7 60). We will learn in Chapter 13 that the F distribution—when used in a multiple 
regression analysis—also provides the opportunity for testing the hypothesis that several 
population slope coefficients are simultaneously equal to 0.

EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

Application Exercises
 11.34 Mumbai Electronics is planning to extend its market-

ing region from the western United States to include the 
midwestern states. In order to predict its sales in this new 
region, the company has asked you to  develop a linear re-
gression of DVD system sales on price, using the follow-
ing data supplied by the marketing department:

Sales 418 384 343 407 432 386 444 427
Price   98 194 231 207   89 255 149 195

a. Use an unbiased estimation procedure to find an 
estimate of the variance of the error terms in the 
population regression.

b. Use an unbiased estimation procedure to find an 
estimate of the variance of the least squares estima-
tor of the slope of the population regression line.

c. Find a 90% confidence interval for the slope of the 
population regression line.

 11.35 A fast-food chain decided to carry out an experiment 
to assess the influence of advertising expenditure on 
sales. Different relative changes in advertising expen-
diture, compared to the previous year, were made in 
eight regions of the country, and resulting changes in 
sales levels were observed. The accompanying table 
shows the results.

Increase in 
advertising 
expenditure (%)

0 4 14 10 9 8 6 1

Increase in  
sales (%)

2.4 7.2 10.3 9.1 10.2 4.1 7.6 3.5

a. Estimate by least squares the linear regression of in-
crease in sales on increase in advertising expenditure.

We can also show that the F statistic is

F = t2
b1

 (11.24)

for any simple regression analysis.

Basic Exercises
 11.32 Given the simple regression model

Y = b0 + b1X

and the regression results that follow, test the null 
hypothesis that the slope coefficient is 0 versus the al-
ternative hypothesis of greater than zero using prob-
ability of Type I error equal to 0.05, and determine the 
two-sided 95% and 99% confidence intervals.

a. A random sample of size n = 38 with 
b1 = 5 sb1

= 2.1
b. A random sample of size n = 46 with 

b1 = 5.2 sb1
= 2.1

c. A random sample of size n = 38 with 
b1 = 2.7 sb1

= 1.87
d. A random sample of size n = 29 with 

b1 = 6.7 sb1
= 1.8

 11.33 Use a simple regression model to test the hypothesis

H0 : b1 = 0

  versus

H1 : b1 ? 0

  with a = 0.05,  given the following regression 
statistics.

a. The sample size is 35, SST = 100,000, and the 
 correlation between X and Y is 0.46.

b. The sample size is 61, SST = 123,000, and the 
 correlation between X and Y is 0.65.

c. The sample size is 25, SST = 128,000, and the 
 correlation between X and Y is 0.69.
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11.6 PREDICTION

Regression models can be used to compute predictions or forecasts for the dependent 
variable, given an assumed future value for the independent variable. Suppose that we 
are interested in forecasting the value of the dependent variable, given that the independent 
variable is equal to a specified value, xn +1, and that the linear relationship between depen-
dent and independent variables continues to hold. The corresponding value of the depen-
dent variable will then be

yn+ 1 = b0 + b1xn+ 1 + en+ 1

which, given xn +1, has expectation

E3yn+ 1 u xn+ 14 = b0 + b1xn+ 1

Two distinct options are of interest:

1. We might want to estimate or predict the actual value that will result for a single 
observation, yn +1. This option used in forecasting or predicting the result of a single 
outcome is shown in Figure 11.11.

b. Find a 90% confidence interval for the slope of the 
population regression line.

It is recommended that a computer be used for the follow-
ing exercises.

 11.36 You have been asked to determine the effect of 
per capita disposable income on retail sales using 

cross-section data by state. The data are contained in the 
data file Economic Activity. Estimate the appropriate 
regression equation and determine the 95% confidence 
interval for the expected change in retail sales that 
would result from a $1,000 increase in per capita dispos-
able income.

 11.37 Estimate the regression equation for the percent-
age change in the Dow Jones index in a year on 

the percentage change in the index over the first five 
trading days of the year. Use the data file Dow Jones.

a. Use an unbiased estimation procedure to find a 
point estimate of the variance of the error terms in 
the population regression.

b. Use an unbiased estimation procedure to find a point 
estimate of the variance of the least squares estimator 
of the slope of the population regression line.

c. Find and interpret a 95% confidence interval for 
the slope of the population regression line.

d. Test at the 10% significance level, against a two-sided 
alternative, the null hypothesis that the slope of the 
population regression line is 0.

 11.38 Estimate a linear regression model for mutual 
fund losses on November 13, 1989, using the data 

file New York Stock Exchange Gains and Losses.

a. Use an unbiased estimation procedure to obtain a 
point estimate of the variance of the error terms in 
the population regression.

b. Use an unbiased estimation procedure to obtain a 
point estimate of the variance of the least squares esti-
mator of the slope of the population regression line.

c. Find 90%, 95%, and 99% confidence intervals for the 
slope of the population regression line.

Figure 11.11
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 2. Alternatively, we might want to estimate the conditional expected value, E3yn +1 u xn +14—
that is, the average value of the dependent variable when the independent variable is 
fixed at xn +1. This option is shown in Figure 11.12.

Forecast Prediction Intervals and Confidence Intervals 
for Predictions
Suppose that the population regression model is

yi = b0 + b1xi + ei 1 i = 1, c , n2
the standard regression assumptions hold, and the ei are normally dis-
tributed. Let b0 and b1 be the least squares estimates of b0 and b1, based 
on (x1, y1), (x2, y2), . . . , (xn, yn). Then it can be shown that the following are 
100(1 - a)% intervals.

Figure 11.12

Least Squares 
Estimated 
Regression Line 
of Predicted Retail 
Sales on Disposable 
Income for the 
Expected Value

22200

23200

58500 59000 59500

P
re

d
 R

et
ai

l S
al

es

23000

22600

21800

Retail Sales and Disposable Income
Pred Retail Sales 5 559 1 0.3815 X  Income

55500 56000 56500 57000 5800057500

X  Income

22000

22800

22400

You should note that the range of errors or variance is larger when forecasting a single value, 
as shown in Figure 11.11, compared to forecasting the mean, as shown in Figure 11.12.

Given that the standard regression assumptions continue to hold, the same point es-
timate results for either option. We simply replace the unknowns b0 and b1 by their least 
squares estimates, b0 and b1. That is, 1b0 + b1xn +12 is estimated by 1b0 + b1xn +12. We 
know that the corresponding estimator is the best linear unbiased estimator for Y, given 
X. With the first option we are interested in the best forecast for a single occurrence of the 
process. But for the second option we are interested in the expected value, or long-term 
average, for the process. For both options, an appropriate point estimate under our as-
sumptions is as follows:

ynn+ 1 = b0 + b1xn+ 1

This follows because we do not know anything useful about the random variable, en +1, ex-
cept that its mean is 0. Thus, without other information we will use 0 as its point estimate.

However, we usually want intervals in addition to point estimates, and for that pur-
pose the two options are different. This is because the variance estimators are different 
for the two different quantities being estimated. The results for these different variance 
estimators lead to the two different intervals. The interval for the first option is generally 
defined as a prediction interval because we are predicting the value for a single point. The 
interval for the second option is referred to as a confidence interval because it is the inter-
val for the expected value.
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1. For the forecast of the single outcome value resulting for Yn +1, the predic-
tion interval is as follows:

 ynn+ 1 { tn- 2, a>2a £ 1 +
1
n

+
1xn+ 1 - x22
a
n

i=1
1xi - x22 § se (11.25)

2. For the forecast of the mean or conditional expectation E1Yn +1 u Xn +12, the 
confidence interval for predictions is

 ynn+ 1 { tn- 2, a>2a £ 1
n

+
1xn+ 1 - x22
a
n

i=1
1xi - x22 § se (11.26)

where

x =
a
n

i=1
xi

n
 and ynn+ 1 = b0 + b1xn+ 1

These prediction and confidence intervals have the same interpretation 
indicated in Chapters 7 and 8 for confidence intervals. The probability is 
1 - a that this interval includes the true prediction of Y or the true mean 
of Y when X has the value xn +1.

Note that in most applications the central limit theorem applies for 
the predicted value, ynn +1, and the intervals are appropriate.

Example 11.3 Forecasting Retail Sales  
(Regression Model Forecasting)

We illustrate the interval computation using the retail sales and disposable income 
from Example 11.2. We have been asked to forecast retail sales per household for a 
 proposed new store to be located in a market area with disposable income per house-
hold of $58,000. Determine both the the actual value for the first year and the expected 
value for the long run. In addition, we have been asked to compute prediction intervals 
and confidence intervals for these forecasts. Use the data file Retail Sales.

Solution The forecast values for the first year and for the long run are both as follows:

 ynn +1 = b0 + b1xn +1

 = 559 + 10.38152158,0002 = 22,686

Thus, we find that the estimated sales are $22,686 when disposable income is $58,000. 
The disposable income of $58,000 is within the range of the data used to estimate the 
regression model and thus the prediction is appropriate. We have also found that

n = 22 x = 57,342 a 1xi - x22 = 34,084,596 s2
e = 21,806

Hence, the standard error for a predicted single observation of Y is as follows:

a £1 +
1
n

+
1xn +1 - x22
a
n

i=1
1xi - x22 § se = A c 1 +

1
22

+
158,000 - 57,34222

34,084,596
d121,806 = 151.90
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The distinction between these two interval estimation problems is illustrated in 
Figures 11.11 and 11.12. We see in each figure the estimated regression line for our retail sales—
disposable income data. Also, in Figure 11.11 we see a probability density function representing 
our uncertainty about the value that retail sales will occur in the new store whose market area 
has disposable income equal to $58,000. The probability density function in Figure 11.12 repre-
sents our uncertainty about expected, or average, retail sales in years when disposable income is 
$58,000. Of course, we would be less certain about sales in the first year for single specific stores 
than about average sales, and this is reflected in the shapes of the two density functions. We see 
that both are centered on retail sales of $22,686, but that the density function for the prediction of 
a single outcome in Figure 11.11 has greater dispersion. As a result, the prediction interval for a 
specific value is wider than the confidence interval for expected retail sales.

We can obtain some further insights by studying the general forms of the prediction 
and confidence intervals. As we have seen, the wider the interval, the greater the uncer-
tainty surrounding the point forecast. From these formulas we make four observations:

 1. All other things being equal, the larger the sample size n, the narrower are both the 
prediction interval and the confidence interval. Thus, we see that the more sample 
information we have available, the more confident we will be about our prediction.

 2. All other things being equal, the larger s2
e  is, the wider are both the prediction inter-

val and the confidence interval. Again, this is to be expected, since s2
e  is an estimate of 

s2, the variance of the regression errors, ei. Since these errors

ei = yi - b0 - b1xi

represent the discrepancy between the observed values of the dependent variables 
and their expectations, given the independent variables, the bigger the magnitude of 
discrepancy, the more imprecise will be our prediction.

 3. Consider now the quantity aan
i=1
1xi - x22b . This is simply a multiple of the sample 

dispersion of the observations of the independent variable. A large dispersion implies 
that we have information for a wide range of values of this variable, which allows 

Similarly, we find that the standard error for the expected value of Y is as follows:

a £ 1
n

+
1xn +1 - x22
a
n

i=1
1xi - x22 § se = A c 1

22
+
158,000 - 57,34222

34,084,596
d121,806 = 35.61

Suppose that 95% intervals are required for the forecasts with a = 0.05 and

tn -2, a>2 = t20,0.025 = 2.086

Using these results, we find that the 95% prediction interval for the first year’s retail 
sales when disposable income is $58,000 is computed as follows:

22, 686 { 12.08621151.902
22, 686 { 317

Thus, the 95% prediction interval for sales in the proposed new store whose market 
area has a per capita income of $58,000 runs from $22,369 to $23,003.

The confidence interval for the expected value of retail sales when disposable in-
come is $58,000 is as follows:

22, 686 { 12.0862135.612
22, 686 { 74

Hence, the 95% confidence interval for the expected value runs from $22,612 to $22,760.
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more precise estimates of the population regression line and correspondingly nar-
rower confidence intervals and narrower prediction intervals.

 4. We also see that larger values of the quantity 1xn +1 - x22 result in wider confidence 
intervals and wider prediction intervals. Thus, both intervals become wider as we move 
from the mean of the independent variable, X. Since our sample data are centered at the 
mean x, we would expect to be more definitive about our inference when the indepen-
dent variable is relatively close to this central value than when it is some distance away.

Extrapolation of the regression equation outside the range of the data used for estima-
tion can lead to major errors. Suppose that you are asked to predict retail sales for a pro-
posed store in a market area with per household disposable income of $70,000. Referring to 
the data in Table 11.1 and the regression line in Figure 11.12, we see that $70,000 is well out-
side the range of the data used to develop the regression model. An inexperienced analyst 
might use the procedures previously developed to estimate a prediction or a confidence 
interval. From the equations we can see that the resulting intervals would be very wide, 
and, thus, the forecast would be of limited value. However, there is a more fundamental 
problem with forecasts made outside the range of the original data: We simply have no 
evidence to indicate the nature of the relationship outside the range of the data. There is no 
reason in economic theory that requires absolutely that the relationship will remain linear 
with the same rate of change when we move outside the range of the data used to estimate 
the regression model coefficients. Any extrapolation of the model outside the range of the 
data to obtain predicted values must be based on knowledge or evidence beyond that con-
tained in the regression analysis on the available data. Such extrapolation would be based 
on judgment, experience, and opinion and not on rigorous statistical analysis.

EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

and also

se = 3.45 x = 11 n = 22 a
n

i=1
1xi - x22 = 400

Find the 95% confidence interval and 95% prediction 
interval for the point where x = 17.

 11.42 Given a simple regression analysis, suppose that we 
have obtained a fitted regression model

yni = 8 + 10xi

and also

se = 11.23 x = 8 n = 44 a
n

i=1
1xi - x22 = 800

Find the 95% confidence interval and 95% prediction 
interval for the point where x = 17.

Application Exercises
 11.43 A sample of 25 blue-collar employees at a production 

plant was taken. Each employee was asked to assess 
his or her own job satisfaction (x) on a scale of 1 to 10. 
In addition, the numbers of days absent (y) from work 
during the last year were found for these employees. 
The sample regression line

yni = 11.6 - 1.2x

Basic Exercises
 11.39 Given a simple regression analysis, suppose that we 

have obtained a fitted regression model

yni = 12 + 5xi

and also

se = 9.67 x = 8 n = 32 a
n

i=1
1xi - x22 = 500

Find the 95% confidence interval and 95% prediction 
interval for the point where x = 13.

 11.40 Given a simple regression analysis, suppose that we 
have obtained a fitted regression model

yni = 14 + 7xi

and also

se = 7.45 x = 8 n = 25 a
n

i=1
1xi - x22 = 300

Find the 95% confidence interval and 95% prediction 
interval for the point where x = 11.

 11.41 Given a simple regression analysis, suppose that we 
have obtained a fitted regression model

yni = 22 + 8xi
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was estimated by least squares for these data. Also 
found were

x = 6.0 a
25

i=1
1xi - x22 = 130.0  SSE = 80.6

a. Test, at the 1% significance level against the 
 appropriate one-sided alternative, the null 
 hypothesis that job satisfaction has no linear effect 
on absenteeism.

b. A particular employee has job satisfaction level 
4. Find a 90% interval for the number of days 
this employee would be absent from work in 
a year.

 11.44 Doctors are interested in the relationship between 
the dosage of a medicine and the time required for a 
patient’s recovery. The following table shows, for a 
sample of 10 patients, dosage levels (in grams) and 
recovery times (in hours). These patients have similar 
characteristics except for medicine dosages.

Dosage level 1.2 1.3 1.0 1.4 1.5 1.8 1.2 1.3 1.4 1.3
Recovery time  25  28  40  38  10    9  27  30  16  18

a. Estimate the linear regression of recovery time on 
dosage level.

b. Find and interpret a 90% confidence interval for 
the slope of the population regression line.

c. Would the sample regression derived in part 
a be useful in predicting recovery time for a 
 patient given 2.5 grams of this drug? Explain 
your answer.

 11.45 For a sample of 20 monthly observations, a finan-
cial analyst wants to regress the percentage rate of 
return (Y) of the common stock of a corporation on 
the percentage rate of return (X) of the Standard 
& Poor’s 500 index. The following information is 
available:

 a
20

i=1
yi = 22.6 a

20

i=1
xi = 25.4 a

20

i=1
x2

i = 145.7

 a
20

i=1
xiyi = 150.5 a

20

i=1
y2

i = 196.2

a. Test the null hypothesis that the slope of the popu-
lation regression line is 0 against the alternative 
that it is positive.

b. Test against the two-sided alternative the null 
hypothesis that the slope of the population 
 regression line is 1.

 11.46 Estimate a linear regression model for mutual 
fund losses on November 13, 1989, on previous 

gains in 1989, using the data file New York Stock Ex-
change Gains and Losses. Test, against a two-sided 
alternative, the null hypothesis that mutual fund 
losses on Friday, November 13, 1989, did not depend 
linearly on previous gains in 1989.

 11.47 Denote by r the sample correlation between a pair of 
random variables.

a. Show that

1 - r2

n - 2
=

s2
e

SST

b. Using the result in part a, show that

r211 - r22>1n - 22 =
b

se>2a 1xi - x22
 11.48 In a UK business school, lecturers have tried to deter-

mine if the number of hours students attend lectures 
has any measurable effect on the grades obtained by 
the students. The following data from a sample of 14 
students in an international business class show hours 
of attendance and resulting grades.122, 722, 120, 642, 124, 702, 18, 342, 112, 402, 116, 402,118, 522, 116, 452, 120, 682, 124, 652, 128, 722,120, 642, 110, 382, 116, 442 
a. Estimate the regression line.
b. Find a 95% confidence interval for the slope of the 

regression line.

 11.49 For a sample of 74 monthly observations the regres-
sion of the percentage return on gold (y) against the 
percentage change in the consumer price index (x) 
was estimated. The sample regression line, obtained 
through least squares, was as follows:

y = -0.003 + 1.11x

The estimated standard deviation of the slope of the 
population regression line was 2.31. Test the null hy-
pothesis that the slope of the population regression line 
is 0 against the alternative that the slope is positive.

 11.50 A liquor wholesaler is interested in assessing the ef-
fect of the price of a premium scotch whiskey on the 
quantity sold. The results in the accompanying table 
on price, in dollars, and sales, in cases, were obtained 
from a sample of 8 weeks of sales records.

Price 19.2 20.5 19.7 21.3 20.8 19.9 17.8 17.2
Sales 25.4 14.7 18.6 11.4 11.1 15.7 29.2 35.2

Test, at the 5% level against the appropriate one-sided 
alternative, the null hypothesis that sales do not depend 
linearly on price for this premium scotch whiskey.

 11.51 The data file Dow Jones shows percentage 
changes (xi) in the Dow Jones index over the 

first five trading days of each of 13 years and also the 
corresponding percentage changes (yi) in the index 
over the whole year. If the Dow Jones index increases 
by 1.0% in the first five trading days of a year, find 
90% confidence intervals for the actual and also the ex-
pected percentage changes in the index over the whole 
year. Discuss the distinction between these intervals.

 11.52 You have been asked to study the relationship 
 between mean health care costs and mean 

 disposable income using the state level data contained 
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11.7 CORRELATION ANALYSIS

In this section we use correlation coefficients to study relationships between variables. In 
Chapter 2 we used the sample correlation coefficient to describe the relationship between 
variables indicated in the data. In Chapters 4 and 5 we learned about the population cor-
relation. Here, we develop inference procedures that use the correlation coefficient for 
studying linear relationships between variables.

In principle, there are many ways in which a pair of random variables might be re-
lated to each other. As we begin our analysis, it is helpful to postulate some functional 
form for their relationship. It is often reasonable to conjecture, as a good approximation, 
that the association is linear. If the pair of linearly related random variables X and Y is be-
ing considered, a scatter plot of the joint observations on this pair will tend to be clustered 
around a straight line. Conversely, if a linear relationship does not exist, then the scatter 
plot will not follow a straight line. Not all the relationships that we study will be tightly 
clustered about a straight line. Many important relationships will have scatter plots that 
show a tendency toward a linear relationship, but with considerable deviation from a 
straight line. Correlations have wide applications in business and economics. In many ap-
plied economic problems we argue that there is an independent, or exogenous, variable 
X, whose values are determined by activities outside of the economic system being mod-
eled, and that there is a dependent or endogenous variable Y, whose value depends on 
the value of X. If we ask if sales increase when prices are reduced, we are thinking about 
a situation in which a seller deliberately and independently adjusts prices up or down 
and observes changes in sales. Now suppose that prices and quantities sold result from 
equilibriums of supply and demand as proposed by the basic economic model. Then we 
could both model prices and quantities as random variables and ask if these two random 
variables are related to each other. The correlation coefficient can be used to determine if 
there is a relationship between variables in either of these situations.

Suppose that both X and Y are determined simultaneously by factors that are out-
side the economic system being modeled. Therefore, a model in which both X and Y are 
random variables is often more realistic. In Chapter 4 we developed the correlation coef-
ficient, rxy, as a measure of the relationship between two random variables, X and Y. In 
those cases we used the population correlation coefficient, rxy, to indicate a linear relation-
ship without implying that one variable is independent and the other is dependent. In 
situations where one variable is logically dependent on a second variable, we can use re-
gression analysis to develop a linear model. Here, we develop statistical inference proce-
dures that use sample correlations to determine characteristics of population correlations.

Hypothesis Test for Correlation

The sample correlation coefficient

 r =
sxy

sxsy

 sxy =
a
n

i=1
1xi - x21yi - y2

n - 1

in the data file Economic Activity. Estimate the re-
gression of health and personal expenditures on dis-
posable income. Compute the 95% prediction interval 
and the 95% confidence interval for health and per-
sonal expenditures when disposable income is $32,000.

 11.53 An economic policy research organization has 
asked you to study the relationship between dis-

posable income and unemployment level. The data for 

this study are contained in the data file Economic 
 Activity. As a first step you estimate the regression model 
for the relationship between unemployment regressed on 
disposable income. Determine if there is a significant rela-
tionship between unemployment and disposable income 
and whether the relationship is increasing or decreasing. 
Compute the 95% prediction interval for unemployment 
when disposable income is $30,000.
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is useful as a descriptive measure of the strength of linear association in a sample. We 
can also use the correlation to test the hypothesis that there is no linear association in the 
population between a pair of random variables—that is,

H0 : r = 0

This particular null hypothesis of no linear relationship between a pair of random 
variables is of great interest in a number of applications. When we compute the sample 
correlation from data, the result is likely to be different from 0 even if the population cor-
relation is 0. Thus, we would like to know how large a difference from 0 is required for a 
sample correlation to provide evidence that the population correlation is not 0.

We can show that, when the null hypothesis is true and the random variables have a 
joint normal distribution, then the random variable

t =
r21n - 22211 - r22

follows a Student’s t distribution with 1n - 22 degrees of freedom. The appropriate 
 hypothesis tests are shown in Equations 11.27–11.29.

Tests for Zero Population Correlation
Let r be the sample correlation coefficient, calculated from a random sample 
of n pairs of observations from a joint normal distribution. The following tests 
for zero population correlation use the null hypothesis

H0 : r = 0

have a significance value a. We emphasize that all the following hypothesis 
tests are based on the assumption that the correlation is 0.

1. To test H0 against the alternative

H1 : r 7 0

the decision rule is as follows:

 reject H0 if 
r21n - 22211 - r22 7 tn- 2,a (11.27)

2. To test H0 against the alternative

H1 : r 6 0

the decision rule is as follows:

 reject H0 if 
r21n - 22211 - r22 6 - tn- 2,a (11.28)

3. To test H0 against the two-sided alternative

H1 : r ? 0

the decision rule is as follows:

 reject H0 if 
r21n - 22211 - r22 6 - tn- 2,a>2 or 

r21n - 22211 - r22 7 tn- 2,a>2 (11.29)

Here, tn -2,a is the number for which

P1tn- 2 7 tn- 2, a2 = a
where the random variable tn -2 follows a Student’s t distribution with 
(n - 2) degrees of freedom.
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We noted previously that the null hypothesis H0 : r = 0 can be rejected by using the 

approximate rule of thumb u r u 7
21n

. This result provides a quick test to determine if two 

variables are linearly related when one or more sample correlations are being  examined. 
Thus, for a sample size of n = 25, the absolute value of the sample correlation would have 

to exceed 
2225

= 0.40. But for a sample of size n = 64, the absolute value of the sample 

correlation would have to exceed only 
2264

= 0.25. This result has been found to be useful 

in many statistical applications. This rule of thumb would have led us to conclude that a 
relationship does exist in Example 11.4.

Example 11.4 Political Risk Score  
(Hypothesis Test for Correlation)

A research team was attempting to determine if political risk in countries is related to 
inflation for these countries. In this research a survey of political risk analysts produced a 
mean political risk score for each of 49 countries (Mampower, Livingston, and Lee 1987).

Solution The political risk score is scaled such that the higher the score, the greater 
the political risk. The sample correlation between political risk score and inflation for 
these countries was 0.43.

We wish to determine if the population correlation, r, between these measures is 
different from 0. Specifically, we want to test

H0 : r = 0

against

H1 : r 7 0

using the sample information

n = 49 r = 0.43

The test is based on the statistic

t =
r21n - 22211 - r22 =

0.432149 - 2221 - 10.4322 = 3.265

Since there are 1n - 22 = 47 degrees of freedom, we have from the Student’s t 
(Appendix Table 8),

t47,0.005 6 2.704

Therefore, we can reject the null hypothesis at the 0.05% significance level. As a result, 
we have strong evidence of a positive linear relationship between inflation and experts’ 
judgments of political riskiness of countries. Note that from this result we cannot con-
clude that one variable caused the other, but only that they are related.

4. If we set tn -2,a>2 = 2.0 in Equation 11.29, an approximate rule to remem-
ber for testing the previous hypothesis that the population correlation is 
0 can be shown to be

u r u 7
22n
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EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

It is recommended that the following exercises be solved by 
using a computer.

 11.60 The accompanying table and the data file Dow 
Jones show percentage changes (xi) in the Dow 

Jones index over the first five trading days of each of 13 
years and also the corresponding percentage changes 
(yi) in the index over the whole year.

a. Calculate the sample correlation.
b. Test, at the 10% significance level against a two-sided 

alternative, the null hypothesis that the population 
correlation is 0.

x  y x y
1.5 14.9 5.6 2.3

0.2 -9.2 -1.4 11.9

-0.1 19.6 1.4 27.0

2.8 20.3 1.5 -4.3

2.2 -3.7 4.7 20.3

-1.6 27.7 1.1 4.2

-1.3 22.6

 11.61 A college administers a student evaluation 
questionnaire for all its courses. For a random 

sample of 12 courses, the accompanying table and the 
data file Student Evaluation show both the average 
student ratings of the instructor (on a scale of 1 to 5), 
and the average expected grades of the students (on a 
scale of A = 4 to F = 0).

Instructor  
rating

2.8 3.7 4.4 3.6 4.7 3.5 4.1 3.2 4.9 4.2 3.8 3.3

Expected  
grade

2.6 2.9 3.3 3.2 3.1 2.8 2.7 2.4 3.5 3.0 3.4 2.5

a. Find the sample correlation between instructor rat-
ings and expected grades.

b. Test, at the 10% significance level, the hypothesis 
that the population correlation coefficient is zero 
against the alternative that it is positive.

 11.62 In an advertising study the researchers wanted 
to determine if there was a relationship be-

tween the per capita cost and the per capita revenue. 
The following variables were measured for a random 
sample of advertising programs:

 xi = Cost of Advertisement , Number of 
Inquiries Received

 yi = Revenue from Inquiries , Number of 
Inquiries Received

The sample data results are shown in the data file 
 Advertising Revenue. Find the sample correlation and 
test, against a two-sided alternative, the null  hypothesis 
that the population correlation is 0.

Basic Exercises
 11.54 Given the following pairs of 1x, y2 observations, com-

pute the sample correlation.

a. 12, 52, 15, 82, 13, 72, 11, 22, 18, 152
b. 17, 52, 110, 82, 18, 72, 16, 22, 113, 152
c. 112, 42, 115, 62, 116, 52, 121, 82, 114, 62
d. 12, 82, 15, 122, 13, 142, 11, 92, 18, 222

 11.55 Test the null hypothesis

H0 : r = 0

versus

H1 : r ? 0

given the following.

a. A sample correlation of 0.35 for a random sample 
of size n = 40

b. A sample correlation of 0.50 for a random sample 
of size n = 60

c. A sample correlation of 0.62 for a random sample 
of size n = 45

d. A sample correlation of 0.60 for a random sample of 
size n = 25

 11.56 An instructor in a statistics course set a final exami-
nation and also required the students to do a data 
analysis project. For a random sample of 10 students, 
the scores obtained are shown in the table. Find the 
sample correlation between the examination and proj-
ect scores.

Examination 81 62 74 78 93 69 72 83 90 84
Project 76 71 69 76 87 62 80 75 92 79

Application Exercises
 11.57 In the study of 49 countries discussed in Example 11.4, 

the sample correlation between the experts’ political 
riskiness score and the infant mortality rate in these 
countries was 0.75. Test the null hypothesis of no cor-
relation between these quantities against the alterna-
tive of positive correlation.

 11.58 For a random sample of 353 high school teachers, the 
correlation between annual raises and teaching evalu-
ations was found to be 0.11. Test the null hypothesis 
that these quantities are uncorrelated in the popula-
tion against the alternative that the population corre-
lation is positive.

 11.59 The sample correlation for 68 pairs of annual returns 
on common stocks in country A and country B was 
found to be 0.51. Test the null hypothesis that the pop-
ulation correlation is 0 against the alternative that it is 
positive.
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11.8 BETA MEASURE OF FINANCIAL RISK

The financial discipline has developed a number of measures and analysis procedures to 
help investors measure and control financial risk in the development of investment port-
folios. Risk can be identified as diversifiable risk and nondiversifiable risk. Diversifiable 
risk is that risk associated with specific firms and industries and includes labor conflicts, 
new competition, consumer market changes, and many other factors. This risk can be con-
trolled by larger portfolio sizes and by including stocks whose returns have negative cor-
relations. We developed these procedures in Chapter 5. Nondiversifiable risk is that risk 
associated with the entire economy. Shifts in the economy resulting from business cycles, 
international crisis, the evolving world energy demands, or others affect all firms but do 
not have the same effect on each firm. The overall effect is measured by the average return 
on stocks such as measured by the Standard & Poor’s 500 stock composite index (S & P 500). 
The effect on individual firms is measured by the beta coefficient.

The beta coefficient for a specific firm is the slope coefficient that is obtained when the 
return for a particular firm is regressed on the returns for a broad index such as the S & P 500. 
This slope coefficient indicates how responsive the returns for a particular firm are to the 
overall market returns. In most cases the beta is positive, but in some limited cases a firm’s 
returns will move in the opposite direction compared to the overall economy. If the firm’s 
returns follow the market exactly, then the beta coefficient will be 1. If the firm’s returns 
are more responsive to the market, then the beta would be greater than 1, and if the firm’s 
returns are less responsive to the market, then the beta will be less than 1. Using financial 
analysis based on the capital asset pricing model, the required return on an investment is 
given by the following:

arequired return
on investment

b = arisk@free
rate

b + c a beta for
investment

b * a amarket
return

b - arisk@free
rate

b b d
From the previous result we see that a higher value of beta results in the need for a higher 
required return on investment. This higher required return would adjust for the fact that 
the stock return is influenced more heavily by the nondiversifiable market risk. Diversifi-
cation through larger portfolios cannot adjust for overall shifts in the market.

A financial manager might be concerned only about the actual value of the beta. How-
ever, a statistical analyst would also be concerned about the “quality” of the regression 
model that provides the estimate of beta and, thus, standard error of the coefficient, Stu-
dent’s t, R-squared, and other measures become appropriate. A statistical analyst would 
also be concerned about the time period represented by the data. We would like the pe-
riod to be as long as possible to obtain an estimate with a low variance. However, we also 
know that major changes occur over time that may result in a sea change in the economy. 
In those cases we might be mixing data from two different kinds of economy, and the 
resulting estimated beta might not be appropriate for present decisions. Thus, it is impor-
tant that the statistical analyst work closely with experienced financial analysts and fund 
managers who can help reflect on overall economic conditions.

Example 11.5 shows how we can estimate beta using our present knowledge of re-
gression analysis.

Example 11.5 Estimation of Beta Coefficients

The research department of Blue Star Investments has been asked to determine the beta 
coefficients for the firms Pearson PLC and Infosys, and you have been assigned the 
project. Both firms are large multinational organizations. Pearson is a wide-range pub-
lisher and provider of various media, whereas Infosys is a large computer software and 
information services firm with headquarters in India.



 11.8 Beta Measure of Financial Risk 457

Solution After discussions with a number of analysts, you decide that you will 
use monthly data going back 60 months from April 2008. The measure is month end 
proportion change in stock value, and the data are contained in the data file Return 
on Stock Price 60 Month. The regression analysis results and scatter plot for the 
Pearson analysis are shown in Figure 11.13, and the analysis for Infosys is shown 
in Figure 11.14.1

Figure 11.13 Computation of Beta for Pearson
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Regression Analysis: Pearson PLC (ADR) versus SP 500

The regression equation is
Pearson PLC (ADR) = – 0.00098 + 1.10 SP 500

Predictor       Coef   SE Coef      T      P
Constant   –0.000982  0.005046  –0.19  0.846
SP 500        1.0991    0.1960   5.61  0.000

S
R-Sq
R-Sq(adj)

As indicated in Figure 11.13, the Pearson return has a beta of 1.10 with a coefficient 
Student’s t = 5.61 and an overall R-squared of 35.2%. Thus, we see that the nondiver-
sifiable risk for Pearson follows the market quite closely. For the 60-month period, the 
monthly return for Pearson was 0.6%.

The Infosys return has a beta of 1.87 with a coefficient Student’s t = 4.49 and an 
overall R-squared of 25.8%. Thus, we see that the nondiversifiable risk response for 
Infosys is substantially above the overall market. For the 60-month period, the monthly 
return for Infosys was 1.96%. Recall the previous discussion from the capital asset pric-
ing model, which indicated that a higher beta would require a higher market return to 
adjust for the risk. In fact, we see that the Infosys return was over three times that of 
Pearson.

1The authors have decided to use stock market data sets that end on April 2008 for the examples and exer-
cises in the 8th edition even though more recent data are available. We are doing this because of the major 
stock market crash and recession that began in September 2008. Using more recent data would require finan-
cial and economic analysis that is beyond the level of this textbook. Our objective is to learn about statistical 
methodology, and that study would be complicated by the real issues associated with the stock market crash 
of 2008.
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EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

 11.66 Allied Financial is considering the possibility of 
adding one or more computer industry stocks to 

its portfolio. You are asked to consider the possibility 
of Seagate, Microsoft, and Tata Information systems. 
Data for this task are contained in the data file Return 
on Stock Price 60 Months. Compare the return on 
these three stocks by computing the beta coefficients 
and the mean and variance of the returns. What is your 
recommendation regarding these three stocks?

 11.67 Charlie Ching has asked you to analyze the possi-
bility of including Seneca Foods and Safeco in his 

portfolio. Data for this task are contained in the data file 
Return on Stock Price 60 Months. Compute the beta co-
efficients for the stock price growth for each stock. Then 
construct a portfolio that includes equal dollar value for 
both stocks. Compute the beta coefficient for that portfo-
lio. Compare the mean and variance for the portfolio 
with the S & P 500. What is your recommendation re-
garding the inclusion of these two stocks in Charlie’s 
portfolio?

Figure 11.14 Computation of Beta for Infosys Technology
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Regression Analysis: Infosys Tech versus SP 500

The regression equation is
Infosys Tech = 0.0073 + 1.87 SP 500

Predictor     Coef  SE Coef     T      P
Constant   0.00731  0.01074   0.68  0.499
SP 500      1.8729   0.4169  4.49  0.000

20.2

S
R-Sq
R-Sq(adj)

11.9 GRAPHICAL ANALYSIS

We have developed the theory and analysis procedures that provide the capability to perform 
regression analysis and build linear models. The regression model is based on a set of assump-
tions. However, there are many ways that regression analysis applications can go wrong, 
including assumptions that are not satisfied if the data do not follow the assumed patterns.

 11.63 As part of a process to build a new automotive 
portfolio, you have been asked to determine the 

beta coefficients for AB Volvo and General Motors. 
Data for this task are contained in the data file Return 
on Stock Price 60 Months. Compare the required re-
turn on the two stocks to compensate for the risk.

 11.64 In this exercise you are asked to determine the 
beta coefficient for Senior Housing Properties 

Trust. Data for this task are contained in the data file 
Return on Stock Price 60 Months. Interpret this 
coefficient.

 11.65 An investor is considering the possibility of in-
cluding TCF Financial in her portfolio. Data for 

this task are contained in the data file Return on Stock 
Price 60 Months. Compare the mean and variance of 
the monthly return with the S & P 500 mean and vari-
ance. Then, estimate the beta coefficient. Based on this 
analysis, what would you recommend to the investor?
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The example of retail sales regressed on disposable income—Figure 11.4—has a scat-
ter plot that follows the pattern assumed in regression analysis. That pattern, however, 
does not always occur when new data are studied. One of the best ways to detect poten-
tial problems for simple regression analysis is to prepare scatter plots and observe the pat-
tern. Here, we will consider some analysis tools and regression examples that can help us 
prepare better regression analysis applications.

In this section, graphical analysis is used to show the effect on regression analysis of 
points that have extreme X values and points that have Y values that deviate consider-
ably from the least squares regression equation. In later chapters we show how residuals 
analysis can be used to examine other deviations from standard data patterns.

Extreme points are defined as points that have X values that deviate substantially from 
the X values for the other points. Refer to Equation 11.26, which presents the confidence in-
terval for the expected value of Y at a specific value of X. Central to this confidence interval 
is a term typically called the leverage, hi, for a point, which is defined as follows:

 hi =
1
n

+
1xi - x22

a
n

i=1
1xi - x22 (11.30)

This leverage term–Equation 11.30—will increase the standard deviation of the expected value 
as data points are farther from the mean of X and, thus, lead to a wider confidence interval. A 
point i is defined as an extreme point if its value of h is substantially different from the h values 
for all other data points. We see in the following example that Minitab will identify points that 
have a high leverage with an X if hi 7 3 p>n, where p is the number of predictors, including 
the constant. The same feature is available in most good statistical packages, but not in Excel. 
Using this capability, extreme points can be identified, as shown in Example 11.6.

Example 11.6 The Effect of Extreme X Values 
(Scatter Plot Analysis)

We are interested in determining the effect of extreme X values on the regression. In 
this example the effect of points with X values that are substantially different from the 
other points is investigated using two samples that differ in only two points. These 
comparative examples, while somewhat unusual, are used to emphasize the effect of 
extreme points on a regression analysis.

Solution Figure 11.15 is a scatter plot with a regression line drawn on the 
points, and Figure 11.16 is the output from the regression analysis computed 

Figure 11.15 Scatter Plot with Two Extreme X Points: Positive Slope
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with the data. The regression slope is positive and R2 = 0.632. But note that two 
extreme points seem to determine the regression relationship. Now let us consider 
the effect of changing the two extreme data points, as shown in Figures 11.17  
and 11.18.

As a result of changing only two data points, the relationship now has a statisti-
cally significant negative slope, and the predictions would be substantially different. 
Without examining the scatter plots we would not know why we had either a posi-
tive or a negative slope. We might have thought that our results represented a stan-
dard regression situation such as we saw in the retail sales scatter plot. Note that in 
Figure 11.17 that observation 26 has been labeled as an extreme observation by the 
symbol X.

Figure 11.16 Regression Analysis with Two Extreme X Points: Positive Slope 
(Minitab Output)

Regression Analysis: Y2 versus x2

The regression equation is
Y2 = 11.74 + 0.9145 x2

Source DF SS MS F P
Regression 1 3034.80 3034.80 42.86 0.000
Error 25 1770.26 70.81
Total 26 4805.05

S = 8.41488  R-Sq = 63.2%  R-Sq(adj) = 61.7%

Analysis of Variance

Figure 11.17 Scatter Plot with Extreme X Points: Negative Slope
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This example demonstrates a common problem when historical data are used. Sup-
pose that X is the number of workers employed on a production shift and Y is the number 
of units produced on that shift. Most of the time the factory operates with a relatively sta-
ble workforce, and output depends in large part on the amount of raw materials available 
and the sales requirements. The operation adjusts up or down over a narrow range in re-
sponse to demands and to the available workforce, X. Thus, we see that in most cases the 
scatter plot covers a narrow range for the X variable. But occasionally there is a very large 
or small workforce—or the number of workers is recorded incorrectly. On those days the 
production might be unusually high or low—or might be recorded incorrectly. As a result, 
we have extreme points that can have a major influence on the regression model. These 
few days determine the slope of the regression equations. Without the extreme points the 
regression would indicate little or no relationship. If these extreme points represent exten-
sions of the relationship, then the estimated model is useful. But if these points result from 
unusual conditions or recording errors, the estimated model is misleading.

In a particular application we may find that these extreme points are correct and should 
be used to determine the regression line. But the analyst needs to make that decision know-
ing that all the other data points do not support a significant relationship. In fact, you do need 
to understand the system and process that generated the data to evaluate the available data.

Outlier points are defined as those that deviate substantially in the Y direction from 
the predicted value. Typically, these points are identified by computing the standardized 
residual as follows:

 eis =
ei

se21 - hi

 (11.31)

That is, the standardized residual—Equation 11.31—is the residual divided by the standard 
error of the residual. Note that in the previous equation, points with high  leverage—large 
hi—will have a smaller standard error of the residual. This occurs because points with high 
leverage are likely to influence the location of the estimated regression line, and, hence, the 
observed and expected values of Y will be closer. Minitab will mark observations that have 

Figure 11.18 Minitab Output for Regression with Extreme X Points: 
Negative Slope

Regression Analysis: Y versus X 

The regression equation is
Y1 = 53.2 – 0.463 X

Predictor Coef SE Coef T P
Constant 53.195 3.518 15.12 0.000
X1 –0.4626 0.1042 -4.44 0.000

s = 6.27612  R-Sq = 44.1%  R-Sq(adj) = 41.9%

Analysis of Variance

Source DF SS MS F P
Regression 1 776.56 776.56 19.71 0.000
Residual Error 25 984.74 39.39
Total 26 1761.30

Unusual Observations

Obs X Y Fit Se Fit Residual St Resid
7 35.5 49.14 36.78 1.27 12.37 2.01R
26 80.0 10.00 16.19 5.17 –6.19 –1.74 X

R denotes an observation with a large standardized residual.
X denotes an observation whose X value gives it large influence.

Observation 26
is an extreme
point with large
influence.
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an absolute value of the standardized residual greater than 2.0 with an R to indicate that they 
are outliers. This capability is also available in most good statistical packages, but not in Ex-
cel. Using this capability, outlier points can be identified, as shown in Example 11.7.

Example 11.7 The Effect of Outliers in the Y Variable 
(Scatter Plot Analysis)

In this example we consider the effect of outliers in the y, or vertical, direction. Recall 
that the regression analysis model assumes that all the variation is in the Y direction. 
Thus, we know that outliers in the Y direction will have large residuals, and these will 
result in a higher estimate of the model error. In this example we see that the effects can 
be even more extreme.

Solution To begin, observe the scatter plot and regression analysis in Figures 11.19 
and 11.20. In this example we have a strong relationship between the X and Y variables. 
The scatter plot clearly supports a linear relationship, with b1 = 11.88. In addition, the 
regression model R2 is close to 1, and the Student’s t statistic is very large. Clearly, we 
have strong evidence to support a linear model.

Figure 11.19 Scatter Plot with Anticipated Pattern

Y1 5 24.96 1 11.88 X1

X1

Y
1

S
R-Sq
R-Sq(adj)

64.7786
91.7%
91.4%

Figure 11.20 Regression with Anticipated Pattern (Minitab Output)

Regression Analysis: Y1  versus X1

The regression equation is
Y1 = –4.96 + 11.88 X1

s = 64.7786  R-Sq = 91.7%  R-Sq(adj) = 91.4%

Analysis of Variance

Source DF SS MS F P
Regression 1 1160171 1160171 276.48 0.000
Error 25 104907 4196
Total 26 1265077
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Now let us consider the effect of changing two observations to outlier data points, 
as shown in Figure 11.21. This could occur because of a data-recording error or because 
of a very unusual condition in the process being studied.

Figure 11.21 Scatter Plot with Y Outlier Points

Outlier
points

Y1 5 183.9 1 6.400 X1

X1

Y
1

S
R-Sq
R-Sq(adj)

192.721
26.6%
23.7%

The regression slope is still positive, but now b1 = 6.40, and the slope estimate 
has a larger standard error, as shown in Figure 11.22. The confidence interval is much 
wider, and the predicted value from the regression line is not as accurate. The correct 

Figure 11.22 Regression with Y Outlier Points (Minitab Output)

Regression Analysis: Y1  versus X1

The regression equation is
Y1 = 184 + 6.40 X1

Predictor Coef SE Coef T P
Constant 183.92 82.10 2.24 0.034
X1 6.400 2.126 3.01 0.006

S = 192.721  R-Sq = 26.6%  R-Sq(adj) = 23.7%

Analysis of Variance

Source DF SS MS F P
Regression 1 336540 336540 9.06 0.006
Residual Error 25 928537 37141
Total 26 1265077

Unusual Observations

Obs X1 Y1 Fit Se Fit Residual St Resid
26 2.0 850.0 196.7 78.3 653.3 3.71R
27 55.0 0.0 535.9 57.3 –535.9 –2.91R

R denotes an observation with a large standardized residual.

Outliers marked
with R
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In the two preceding examples, we have shown that extreme points and outliers have 
a great influence on the estimated regression equation compared to other observations. 
In any applied analysis, either these unusual points are part of the data that represent the 
process being studied or they are not. In the former case they should be included in the 
data set, and in the latter case they should not. The analyst must decide! Typically, these 
decisions require a good understanding of the process and good judgment. First, the in-
dividual points should be examined carefully and their source checked. These unusual 
points could have resulted from measurement or recording errors and, thus, would be 
eliminated or corrected. Further investigation may reveal unusual circumstances that are 
not expected to be part of the standard process, and this would indicate exclusion of the 
data points. Decisions concerning what a standard process is and other related decisions 
require careful judgment and examination of other information about the process being 
studied. A good analyst uses the previously mentioned statistical computations to iden-
tify observations that should be examined more carefully but does not rely exclusively on 
these measures for unusual observations to make the final decision.

There are many other examples that could be generated. You might find that a nonlin-
ear relationship is suggested by the scatter plot and, thus, would provide a better model 
for a particular application problem. In Chapters 12 and 13 we learn how we can use re-
gression to model nonlinear relationships. You will see many different data patterns as 
you proceed with various applications of regression. The important point is that you must 
regularly follow analysis procedures—including the preparation of scatter plots—that can 
provide as much insight as possible. As a good analyst, you must “Know Thy Data!” in 
the next chapter we consider how residuals can also be used graphically to provide fur-
ther tests of regression models.

EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

the data used in each model. Write a report, including 
regression and graphical outputs, that compares and 
contrasts the four models.

 11.69 Josie Foster, president of Public Research, Inc., 
has asked for your assistance in a study of the 

occurrence of crimes in different states before and af-
ter a large federal government expenditure to reduce 
crime. As part of this study she wants to know if the 
crime rate for selected crimes after the expenditure 
can be predicted using the crime rate before the ex-
penditure. She has asked you to test the hypothesis 
that crime before predicts crime after for total crime 
rate and for the murder, rape, and robbery rates. The 
data for your analysis are contained in the data file 
Crime Study. Perform appropriate analysis and write 
a report that summarizes your results.

regression model is now not as clear. Minitab identifies observations 26 and 27 as outli-
ers by printing an R next to the standardized residual. Standardized residuals whose 
absolute value is greater than 2 are indicated in the output. If the two outlier points ac-
tually occurred in the normal operation of the process, then you must include them in 
your analysis. But the fact that they deviate so strongly from the pattern indicates that 
you should carefully investigate the data situations that generated those points and 
study the process that you are modeling.

Application Exercises
 11.68 Frank Anscombe, senior research executive, has 

asked you to analyze the following four linear 
models using data contained in the data file 
Anscombe:

 Y1 = b0 + b1X1

 Y2 = b0 + b1X2

 Y3 = b0 + b1X3

 Y4 = b0 + b1X4

Use your computer package to obtain a linear regres-
sion estimate for each model. Prepare a scatter plot for 
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was obtained, where

y = actual change in the spot rate
 x = change in the spot rate predicted by the 

 inflation rate

The coefficient of determination was 0.097, and the 
estimated standard deviation of the estimator of the 
slope of the population regression line was 0.2759.

a. Interpret the slope of the estimated regression 
line.

b. Interpret the coefficient of determination.
c. Test the null hypothesis that the slope of the pop-

ulation regression line is 0 against the alternative 
that the true slope is positive, and interpret your 
result.

d. Test, against a two-sided alternative, the null  
hypothesis that the slope of the population regres-
sion line is 1, and interpret your result.

 11.75 The following table shows, for eight vintages of select 
wine, purchases per buyer (y) and the wine buyer’s 
rating in a year (x):

x 3.6 3.3 2.8 2.6 2.7 2.9 2.0 2.6

y 24 21 22 22 18 13 9 6

a. Estimate the regression of purchases per buyer on 
the buyer’s rating.

b. Interpret the slope of the estimated regression 
line.

c. Find and interpret the coefficient of 
determination.

 11.70 For a random sample of 53 building supply stores in a 
chain, the correlation between annual sales per square 
meter of floor space and annual rent per square meter 
of floor space was found to be 0.37. Test the null hy-
pothesis that these two quantities are uncorrelated in 
the population against the alternative that the popula-
tion correlation is positive.

 11.71 For a random sample of 526 firms, the sample correla-
tion between the proportion of a firm’s officers who 
are directors and a risk-adjusted measure of return on 
the firm’s stock was found to be 0.1398. Test, against 
a two-sided alternative, the null hypothesis that the 
population correlation is 0.

 11.72 For a sample of 66 months, the correlation between 
the returns on Canadian and Singapore 10-year bonds 
was found to be 0.293. Test the null hypothesis that 
the population correlation is 0 against the alternative 
that it is positive.

 11.73 Based on a sample on n observations, 1x1, y12, 1x2, y22, c, 1xn, yn2, the sample regression of y on 
x is calculated. Show that the sample regression line 
passes through the point 1x = x, y = y2, where x and 
y are the sample means.

 11.74 An attempt was made to evaluate the inflation rate as 
a predictor of the spot rate in the German treasury bill 
market. For a sample of 79 quarterly observations, the 
estimated linear regression

yn = 0.0027 + 0.7916x
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d. Find and interpret a 90% confidence interval for 
the slope of the population regression line.

e. Find a 90% confidence interval for expected pur-
chases per buyer for a vintage for which the buy-
er’s rating is 2.0.

 11.76 For a sample of 306 students in a basic business statis-
tics course, the sample regression line

y = 58.813 + 0.2875x

was obtained. Here,

y = final student score at the end of the course
 x = score on a diagnostic statistics test given 

 at the beginning of the course

The coefficient of determination was 0.1158, and the 
estimated standard deviation of the estimator of the 
slope of the population regression line was 0.04566.

a. Interpret the slope of the sample regression line.
b. Interpret the coefficient of determination.
c. The information given allows the null hypothesis 

that the slope of the population regression line is 0 
to be tested in two different ways against the alter-
native that it is positive. Carry out these tests and 
show that they reach the same conclusion.

 11.77 Based on a sample of 30 observations, the population 
regression model

yi = b0 + b1xi + ei

was estimated. The least squares estimates obtained 
were as follows:

b0 = 10.1 and b1 = 8.4

The regression and error sums of squares were as 
follows:

SSR = 128 and SSE = 286

a. Find and interpret the coefficient of determination.
b. Test at the 10% significance level against a two-

sided alternative the null hypothesis that b1 is 0.
c. Find

a
30

i=1
1xi - x22

 11.78 Based on a sample of 25 observations, the population 
regression model

yi = b0 + b1x1 + ei

was estimated. The least squares estimates obtained 
were as follows:

b0 = 15.6 and b1 = 1.3

The total and error sums of squares were as follows:

SST = 268 and SSE = 204

a. Find and interpret the coefficient of determination.
b. Test, against a two-sided alternative at the 5% sig-

nificance level, the null hypothesis that the slope of 
the population regression line is 0.

c. Find a 95% confidence interval for b1.

 11.79 An analyst believes that the only important determi-
nant of banks’ returns on assets (Y) is the ratio of loans 
to deposits (X). For a random sample of 20 banks, the 
sample regression line

y = 0.97 + 0.47x

was obtained with coefficient of determination 0.720.

a. Find the sample correlation between returns on as-
sets and the ratio of loans to deposits.

b. Test against a two-sided alternative at the 5% sig-
nificance level the null hypothesis of no linear as-
sociation between the returns and the ratio.

 11.80 If a regression of the yield per acre of corn on the 
quantity of fertilizer used is estimated using fertilizer 
quantities in the range typically used by farmers, the 
slope of the estimated regression line will certainly be 
positive. However, it is well known that, if an enor-
mously high amount of fertilizer is used, corn yield 
will be very low. Discuss the benefits of applying re-
gression analysis to a data set that includes a few cases 
of excessive fertilizer use combined with data from 
typical operations.

The following exercises require the use of a computer.

 11.81 A college’s economics department is attempt-
ing to determine if verbal or mathematical pro-

ficiency is more important for predicting academic 
success in the study of economics. The department 
faculty have decided to use the grade point average 
(GPA) in economics courses for graduates as a mea-
sure of success. Verbal proficiency is measured by the 
SAT verbal and the ACT English entrance examina-
tion test scores. Mathematical proficiency is measured 
by the SAT mathematics and the ACT mathematics 
entrance examination scores. The data for 112 students 
are available in a data file named Student GPA. The 
designation of the variable columns is presented in the 
Chapter 11 appendix. You should use your local statis-
tical computer program to perform the analysis for 
this problem.

a. Prepare a graphical plot of the economics GPA 
versus each of the two verbal proficiency scores 
and each of the two mathematical proficiency 
scores. Which variable is a better predictor? Note 
any unusual patterns in the data.

b. Compute the linear model coefficients and the re-
gression analysis statistics for the models that pre-
dict economics GPA as a function of each verbal 
and each mathematics score. Using both the SAT 
mathematics and verbal measures and the ACT 
mathematics and English measures, determine 
whether mathematical or verbal proficiency is the 
best predictor of economics GPA.

c. Compare the descriptive statistics—mean, 
 standard deviation, upper and lower quartiles, 
and range—for the predictor variables. Note the 
differences and indicate how these differences af-
fect the capability of the linear model to predict.
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 11.82 The administrator of the National Highway 
Traffic Safety Administration (NHTSA) wants 

to know if the different types of vehicles in a state 
have a relationship to the highway death rate in the 
state. She has asked you to perform several regression 
analyses to determine if average vehicle weight, per-
centage of imported cars, percentage of light trucks, or 
average car age is related to crash deaths in automo-
biles and pickups. The data for the analyses are in the 
data file Vehicle Travel State. The variable descrip-
tions and locations are contained in the Chapter 11 
appendix.

a. Prepare graphical plots of crash deaths versus 
each of the potential predictor variables. Note the 
relationship and any unusual patterns in the data 
points.

b. Prepare a simple regression analysis of crash 
deaths on the potential predictor variables. Deter-
mine which, if any, of the regressions indicate a 
significant relationship.

c. State the results of your analysis and rank the 
predictor variables in terms of their relationship to 
crash deaths.

 11.83 The Department of Transportation wishes to 
know if states with a larger percentage of urban 

population have higher rates of automobile and 
pickup crash deaths. In addition, it wants to know if 
either the average speed on rural roads or the percent-
age of rural roads that are surfaced is related to crash 
death rates. Data for this study are included in the 
data file Vehicle Travel State.

a. Prepare graphical plots of crash deaths versus 
each of the potential predictor variables. Note the 
relationship and any unusual patterns in the data 
points.

b. Prepare a simple regression analysis of crash 
deaths on the potential predictor variables. Deter-
mine which, if any, of the regressions indicate a 
significant relationship.

c. State the results of your analysis and rank the 
predictor variables in terms of their relationship to 
crash deaths.

 11.84 An economist wishes to predict the market value 
of owner-occupied homes in small midwestern 

cities. She has collected a set of data from 45 small cities 
for a 2-year period and wants you to use these as the 
data source for the analysis. The data are stored in the 
file Citydatr. She wants you to develop two prediction 
equations: one that uses the size of the house as a pre-
dictor and a second that uses the tax rate as a predictor.

a. Plot the market value of houses (hseval) versus the 
size of houses (sizense), and then versus the tax rates 
(taxrate). Note any unusual patterns in the data.

b. Prepare regression analyses for the two predictor 
variables. Which variable is the stronger predictor 
of the value of houses?

c. A business developer in a midwestern state has 
stated that local property tax rates in small towns 

need to be lowered because if they are not, no one 
will purchase a house in these towns. Based on 
your analysis in this problem, evaluate the busi-
ness developer’s claim.

 11.85 Stuart Wainwright, the vice president of pur-
chasing for a large national retailer, has asked 

you to prepare an analysis of retail sales by state. He 
wants to know if either the percent of male unemploy-
ment or the per capita disposable income are related 
to per capita retail sales. Data for this study are stored 
in the data file Economic Activity, which is described 
in the data file catalog in the Chapter 11 appendix. 
Note that you may have to compute new variables us-
ing those variables in the data file.

a. Prepare graphical plots and regression analyses to 
determine the relationships between per capita re-
tail sales and unemployment and personal income. 
Compute 95% confidence intervals for the slope 
coefficients in each regression equation.

b. What is the effect of a $1,000 decrease in per capita 
income on per capita sales?

c. For the per capita income regression equation 
what is the 95% confidence interval for retail sales 
at the mean per capita income and at $1,000 above 
the mean per capita income?

 11.86 A major national supplier of building materials for 
residential construction is concerned about total 

sales for next year. It is well known that the company’s 
sales are directly related to the total national residential in-
vestment. Several New York bankers are predicting that 
interest rates will rise about two percentage points next 
year. You have been asked to develop a regression analy-
sis that can be used to predict the effect of interest rate 
changes on residential investment. The time series data for 
this study are contained in the data file Macro2010, which 
is described in the Chapter 13 appendix.

a. Develop two regression models to predict resi-
dential investment, using the prime interest rate 
for one and the federal funds interest rate for the 
other. Analyze the regression statistics and indi-
cate which equation provides the best predictions.

b. Determine the 95% confidence interval for the 
slope coefficient in both regression equations.

c. Based on each model, predict the effect of a two-
percentage-point increase in interest rates on resi-
dential investment.

d. Using both models, compute 95% confidence intervals 
for the change in residential investment that results 
from a two-percentage-point increase in interest rates.

 11.87 A prestigious national news service has gath-
ered information on a number of nationally 

ranked private colleges; these data are contained in 
the data file Private Colleges. You have been asked to 
determine if the student/faculty ratio has an influence 
on the quality rating. Note that the smallest number 
indicates the highest rank. Prepare and analyze this 
question using simple regression and a scatter plot. 
Prepare a short discussion of your conclusion.
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 11.88 A prestigious national news service has gath-
ered information on a number of nationally 

ranked private colleges; these data are contained in 
the data file Private Colleges. You have been asked to 
determine if the student/faculty ratio has an influence 
on the total annual cost after need-based financial aid. 
Prepare and analyze this question using simple re-
gression and a scatter plot. Prepare a short discussion 
of your conclusion.

 11.89 A prestigious national news service has gath-
ered information on a number of nationally 

ranked private colleges; these data are contained in 
the data file Private Colleges. You have been asked to 
determine if the total cost after need-based aid has an 
influence on average debt. Prepare and analyze this 
question using simple regression and a scatter plot. 
Prepare a short discussion of your conclusion.

 11.90 A prestigious national news service has gathered 
information on a number of nationally ranked 

private colleges; these data are contained in the data file 
Private Colleges. You have been asked to determine if 
the percentage of students admitted has an influence on 
the 4-year graduation rate. Prepare and analyze this 
question using simple regression and a scatter plot. Pre-
pare a short discussion of your conclusion.

 11.91 A prestigious national news service has gath-
ered information on a number of nationally 

ranked private colleges; these data are contained in 
the data file Private Colleges. You have been asked to 
determine if the student faculty ratio has an influence 
on the 4-year graduation rate. Prepare and analyze 
this question using simple regression and a scatter 
plot. Prepare a short discussion of your conclusion.

 11.92 You have been asked to study the relationship 
between median income and poverty rate at the 

county level. After some investigation you determine 
that the data file Food Nutrition Atlas includes both 
these measures for county-level data. Perform an ap-
propriate analysis and report your conclusions. Your 
analysis should include a regression of median in-
come on poverty level and an appropriate scatter plot. 
Additional analysis would also prove helpful.

 11.93 The federal nutrition guidelines prepared by 
the Center for Nutrition Policy and Promotion 

of the U.S. Department of Agriculture stress the im-
portance of eating substantial servings of fruits and 
vegetables to obtain a healthy diet. You have been 
asked to determine if the per capita consumption of 
fruits and vegetables at the county level are related to 
the percentage of obese adults in the county. Data for 
this study are contained in the data file Food Nutri-
tion Atlas, whose variable descriptions are found in 
the Chapter 9 appendix.

 11.94 The federal nutrition guidelines prepared by 
the Center for Nutrition Policy and Promotion 

of the U.S. Department of Agriculture stress the im-
portance of eating substantial servings of fruits and 
vegetables to obtain a healthy diet. You have been 
asked to determine if the per capita consumption of 
fruits and vegetables at the county level is related to 
the percentage of adults with diabetes in the county. 

Data for this study are contained in the data file Food 
Nutrition Atlas, whose variable descriptions are found 
in the Chapter 9 appendix.

 11.95 The federal nutrition guidelines prepared by 
the Center for Nutrition Policy and Promotion 

of the U.S. Department of Agriculture stress the im-
portance of eating reduced amounts of meat to obtain 
a healthy diet. You have been asked to determine if 
the per capita consumption of meat at the county level 
are related to the percentage of obese adults in the 
county. Data for this study are contained in the data 
file Food Nutrition Atlas, whose variable descriptions 
are found in the Chapter 9 appendix.

 11.96 The federal nutrition guidelines prepared by 
the Center for Nutrition Policy and Promotion 

of the U.S. Department of Agriculture stress the im-
portance of eating reduced amounts of meat to obtain 
a healthy diet. You have been asked to determine if 
the per capita consumption of meat at the county level 
are related to the percentage of adults with diabetes in 
the county. Data for this study are contained in the 
data file Food Nutrition Atlas, whose variable de-
scriptions are found in the Chapter 9 appendix.

Nutrition Research–Based Exercises
The Economic Research Service (ERS), a highly ranked think 
tank research center in the U.S. Department of Agriculture is 
conducting a series of research studies to determine the nu-
trition characteristics of people in the United States. This re-
search is used for both nutrition education and government 
policy designed to improve personal health (Carlson, A.,  
D. Dong, and M. Lino. 2010).

The following exercises are typical analyses that would be 
conducted as part of their research.

The U.S. Department of Agriculture (USDA) developed the 
Healthy Eating Index (HEI) to monitor the diet quality of the 
U.S. population, particularly how well it conforms to dietary 
guidance (Guenther, P.M., J. Reedy, S. M. Krebs-Smith, 
B. B. Reeve, and P. P. Basiotis. November 2007). The HEI–
2005 measures how well the population follows the recom-
mendations of the 2005 Dietary Guidelines for Americans. 
In particular, it measures, on a 100-point scale, the adequacy 
of consumption of vegetables, fruits, grains, milk, meat and 
beans, and liquid oils. Full credit for these groups is given 
only when the consumer consumes some whole fruit, veg-
etables from the dark green, orange, and legume subgroup, 
and whole grains. In addition, the HEI–2005 measures how 
well the U.S. population limits consumption of saturated fat, 
sodium, and extra calories from solid fats, added sugars, and 
alcoholic beverages. You will use the Total HEI–2005 score as 
the measure of the quality of a diet. Further background on 
the HEI and important research on nutrition can be found on 
the government Web sites cited at the end of this case study.

A healthy diet results from a combination of appropriate 
food choices, which are strongly influenced by a number of 
behavioral, cultural, societal, and health conditions. One can-
not simply tell people to drink orange juice, purchase all food 
from organic farms, or take some new miracle drug. Research 
and experience have developed considerable knowledge, and 
if we, for example, follow the diet guidelines associated with 
the food pyramid we will be healthier. It is also important that 
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we know more about the characteristics that lead to health-
ier diets so that better recommendations and policies can be 
developed. And, of course, better diets will lead to a higher 
quality of life and lowered medical care costs. In the following 
exercises you apply your understanding of statistical analy-
sis to perform analysis similar to that done by professional 
researchers.

The data file HEI Cost Data Variable Subset contains 
considerable information on randomly selected individuals 
who participated in an extended interview and medical ex-
amination (Centers for Disease Control and Prevention (CDC) 
2003–2004). This data file contains the data for the following 
exercises. The variables are described in the data dictionary in 
the Chapter 10 appendix.

 11.97 There is a belief among many people that a 
healthy diet will cost more than a less healthy 

diet. Using research based on the available population 
survey data, can you conclude that a healthy diet will 
in fact cost more than a less healthy diet? Using the 
daily cost and the measure of HEI, provide evidence 
to either accept or reject this general belief. You will 
do the analysis based first on the data from the first 
interview, creating subsets of the data file using day-
code = 1, and a second time using data from the sec-
ond interview, creating subsets of the data file using 
daycode = 2. Note differences in the results between 
the first and second interviews.

 11.98 A group of social workers who work with low-
income people have argued that the poverty in-

come ratio is directly related to the quality of an 
individual person’s diet. That is, people with higher ra-
tios will be more likely to have higher-quality diets, 
and those with lower ratios will have lower-quality di-
ets. Perform an appropriate analysis to determine if 
their claim is supported by evidence. You will do the 
analysis based first on the data from the first interview, 
creating subsets of the data file using daycode = 1,
and a second time using data from the second inter-
view, creating subsets of the data file using day-
code = 2. Note differences in the results between the 
first and second interviews.

 11.99 A number of nutritionists have argued that fast-
food restaurants have a negative effect on nutri-

tion quality. In this exercise you are asked to determine 
if there is evidence to conclude that increasing the 

number of meals at fast-food restaurants will have a 
negative effect on diet quality. In addition, you are 
asked to determine the effect of eating in fast-food res-
taurants has on the daily cost of food. You will do the 
analysis based first on the data from the first inter-
view, creating subsets of the data file using day-
code = 1, and a second time using data from the 
second interview, creating subsets of the data file us-
ing daycode = 2. Note differences in the results be-
tween the first and second interviews.

11.100 In recent news commentaries, it has been argued 
that the quality of family life has decayed in re-

cent years. Arguments include statements that families 
do not share meals together. Because of busy schedules, 
families just go out to eat because there is limited time 
for food preparation. What is the relationship between 
the percent of calories consumed at home and the qual-
ity of diet, based on an appropriate analysis of the sur-
vey data? In addition, what is the effect of eating at 
home on daily food cost? You will do the analysis based 
first on the data from the first interview, creating sub-
sets of the data file using daycode = 1, and a second 
time using data from the second interview, creating 
subsets of the data file using daycode = 2. Note differ-
ences in the results between the first and second 
interviews.

11.101 In recent news commentaries, it has been ar-
gued that the quality of family life has decayed 

in recent years. Arguments include statements that 
families do not share meals together. Because of busy 
schedules, families just go out to eat because there is 
limited time for food preparation. In addition, it is also 
argued that a meal that is carefully prepared at home 
using purchased food ingredients will provide better 
nutrition. What is the relationship between the percent 
of calories purchased at a food store for consumption 
at home and the quality of diet, based on an appropri-
ate analysis of the survey data? Also, what is the effect 
of percent of food purchased at a store on the daily 
food cost? You will do the analysis based first on 
the data from the first interview, creating subsets of the 
data file using daycode = 1, and a second time using 
data from the second interview, creating subsets of the 
data file using daycode = 2. Note differences in the re-
sults between the first and second interviews.

Appendix
DERIVATION OF LEAST SQUARES 
ESTIMATORS

In this appendix we derive the least squares estimators of the population regression param-
eters. We want to find the values b0 and b1 for which the sum of squared discrepancies

SSE = a
n

i=1
e2

i = a
n

i=1
1yi - b0 - b1xi22

is as small as possible.
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As a first step, we keep b1 constant and differentiate with respect to b0, giving

 
0SSE
0b0

= 2a
n

i=1
1yi - b0 - b1xi2

 = -21a yi - nb0 - b1a xi2
Since this derivative must be 0 for a minimum, we have the following:

a yi - nb0 - b1a xi = 0

Hence, dividing through by n yields

b0 = y - b1x

Substituting this expression for b0 gives

SSE = a
n

i=1
31yi - y2 - b11xi - x242

Differentiating this expression with respect to b1 then gives

 
0SSE
0b1

= -2a
n

i=1
1xi - x231yi - y2 - b11xi - x24

 = 21a 1xi - x21yi - y2 -  b1a 1xi - x222
This derivative must be 0 for a minimum, so we have the following:

a 1xi - x21yi - y2 = b1a 1xi - x22
Hence,

b1 = a 1xi - x21yi - y2
a 1xi - x22

Economic Activity
Variable Description

State Name of State

Tot Retail Total Retail Sales in Millions of $ 2008

Auto Parts Total Retail Sales for Auto Parts & Dealers Millions $ 2008

Health Total Retail Sales for Health & Personal Million $ 2008

Clothing Total Retail Sales for Clothing Million $ 2008

Tot Employ Percent of Civilian Noninstitutionalized Population Employed 2008

Male Employ Total Male Percent of Civilian Work Force Employed 2008

Female Employ Total Female Percent of Civilian Work Force Employed 2008

Tot Unemploy Percent of Civilian Noninstitutionalized Population Unemployed 2008

Male Unemploy Total Male Percent of Civilian Work Force Unemployed 2008

Female Unemploy Total Female Percent of Civilian Work Force Unemployed 2008

Mfg Pay Manufacturing Total Payroll Millions 2008

Mfg Pcap Manufacturing Payroll per Worker 2008

Pers Income Personal Income 1000s 2000 Dollars 2008

Percap Disp Per Capita Disposable Income 2000 dollars 2008

Population Population in 1000s 2008 Census

Data File Descriptions
Economic Activity

This data file contains observations for 50 states and the District of Columbia. The data for 
the year 1984 were obtained from the 2010 Statistical Abstract.
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Vehicle Travel State

This data file contains observations by state. The data file will be used for various highway 
crash and travel analyses.

Vehicle Travel State
Variable Description

State Name of State
Pers Income 2007 Personal Income 1000s of 2000 Dollars
Percap Disp 2007 Per Capita Disposable Income in 2000 dollars
Population Population in 1000s 2007 Census
P Urban Percent of Population in Urban Areas 2007
Fatalities Total Traffic Fatalities in 2007
Fat Rate Traffic Fatality Rate per 100M Miles in 2007
BAC 08 Number of Fatal Crashes with Driver BAC 7  0.08
Tot Regist Total Motor Vehicle Registrations 1000s 2007
Auto Regist Total Automobile Registrations 1000s 2007
Drivers Total Licensed Drivers 1000s 2007
H Miles Total Highway Mileage 2007
Inter Miles Total Interstate Highway Miles 2007
R Miles Total Rural Highway Miles 2007
Fuel Tax Motor Vehicle Fuel Tax Millions $2007
Tax pgal Motor Vehicle Fuel Tax Cents per gal
H Expend Total Highway Expenditure in Millions $2007
Doctors Total Doctors 2007
Nurses Total Nurses 2007
P Ninsur Percent Not Covered by Health Insurance 2007
Medicaid Medicaid Enrollment in 1000s 2007

Food Nutrition Atlas 

Variable_Code Variable_Name

GROCPC Grocery stores per 1,000 pop
SNAPStoresPerThous SNAP-authorized stores per 1,000 pop
SNAPRedempPerStore SNAP redemption/SNAP-authorized stores
AMB_PAR06 Average monthly SNAP $ benefits
PCT_FREE_LUNCH % Students free-lunch eligible
PCT_REDUCED_LUNCH % Students reduced-price-lunch eligible
PC_FRUVEG Lbs per capita fruit&veg
PC_SNACKS Lbs per capita pkg sweetsnacks
PC_SODA Gals per capita soft drinks
PC_MEAT Lbs per capita meat&poultry
PC_FATS Lbs per capita solid fats
PC_PREPFOOD Lbs per capita prepared foods
MILK_PRICE Relative price of low-fat milk 
SODA_PRICE Relative price of sodas
PCT_DIABETES_ADULTS Adult diabetes rate
PCT_OBESE_ADULTS Adult obesity rate
PCT_Child_Obesity Low-income preschool obesity rate
PcTNHWhite08 % White
PcTNHBlack08 % Black
PcTHisp08 % Hispanic
PcTNHAsian08 % Asian
PcTNHNA08 % Amer. Indian or Alaska Native
Median_Income Median household income
Percent_Poverty Poverty rate
metro 1 = Metro 0 = nonmetro counties
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Student GPA Data File

This data file contains academic test score measurements 

Variable Name Description

Data File Description for File Student GPA

sex Male or Female

GPA Overall Undergraduate Grade Point Average

SATverb SAT Verbal Test Score

SATmath SAT Mathematics Test Score

Acteng ACT Verbal Test Score

ACTmath ACT Mathematics Test Score

ACTss ACT Social Science Test Score

ACTcomp ACT Comprehensive Overall Test Score

HSPct High School Percentile Academic Rank

EconGPA Undergraduate Grade Point Average in Economics Courses
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Introduction

In Chapter 11 we developed simple regression as a procedure for obtaining a lin-
ear equation that predicts a dependent or endogenous variable as a function of 
a single independent or exogenous variable—for example, total number of items 
sold as a function of price. However, in many situations, several independent 
variables jointly influence a dependent variable. Multiple regression enables us 
to determine the simultaneous effect of several independent variables on a de-
pendent variable using the least squares principle.

Many important applications of multiple regression occur in business 
and economics. These applications include the following:

1.  The quantity of goods sold is a function of price, income, advertising, 
price of substitute goods, and other variables.

2.  Capital investment occurs when a business person believes that a profit 
can be made. Thus, capital investment is a function of variables related 
to the potential for profit, including interest rate, gross domestic prod-
uct, consumer expectations, disposable income, and technological level.

3. Salary is a function of experience, education, age, and job rank.
4.  Large retail, hotel, and restaurant companies decide on locations for new 

outlets based on the anticipated sales revenue and/or profitability. Using 
data from previous successful and unsuccessful locations, analysts can 
build models that predict sales or profit for a potential new location.

Business and economic analysis has some unique characteristics compared 
to analysis in other disciplines. Natural scientists work in a laboratory, where 
many—but not all—variables can be controlled. In contrast, the economist’s 
and manager’s laboratory is the world, and conditions cannot be controlled. 
Thus, we need tools such as multiple regression to estimate the simultaneous 
effect of several variables. Multiple regression as a “lab tool” is very important 
for the work of managers and economists. In this chapter we will see many 
specific applications in discussion examples and problem exercises.

The methods for fitting multiple regression models are based on the same 
least squares principle presented in Chapter 11, and, thus, the insights gained 
there extend directly to multiple regression. However, there are complexities 
introduced because of the relationships between the various exogenous vari-
ables. These require additional insights that are developed in this chapter.

12.1 THE MULTIPLE REGRESSION MODEL

Our objective here is to learn how to use multiple regression for creating and analyzing mod-
els. Thus, we learn how multiple regression works and some guidelines for interpretation. A 
good understanding provides the capability for solving a wide range of applied problems. 
This study of multiple regression methods parallels the study of simple regression. The first 
step in model development is model specification, which includes the selection of model 
variables and the model form. Next, we study the least squares process, followed by an anal-
ysis of variability to identify the effects of each predictor variable. Then we study estimation, 
confidence intervals, and hypothesis testing. Computer applications are used extensively to 
indicate how the theory is applied to realistic problems. Your study of this material will be 
aided if you relate the ideas in this chapter to those presented in Chapter 11.

Model Specification

We begin with an application that illustrates the important task of regression model speci-
fication. Model specification includes selection of the exogenous variables and the func-
tional form of the model.
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Example 12.1 Process Manufacturing (Regression 
Model Specification)

The production manager for Flexible Circuits, Inc., has asked for your assistance in 
studying a manufacturing process. Flexible circuits are produced from a continuous 
roll of flexible resin material with a thin film of copper-conducting material bonded to 
its surface. Copper is bonded to the resin by passing the resin through a copper-based 
solution. The thickness of the copper is critical for high-quality circuits. Copper thick-
ness depends, in part, on the temperature of the copper solution, speed of the produc-
tion line, density of the solution, and thickness of the flexible resin material. To control 
the thickness of the bonded copper, the production manager needs to know the effect 
of each of these variables. You have been asked for assistance in developing a multiple 
regression model.

Solution Model development begins with a careful analysis of the problem context. 
The first step for this example would be an extended discussion with product design 
and manufacturing engineers so that you understand the process being modeled in 
detail. In some cases, you would study existing literature related to the process. The 
process must be understood and agreed to by the engineers and analysts before a 
useful model can be developed using multiple regression analysis. In this example 
the dependent variable, Y, is the copper thickness. Independent variables include 
temperature of the copper solution, X1; speed of the production line, X2; density of 
the solution, X3; and thickness of the flexible resin material, X4. These variables were 
identified as potential predictors of copper thickness, Y, by engineers and scientists that 
understand the technology of the plating process. Based on the study of the process, 
the resulting model specification is as follows:

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4

In this linear model the bjs are constant linear coefficients of the independent 
variables Xj that indicate the conditional effect of each independent variable on 
the determination of the dependent variable, Y, in the population. Thus, the coef-
ficients bj are parameters in the linear regression model. A series of production 
runs would then be made to obtain measurements of various combinations of in-
dependent and dependent variables. (See the discussion of experimental design in 
Section 13.2.)

Example 12.2 Store Location (Model Specification)

The director of planning for a large retailer was dissatisfied with the company’s new-
store development experience. In the past 4 years 25% of new stores failed to obtain 
their projected sales within the 2-year trial period and were closed, with substantial 
economic losses. The director wanted to develop better criteria for choosing store loca-
tions and decided that the historical experience of successful and unsuccessful stores 
should be studied.

Solution Discussion with a consultant indicated that data from stores that met and 
that did not meet anticipated sales could be used to develop a multiple regression 
model. The consultant suggested that the second year’s sales should be used as the 
dependent variable, Y. A regression model would be used to predict second-year sales 
as a function of several independent variables that define the area surrounding the 
store. Stores would be located only where the predicted sales exceeded a minimum 
level. The model would also indicate the effect of various independent variables  
on sales.
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Model Objectives

The strategy for model specification is influenced by the model objectives. One objec-
tive is prediction of a dependent or outcome variable. Applications include predicting 
or forecasting sales, output, total consumption, total investment, and many other busi-
ness and economic performance criteria. A second objective is estimating the marginal 
effect of each independent variable. Economists and managers need to know how changes 
of independent variables, Xj, where j = 1, c, K, change performance measures, Y. For 
example, consider the following:

 1. How do sales change as a result of a price increase and advertising expenditures?
 2. How does output change when the amounts of labor and capital are changed?
 3. Does infant mortality become lower when health care expenditures and local sanita-

tion are increased?

After considerable discussion with people in the company, the consultant recom-
mended the following independent variables:

1. X1 = size of store
2. X2 = traffic volume on highway in front of store
3. X3 = stand@alone store versus shopping mall location
4. X4 = location of competing store within 1>4 mile
5. X5 = per capita income of population within 5 miles
6. X6 = total number of people within 5 miles
7. X7 = per capita income of population within 10 miles
8. X8 = total number of people within 10 miles

Multiple regression was used to obtain estimates of the coefficients of the sales-
prediction model from data collected for all stores opened during the past 8 years. The 
data set included both those stores that were still operating and those that were closed. 
A model was developed that could be used to predict second-year sales. This estimated 
equation included coefficient estimators, bj, for the model parameters, bj. To apply the 
estimated equation

yni = b0 + a
8

j=1
bjxji

measurements of the independent variables were collected for each proposed new 
store location and the predicted sales were computed for that location. A predicted 
sales level was used, along with the judgment of marketing analysts and a committee 
of successful store managers, as input to the store location decision process.

Regression Objectives
Multiple regression provides two important results:

1.  An estimated linear equation that predicts the dependent variable, Y, as a 
function of K observed independent variables, Xj, where j = 1, c, K:

yni = b0 + b1x1i + b2x2i + g + bKxKi

 where i = 1, c , n observations. The predicted value, yni, depends on the 
effect of the independent variables individually and their effect in combi-
nation with the other independent variables. Thus, we are interested in 
the combined effect of a particular combination of predictor variables.
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Marginal change is more difficult to estimate because the independent variables are 
related not only to the dependent variables but also to each other. If two or more inde-
pendent variables change in a direct linear relationship with each other, it is difficult to 
determine the individual effect of each independent variable on the dependent variable.

Consider in detail the model in Example 12.2. The coefficient of x5 indicates the 
change in sales for each unit change in the per capita income of the population within 
5 miles, whereas that of x7 indicates the sales change for change in per capita income of 
the population within 10 miles. It is, of course, likely that the variables x5 and x7 are cor-
related. Thus, to the extent that these variables both change at the same time, it is diffi-
cult to determine the contribution of each variable to change in store sales revenue. This 
correlation between independent variables introduces a complexity to the model. It is 
important to understand that the model predicts store sales revenue using the particular 
combination of variables contained in the model. The effect of a predictor variable is 
the effect of that variable when combined with the other variables. Thus, in general, the 
coefficient of a variable does not provide an indication of that variable’s effect under all 
conditions. These complexities are explored further as we develop the multiple regres-
sion model.

Model Development

When applying multiple regression, we construct a model to explain variability in the de-
pendent variable. In order to do this, we want to include the simultaneous and individual 
influences of several independent variables. For example, suppose that we wanted to de-
velop a model that would predict the annual profit margin for savings and loan associa-
tions using data collected over a period of years. An initial model specification indicated 
that the annual profit margin was related to the net revenue per deposit dollar and the 
number of savings and loan offices. The net annual revenue is expected to increase the an-
nual profit margin, and the number of savings and loan offices is anticipated to decrease 
the annual profit margin because of increased competition. This would lead us to specify 
a population regression model:

Y = b0 + b1X1 + b2X2 + e

where

 Y = annual profit margin
 X1 = net annual revenue per deposit dollar
 X2 = number of savings and loan offices for that year

Table 12.1 and the data file named Savings and Loan contain 25 observations by year 
of these variables. These data will be used to develop a linear model that predicts annual 
profit margin as a function of revenue per deposit dollar and number of offices (Spellman 
1978).

But before we can estimate the model, we need to develop and understand the mul-
tiple regression procedure. To begin, let us consider the general multiple regression 

2. The marginal change in the dependent variable, Y, that is related to 
changes in the independent variables—estimated by the coefficients, bj. 
In multiple regression these coefficients depend on what other variables 
are included in the model. The coefficient bj estimates the change in Y, 
given a unit change in Xj, while controlling for the simultaneous effect of 
the other independent variables.

In some problems both results are equally important. However, usually 
one will predominate (e.g., prediction of store sales, Y, in the store location 
example).
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model and note the differences from the simple regression model. The multiple regression  
model is

yi = b0 + b1x1i + b2x2i + g + bKxKi + ei

where ei is the random error term with a mean of 0 and a variance of s2, and the bj terms 
are the coefficients, or marginal effects, of the independent, or exogenous variables, Xj, 
where j = 1, c, K, given the effects of the other independent variables. The i terms indi-
cate the observations with i = 1, c, n. We use lowercase letters xji to denote specific val-
ues of variable Xj at observation i. We assume that the random errors ei are independent 
of the variables Xj and of each other to ensure proper estimates of the coefficients and 
their variances. In Chapter 13 we indicate the effect of relaxing these assumptions.

The sample estimated model is

yi = b0 + b1x1i + b2x2i + g + bKxKi + ei

where ei is the residual or difference between the observed value of Y and the estimated 
value of Y obtained by using the estimated coefficients, bj, where j = 1, c, K. The re-
gression procedure obtains simultaneous estimates, bj, of the population model coeffi-
cients, bj, using the least squares procedure.

In our savings and loan associations example, the population model for individual 
data points is as follows:

yi = b0 + b1x1i + b2x2i + ei

This reduced model with only two predictor variables provides the opportunity for de-
veloping additional insights into the regression procedure. The regression function can be 
depicted graphically in three dimensions, as shown in Figure 12.1. The regression func-
tion is shown as a plane whose Y values are a function of the independent variable values 
of X1 and X2. For each possible pair, x1i, x2i, the expected value of the dependent variable, 
Y, is on the plane. Figure 12.2 specifically illustrates the savings and loan example. An 
increase in X1 leads to an increase in the expected value of Y, conditional on the effect of 
X2. Similarly, an increase in X2 leads to a decrease in the expected value of Y, conditional 
on the effect of X1.

To complete our model, we add an error term defined as e. This error term recognizes 
that no postulated relationship will hold exactly and that there are likely to be additional 
variables that also affect the observed value of Y. Thus, in the application setting we observe 

Table 12.1 Savings and Loan Associations Operating Data

 
Year

 Revenue  
per Dollar

Number of 
 Offices

 Profit 
Margin

 
Year

Revenue per 
 Dollar

Number of 
 Offices

 Profit 
Margin

1 3.92 7,298 0.75 14 3.78 6,672 0.84

2 3.61 6,855 0.71 15 3.82 6,890 0.79

3 3.32 6,636 0.66 16 3.97 7,115 0.7

4 3.07 6,506 0.61 17 4.07 7,327 0.68

5 3.06 6,450 0.7 18 4.25 7,546 0.72

6 3.11 6,402 0.72 19 4.41 7,931 0.55

7 3.21 6,368 0.77 20 4.49 8,097 0.63

8 3.26 6,340 0.74 21 4.70 8,468 0.56

9 3.42 6,349 0.9 22 4.58 8,717 0.41

10 3.42 6,352 0.82 23 4.69 8,991 0.51

11 3.45 6,361 0.75 24 4.71 9,179 0.47

12 3.58 6,369 0.77 25 4.78 9,318 0.32

13 3.66 6,546 0.78
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the expected value of the dependent variable, Y—as depicted by the plane in Figure 12.2—
plus a random error term, e, that represents the portion of Y not included in the expected 
value. As a result, the data model has the form

yi = b0 + b1x1i + b2x2i + g + bKxKi + ei

Figure 12.1 The Plane Is the 
Expected Value of Y as a Function 
of X1 and X2

Figure 12.2 Comparison of the 
Observed and Expected Values of Y as a 
Function of Two Independent Variables

X1

X2

Y

X1

X2

Y

yi

ei

Eyi

The Population Multiple Regression Model
The population multiple regression model defines the relationship between 
a dependent, or endogenous variable, Y, and a set of independent, or exog-
enous, variables, Xj, where j = 1, c, K. The xji terms are assumed to be fixed 
numbers; Y is a random variable with yi defined for each observation, i, where 
i = 1, c, n and n is the number of observations. The model is defined as

 yi = b0 + b1x1i + b2x2i + g + bKxKi + ei (12.1)

where the bj terms are constant coefficients and the instances of ei are random 
variables with a mean of 0 and a variance of s2.

For the savings and loan example, with two independent variables, the population 
regression model is as follows:

yi = b0 + b1x1i + b2x2i + ei

Given particular values of the net percentage revenue, x1i, and the number of savings and 
loan offices, x2i, the observed profit margin, yi, is the sum of two parts: the expected value, 
b0 + b1x1i + b2x2i, and the random error term, ei. The random error term can be regarded 
as the combination of the effects of numerous other unidentified factors that affect profit 
margins. Figure 12.2 illustrates the model, with the plane indicating the expected value 
for various combinations of the independent variables and with the ei, shown as the devi-
ation between the expected value, and the observed value of Y, marked by a large dot, for 
a particular data point. In general, the observed values of Y will not lie on the plane but 
instead will be above or below the plane because of the positive or negative error terms, ei.

Simple regression, developed in the previous chapter, is merely a special case of mul-
tiple regression with only one predictor variable, and, hence, the plane is reduced to a 
line. Thus, the theory and analysis developed for simple regression also apply to multiple 
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regression. However, there are some additional interpretations that we will develop in 
our study of multiple regression. One of the important interpretations is illustrated in the 
following discussion of three-dimensional graphing.

Three-Dimensional Graphing

Your understanding of the multiple regression procedure might be helped by considering 
a simplified graphical image. Look at the corner of the room in which you are sitting. The 
lines formed by the two walls and the floor represent the axes for two independent vari-
ables, X1 and X2. The corner between the two walls is the axis for the dependent variable, Y. 
To estimate a regression line, we collect sets of points 1x1i, x2i, and yi2.

Now, picture these points plotted in your room using the wall and floor corners as the 
three axes. With these points hanging in your room, we find a plane in space that comes 
close to all of them. This plane is the geometric form of the least squares equation. With 
these points in space we now maneuver a plane up and down and rotate it in two direc-
tions; all these shifts are done simultaneously until we have a plane that is “close” to all 
the points. Recall that we did this with a straight line in two dimensions in Chapter 11 to 
obtain the equation

yn = b0 + b1x

Then, we extend that idea to three dimensions to obtain the equation

yn = b0 + b1x1 + b2x2

This process is, of course, more complicated compared to simple regression. But real prob-
lems are complicated, and regression provides a way to better analyze the complexity of these 
problems. We want to know how Y changes with changes in X1. However, these changes are, 
in turn, influenced by the way X2 changes. And if X1 and X2 have a fixed relationship with 
each other, we cannot tell how much each variable contributes to changes in Y.

Geometric interpretations of multiple regression become increasingly complex as the 
number of independent variables increases. However, the analogy to simple regression is 
extremely useful. We estimate the coefficients by minimizing the sum of squared devia-
tions in the Y dimension about a linear function of the independent variables. In simple 
regression the function is a straight line on a two-dimensional graph. With two indepen-
dent variables the function is a plane in three-dimensional space. Beyond two indepen-
dent variables we have various complex hyperplanes that are impossible to visualize.

EXERCISES

Basic Exercises
 12.1 Given the estimated linear model

yn = 10 + 3x1 + 2x2 + 4x3

a. Compute yn  when x1 = 20, x2 = 11, and x3 = 10.
b. Compute yn  when x1 = 15, x2 = 14, and x3 = 20.
c. Compute yn  when x1 = 35, x2 = 19, and x3 = 25.
d. Compute yn when x1 = 10, x2 = 17, and x3 = 30.

 12.2 Given the estimated linear model

yn = 10 + 5x1 + 4x2 + 2x3

a. Compute yn  when x1 = 20, x2 = 11, and x3 = 10.
b. Compute yn  when x1 = 15, x2 = 14, and x3 = 20.
c. Compute yn  when x1 = 35, x2 = 19, and x3 = 25.
d. Compute yn when x1 = 10, x2 = 17, and x3 = 30.

 12.3 Given the estimated linear model

yn = 10 + 2x1 + 12x2 + 8x3

a. Compute yn  when x1 = 20, x2 = 11, x3 = 10.
b. Compute yn  when x1 = 15, x2 = 24, x3 = 20.
c. Compute yn  when x1 = 20, x2 = 19, x3 = 25.
d. Compute yn when x1 = 10, x2 = 9, x3 = 30.

 12.4 Given the following estimated linear model

yn = 10 + 2x1 + 12x2 + 8x3

a. What is the change in yn  when x1 increases 
by 4?

b.  What is the change in yn  when x3 increases 
by 1?

c. What is the change in yn when x2 increases by 2?
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 12.5 Given the following estimated linear model

yn = 10 - 2x1 - 14x2 + 6x3

a. What is the change in yn  when x1 increases by 4?
b. What is the change in yn  when x3 decreases by 1?
c. What is the change in yn when x2 decreases by 2?

Application Exercises
 12.6 An aircraft company wanted to predict the number of 

worker-hours necessary to finish the design of a new 
plane. Relevant explanatory variables were thought to 
be the plane’s top speed, its weight, and the number of 
parts it had in common with other models built by the 
company. A sample of 27 of the company’s planes was 
taken, and the following model was estimated:

yi = b0 + b1x1i + b2x2i + b3x3i + ei

  where

 yi = design effort, in millions of worker-hours
x1i = plane’s top speed, in miles per hour
x2i = plane’s weight, in tons
x3i =  percentage number of parts in common with 

other models

  The estimated regression coefficients were as follows:

b0 = 2 b1 = 0.661 b2 = 0.065 b3 = -0.018

  Interpret these estimates.
 12.7 In a study of the influence of financial institutions on 

bond interest rates in Germany, quarterly data over 
a period of 12 years were analyzed. The postulated 
model was

yi = b0 + b1x1i + b2x2i + ei

  where

 yi =  change over the quarter in the bond interest 
rates

x1i =  change over the quarter in bond purchases 
by financial institutions

x2i =  change over the quarter in bond sales by 
financial institutions

  The estimated regression coefficients were as follows:

b1 = 0.057 b2 = -0.065

  Interpret these estimates.
 12.8 The following model was fitted to a sample of 30 fami-

lies in order to explain household milk consumption:

yi = b0 + b1x1i + b2x2i + ei

  where

 yi = milk consumption, in quarts per week
x1i = weekly income, in hundreds of dollars
x2i = family size

  The least squares estimates of the regression param-
eters were as follows:

b0 = -0.025 b1 = 0.052 b2 = 1.14

a. Interpret the estimates b1 and b2.
b. Is it possible to provide a meaningful interpretation 

of the estimate b0?

 12.9 The following model was fitted to a sample of 25 stu-
dents using data obtained at the end of their fresh-
man year in college. The aim was to explain students’ 
weight gains:

yi = b0 + b1x1i + b2x2i + b3x3iei

  where

 yi =  weight gained, in pounds, during freshman 
year

x1i = average number of meals eaten per week
x2i =  average number of hours of exercise per 

week
x3i = average number of beers consumed per week

  The least squares estimates of the regression param-
eters were as follows:

b0 = 7.35 b1 = 0.653 b2 = -1.345 b3 = 0.613

a. Interpret the estimates b1, b2, and b3.
b. Is it possible to provide a meaningful interpretation 

of the estimate b0?

12.2 ESTIMATION OF COEFFICIENTS

Multiple regression coefficients are computed using estimators obtained by the least 
squares procedure. This least squares procedure is similar to that presented in Chapter 11 
for simple regression. However, the estimators are complicated by the relationships 
 between the independent Xj variables that occur simultaneously with the relation-
ships between the independent and dependent variables. For example, if two inde-
pendent variables increase or decrease linearly with each other—a positive or negative 
 correlation—while at the same time there are increases or decreases in the dependent 
variable, we cannot identify the unique effect of each independent variable to the 
change in the dependent variable. As a result, we will find that the estimated regression 
coefficients are less reliable if there are high correlations between two or more inde-
pendent variables. The estimates of coefficients and their variances are always obtained 
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using a computer. However, we will spend considerable effort studying the algebra and 
computational forms in least squares regression. This effort will provide you with the 
background to understand the procedure and to determine how different data patterns 
influence the results. We begin with the standard assumptions for the multiple regres-
sion model.

Standard Multiple Regression Assumptions
The population multiple regression model is

 yi = b0 + b1x1i + b2x2i + g + bKxKi + ei

and we assume that n sets of observations are available. The following 
 standard assumptions are made for the model:

1. The xji terms are fixed numbers, or they are realizations of random 
 variables, Xj, that are independent of the error terms, ei. In the latter case, 
inference is carried out conditionally on the observed values of the xjis.

2. The expected value of the random variable Y is a linear function of the 
independent Xj variables.

3. The error terms are normally distributed random variables with a mean 
of 0 and the same variance, s2. The latter is called homoscedasticity, or 
uniform variance.

E3ei4 = 0  and  E3e2
i 4 = s2 for 1 i = 1, c, n2

4. The random error terms, ei, are not correlated with one another, so that

E3eiel4 = 0 for all i � l

5. It is not possible to find a set of nonzero numbers, c1, c, cK, such that

c1x1i + c2x2i + g + cKxKi = 0

This is the property of no direct linear relationship between the Xj variables.

The first four assumptions are essentially the same as those made for simple regres-
sion. The error terms in assumption 3 are assumed to be normally distributed for statistical 
inference. But we will see that just as with simple regression, the central limit theorem al-
lows us to relax that assumption if the sample size is large enough. Assumption 5 excludes 
certain cases in which there are linear relationships between the predictor variables. For 
example, suppose we are interested in explaining the variability in rates charged for ship-
ping corn. One obvious explanatory variable would be the distance the corn is shipped. 
Distance could be measured in several different units, such as miles or kilometers. But it 
would not make sense to use both distance in miles and distance in kilometers as predic-
tor variables. These two measures are linear functions of each other and would not satisfy 
assumption 5. In addition, it would be foolish to try to assess their separate effects. As we 
shall see, the equations that compute the coefficient estimates and the computer programs 
will not work if assumption 5 is violated. In most cases, proper model specification will 
avoid violating assumption 5.

Least Squares Procedure

The least squares procedure for multiple regression computes the estimated coefficients 
so as to minimize the sum of the residuals squared. Recall that the residual is defined as

ei = yi - yni
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where yi is the observed value of Y and yni is the value of Y predicted from the regression. 
Formally, we minimize SSE:

 SSE = a
n

i=1
e2

i

 = a
n

i=1
1yi - yni22

 = a
n

i=1
1yi - 1b0 + b1x1i + g + bKxKi222

This minimization is the process of finding a plane that best represents a set of points in 
space, as we considered in our discussion of three-dimensional graphing. To carry out 
the process formally, we use partial derivatives to develop a set of simultaneous normal 
equations that are then solved to obtain the coefficient estimators. For those with a good 
understanding of differential calculus, the chapter appendix presents some of the details 
of the process. However, one can obtain great insights by realizing that we want a linear 
equation that best represents the observed data, and this is accomplished by minimizing 
the squared deviations about the estimated regression equation. Fortunately, for the ap-
plications studied in this book, the complex computations are always performed using a 
statistical computer package such as Minitab, SAS, or SPSS. Our objective here is to un-
derstand how to interpret the regression results and use them to solve problems. We will 
do this by examining some of the intermediate algebraic results to help understand the 
effects of various data patterns on the coefficient estimators.

Least Squares Estimation of the Sample  
Multiple Regression
We begin with a sample of n observations denoted as x1i, x2i, c, xKi, yi, where 
i = 1, c , n, measured for a process whose population multiple regression 
model is as follows:

yi = b0 + b1x1i + b2x2i + g + bKxKi + ei

The least squares estimates of the coefficients b1, b2, c, bK, are the values 
b0, b1, c , bK for which the sum of the squared errors

 SSE = a
n

i=1
1yi - b0 - b1x1i - b2x2i - g - bKxKi22 (12.2)

is a minimum.
The resulting equation

 yni = b0 + b1x1i + b2x2i + g + bKxKi (12.3)

is the sample multiple regression of Y on X1, X2, c, XK.

Let us consider again the regression model with only two predictor variables.

yni = b0 + b1x1i + b2x2i

The coefficient estimators are computed using the following equations:

 b1 =
sy1rx1y - rx1x2

rx2y2
sx1
11 - r2

x1x2
2  (12.4)



484 Chapter 12 Multiple Variable Regression Analysis

In the equations for the coefficient estimators, we see that the slope coefficient estimate, 
b1, not only depends on the correlation between Y and X1 but also is affected by the corre-
lation between X1 and X2 and the correlation between X2 and Y. If the correlation between 
X1 and X2 is equal to 0, then the coefficient estimators, b1 and b2, will be the same as the 
coefficient estimator for simple regression—we should note that this hardly ever happens 
in business and economic analysis. Conversely, if the correlation between the independent 
variables is equal to 1, the coefficient estimators will be undefined, but this will result only 
from poor model specification and will violate multiple regression assumption 5. If the 
independent variables are perfectly correlated, then they both experience simultaneous 
relative changes. We see that in that case it is not possible to tell which variable predicts 
the change in Y. In Example 12.3 we see the effect of the correlations between independent 
variables by considering the savings and loan association problem, whose data are shown 
in Table 12.1.

 b2 =
sy1rx2y - rx1x2

rx1y2
sx2
11 - r2

x1x2
2  (12.5)

 b0 = y - b1x1 - b2x2 (12.6)

where

rx1y is the sample correlation between X1 and Y
rx2y is the sample correlation between X2 and Y
rx1x2

 is the sample correlation between X1 and X2
sx1

 is the sample standard deviation for X1
sx2

 is the sample standard deviation for X2
sy is the sample standard deviation for Y

Example 12.3 Profit Margins of Savings  
and Loan Associations (Regression  
Coefficient Estimation)

The director of the savings and loan association has asked you to compute the coeffi-
cients for variables that predict the percent profit margin.

Solution As a first step we develop a multiple regression model specification that 
predicts profit margin as a linear function of the net revenue per deposit dollar and the 
number of offices. Using the data in Table 12.1 that are stored in the Savings and Loan 
data file, we have estimated a multiple regression model, as seen in the Minitab and 
Excel outputs in Figure 12.3.

The estimated coefficients are identified in the computer output. We see that 
each unit increase in net revenue per deposit dollar, X1, results in a 0.237 increase 
in profit margin—if the other variable does not change—and a unit increase in the 
number of offices decreases profit margin by 0.000249. Now consider the two simple 
regression models in Figures 12.4 and 12.5 with Y regressed on each independent 
variable by itself. First, consider Y regressed on revenue, X1, in Figure 12.4. In this 
simple regression the coefficient for X1 is -0.169, which is clearly different from 
+0.237 in multiple regression. We see that the correlation between X1 and  X2 is 
0.941. This large correlation has a major impact on the coefficient of X1 in the mul-
tiple  regression equation.
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Figure 12.3 Regression Equation for Savings and Loan Association Profit 
(Minitab and Excel Output)

Regression Analysis: Y profit versus X1 revenue, X2 offices

The regression equation is
Y profit = 1.56 + 0.237 X1 revenue - 0.000249 X2 offices

Predictor
Constant
X1 revenue
X2 offices

Coef
1.56450
0.23720

-0.00024908

SE Coef
0.07940
0.05556

0.00003205

T
19.70
4.27
-7.77

P
0.000
0.000
0.000

S = 0.0533022 R-Sq = 86.5% R-Sq(adj) = 85.3%

Analysis of Variance

Source
Regression
Residual Error
Total

DF
2
22
24

SS
0.40151
0.06250
0.46402

MS
0.20076
0.00284

F
70.66

P
0.000

Regression
coefficients
b0, b1, b2

Regression coefficients
b0, b1, b2

SUMMARY OUTPUT

Multiple R
R Square
Adjusted R Square
Standard Error
Observations

ANOVA

Regression
Residual
Total

Intercept
X1 revenue
X2 offices

0.930212915
0.865296068
0.853050256
0.053302217

25

df

Coefficients Standard Errors t Stat P-value Lower 95% Upper 95%

SS MS F Significance F
2

22

24

1.564496771
0.237197475

–0.000249079

0.079395981
0.055559366
3.20485E-05

19.70498685
4.269261695
–7.771949195

1.81733E-15
0.000312567
9.50879E-08

1.399839407
0.121974278

–0.000315544

1.72915414
0.35242067

–0.00018261

0.40151122
0.06250478

0.20075561 70.66057082 2.64962E-10
0.002841126

0.464016

Regression Statistics

Next, consider the regression of Y on X2 alone in Figure 12.5. In this simple re-
gression the slope coefficient for number of offices, X2, is -0.000120, in contrast to 
-0.000249 for the multiple regression coefficient. This change in coefficients, while not 
quite as dramatic compared to the coefficient for X1, also results from the high correla-
tion between the independent variables.

The correlations between the three variables are as follows:

Y PROFIT X1 REVENUE

X1 revenue -0.704

X2 offices -0.868 0.941

We see that the correlation between X1 and X2 is 0.941. Thus, the two variables 
tend to move together, and it is not surprising that the multiple regression coefficients 
are different from the simple regression coefficients.
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Figure 12.4 Savings and Loan Profit Regressed on Revenue

Regression Analysis: Y profit versus X1 revenue

The regression equation is
Y profit = 1.33 – 0.169 X1 revenue

Predictor
Constant
X1 revenue

Coef
1.3262

-0.16913

SE Coef
0.1386
0.03559

T
9.57
-4.75

P
0.000
0.000

S = 0.100891 R-Sq = 49.5% R-Sq(adj) = 47.4%

Analysis of Variance

Source
Regression
Residual Error
Total

DF
1
23
24

SS
0.22990
0.23412
0.46402

MS
0.22990
0.01018

F
22.59

P
0.000

Regression
coefficient b1

Figure 12.5 Savings and Loan Profit Regressed on Number of Offices

Regression Analysis: Y profit versus X2 revenue

The regression equation is
Y profit = 1.55 – 0.000120 X2 offices

Predictor
Constant
X2 offices

Coef
1.5460

-0.00012033

SE Coef
0.1048

0.00001434

T
14.75
-8.39

P
0.000
0.000

S = 0.0704917 R-Sq = 75.4% R-Sq(adj) = 74.3%

Analysis of Variance

Source
Regression
Residual Error
Total

DF
1
23
24

SS
0.34973
0.11429
0.46402

MS
0.34973
0.00497

F
70.38

P
0.000

Regression
coefficient b2

We should note that the multiple regression coefficients are conditional coefficients; that 
is, the estimated coefficient b1 depends on the other independent variables included in the 
model. This will always be the case in multiple regression unless two independent vari-
ables have a sample correlation of zero—a very unlikely event.

These relationships can also be studied by using a “matrix plot” from Minitab, 
as shown in Figure 12.6. Matrix plots are not available in Excel. Note that the simple 
relationship between Y and X2 is clearly linear, whereas the simple relationship be-
tween Y and X1 is somewhat curvilinear. This nonlinear relationship between X1 and 
Y explains in part why the coefficient of X1 changed so dramatically from simple to 
multiple regression. We see from this example that correlations between independent 
variables can have a major influence on the estimated coefficients. Thus, if one has a 
choice, highly correlated independent variables should be avoided. But in many cases 
we do not have that choice. Regression coefficient estimates are always conditional on 
the other predictor variables in the model. In this example, profit margin increases as 
a function of net revenue per deposit dollar. However, the simultaneous increase in 
number of offices—which reduced profit—would hide the profit increase if a simple 
regression analysis were used. Thus, proper model specification—that is, choice of pre-
dictor variables—is very important. Model specification requires an understanding of 
the problem context and appropriate theory.
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Figure 12.6

Matrix Plots for 
Savings and Loan 
Variables

EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

Basic Exercise
 12.10 Compute the coefficients b1 and b2 for the regression 

model

yni = b0 + b1x1i + b2x2i

  given the following summary statistics.

a. rx1y = 0.60, rx2y = 0.70, rx1x2
= 0.50,

  sx1
= 200, sx2

= 100, sy = 400
b. rx1y = -0.60, rx2y = 0.70, rx1x2

= -0.50,
  sx1

= 200, sx2
= 100, sy = 400

c. rx1y = 0.40, rx2y = 0.450, rx1x2
= 0.80,

  sx1
= 200, sx2

= 100, sy = 400
d. rx1y = 0.60, rx2y = -0.50, rx1x2

= -0.60,
  sx1

= 200, sx2
= 100, sy = 400

Application Exercises
 12.11 Consider the following estimated linear regression 

equations:

Y = a0 + a1X1  Y = b0 + b1X1 + b2X2

a. Show in detail the coefficient estimators for a1 and 
b1 when the correlation between X1 and X2 is equal 
to 0.

b. Show in detail the coefficient estimators for a1 
and b1 when the correlation between X1 and X2 is 
equal to 1.

The following exercises require the use of a computer.

 12.12 Amalgamated Power, Inc., has asked you to es-
timate a regression equation to determine the 

effect of various predictor variables on the demand for 
electricity sales. You will prepare a series of regression 
estimates and discuss the results using the quarterly 
data for electrical sales during the past 17 years in the 
data file Power Demand.

a. Estimate a regression equation with electricity 
sales as the dependent variable, using the number 
of customers and the price as predictor variables. 
Interpret the coefficients.

b. Estimate a regression equation (electricity sales) 
using only number of customers as a predictor 
variable. Interpret the coefficient and compare the 
result to the result from part a.

c. Estimate a regression equation (electricity sales) 
using the price and degree days as predictor vari-
ables. Interpret the coefficients. Compare the coef-
ficient for price with that obtained in part a.

d. Estimate a regression equation (electricity sales) us-
ing disposable income and degree days as predictor 
variables. Interpret the coefficients.

 12.13 Transportation Research, Inc., has asked you to 
prepare some multiple regression equations to 

 estimate the effect of variables on fuel economy. The data 
for this study are contained in the data file  Motors, and 
the  dependent variable is miles per  gallon—milpgal—as 
established by the Department of Transportation 
certification.

a. Prepare a regression equation that uses vehicle 
horsepower—horsepower—and vehicle weight—
weight—as independent variables. Interpret the 
coefficients.

b. Prepare a second regression equation that adds the 
number of cylinders—cylinder—as an independent 
variable to the equation from part a.  Interpret the 
coefficients.

c. Prepare a regression equation that uses number of 
cylinders and vehicle weight as independent vari-
ables. Interpret the coefficients and compare the 
results with those from parts a and b.

d. Prepare a regression equation that uses vehicle 
horsepower, vehicle weight, and price as predictor 
variables. Interpret the coefficients.

e. Write a short report that summarizes your results.
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12.3  EXPLANATORY POWER OF A MULTIPLE  
REGRESSION EQUATION

Multiple regression uses independent variables to explain the behavior of the dependent 
variable. We find that variability in the dependent variable can, in part, be explained by 
the linear function of the independent variables. In this section we develop a measure of 
the proportion of the variability in the dependent variable that can be explained by the 
multiple regression model.

The estimated regression model from the sample is

yi = b0 + b1x1i + b2x2i + g + bKxKi + ei

Alternatively, we can write

yi = yni + ei

where

yni = b0 + b1x1i + b2x2i + g + bKxKi

is the predicted value of the dependent variable and the residual, ei, is the difference be-
tween the observed and the predicted values. Table 12.2 contains these quantities for the 
savings and loan example in the first three columns.

We can subtract the sample mean of the dependent variable from both sides, giving

 1yi - y2 = 1yni - y2 + ei

 = 1yni - y2 + 1yi - yni2
which can be stated as follows:

observed deviation from mean = predicted deviation from mean + residual

Then by squaring both sides and summing over the index, i, we have

 a
n

i=1
1yi - y22 = a

n

i=1
1yni - y + yi - yni22

 = a
n

i=1
1yni - y22 + a

n

i=1
e2

i

which is the sum-of-squares decomposition presented in Chapter 11:

SST = SSR + SSE

sum of squares total = sum of squares regression + sum of squares error

This simplified decomposition occurs because yi and yni are independent—yi includes e
and yni does not–and, thus,

a
n

i=1
1yni - y21yi - yni2 = 0

 12.14 Transportation Research, Inc., has asked you to 
prepare some multiple regression equations to 

estimate the effect of variables on vehicle horsepower. 
The data for this study are contained in the data file 
Motors, and the dependent variable is vehicle horse-
power—horsepower—as established by the Depart-
ment of Transportation certification.

a. Prepare a regression equation that uses vehicle 
weight—weight—and cubic inches of cylinder dis-
placement—displacement—as predictor variables. 
Interpret the coefficients.

b. Prepare a regression equation that uses vehicle 
weight, cylinder displacement, and number of 

 cylinders—cylinder—as predictor variables. Inter-
pret the coefficients and compare the results with 
those in part a.

c.  Prepare a regression equation that uses vehicle 
weight, cylinder displacement, and miles per gallon— 
milpgal—as predictor variables. Interpret the coeffi-
cients and compare the results with those in part a.

d. Prepare a regression equation that uses vehicle 
weight, cylinder displacement, miles per gallon, 
and price as predictor variables. Interpret the coef-
ficients and compare the results with those in part c.

e. Write a short report that presents the results of your 
analysis of this problem.
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Table 12.2
Actual Values, 
 Predicted Values,  
and Residuals for 
Savings and Loan 
Regression

 

yi yni ei = yi - yni yi - y yni - y

0.75 0.677   0.073   0.076   0.003
0.71 0.713 -0.003   0.036   0.039
0.66 0.699 -0.039 -0.014   0.025
0.61 0.672 -0.062 -0.064 -0.002
0.7 0.684   0.016   0.026   0.010
0.72 0.708   0.012   0.046   0.034
0.77 0.740   0.030   0.096   0.066
0.74 0.759 -0.019   0.066   0.085
0.9 0.794   0.106   0.226   0.120
0.82 0.794   0.026   0.146   0.120
0.75 0.798 -0.048   0.076   0.124
0.77 0.827 -0.057   0.096   0.153
0.78 0.802 -0.022   0.106   0.128
0.84 0.799   0.041   0.166   0.125
0.79 0.754   0.036   0.116   0.080
0.7 0.734 -0.034   0.026   0.060
0.68 0.705 -0.025   0.006   0.031
0.72 0.693   0.027   0.046   0.019
0.55 0.635 -0.085 -0.124 -0.039
0.63 0.613   0.017 -0.044 -0.061
0.56 0.570 -0.010 -0.114 -0.104
0.41 0.480 -0.070 -0.264 -0.194
0.51 0.437   0.073 -0.164 -0.237
0.47 0.395   0.075 -0.204 -0.279
0.32 0.377 -0.057 -0.354 -0.297
Sum of squares:   0.0625 (SSE)   0.4640 (SST)   0.4015 (SSR)

Sum-of-Squares Decomposition and the Coefficient  
of Determination
We begin with the multiple regression model fitted by least squares,

yi = b0 + b1x1i + b2x2i + g + bKxKi + ei = yni + ei

where the bj terms are the least squares estimates of the coefficients of the 
population regression model and the e terms are the residuals from the esti-
mated regression model.

The model variability can be partitioned into the components

 SST = SSR + SSE (12.7)

where these components are defined as follows:
Sum-of-Squares Total

  SST = a
n

i=1
1yi - y22  (12.8)

  = a
n

i=1
1yni - y22 + a

n

i=1
1yi - yni22 (12.9)

Sum-of-Squares Error

 SSE = a
n

i=1
1yi - yni22 = a

n

i=1
e2

i  (12.10)
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Estimation of Error Variance
Given the population multiple regression model

yi = b0 + b1x1i + b2x2i + g + bKxKi + ei

and the standard regression assumptions, let s2 denote the common variance 
of the error term, ei. Then an unbiased estimate of error variance is

 s2
e =

a
n

i=1
e2

i

n - K - 1
=

SSE
n - K - 1

 (12.13)

where K is the number of independent variables in the regression model. The 
square root of the variance, se, is also called the standard error of the estimate.

Sum-of-Squares Regression or Explained Sum of Squares

 SSR = a
n

i=1
1yni - y22 (12.11)

This decomposition can be interpreted as follows:

total sample variability = explained variability + unexplained variability

The coefficient of determination, R2, of the fitted regression is defined as the 
proportion of the total sample variability explained by the regression

 R2 =
SSR
SST

= 1 -
SSE
SST

 (12.12)

and it follows that

0 … R2 … 1

The sum of squared errors is also used to compute the estimation for the variance of 
population model errors, as shown in Equation 12.13. As with simple regression, the vari-
ance of population errors is used for multiple regression statistical inference.

At this point we can also compute the mean square regression as follows:

MSR =
SSR

K

We use MSR as a measure of the explained variability adjusted for the number of inde-
pendent variables.

The sample mean for the savings and loan profit dependent variable is y = 0.674, and 
we have used this value to compute the last two columns of Table 12.2. Using the data in 
Table 12.2 and the components, we can show that

SSE = 0.0625 SST = 0.4640 R2 = 0.87

From these results we find that for this sample 87% of the variability in the savings and loan 
association’s profit is explained by the linear relationships with net revenues and number 
of offices. Note that we could also compute the regression sum of squares from the identity

SSR = SST - SSE = 0.4640 - 0.0625 = 0.4015

We can also compute an estimate for the error variance s2 by using Equation 12.13:

s2
e =

a
n

i=1
e2

i

n - K - 1
=

SSE
n - K - 1

=
0.0625

25 - 1 - 2
= 0.00284
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The components of variability have associated degrees of freedom. The SST quantity 
has 1n - 12 degrees of freedom because the mean of Y is required for its computation. 
The SSR component has K degrees of freedom because K coefficients are required for its 
computation. Finally, the SSE component has 1n - K - 12 degrees of freedom because 
K coefficients and the mean are required for its computation. Note that in Figure 12.7 the 
output includes the degrees of freedom (DF) associated with each component.

We routinely use the coefficient of determination, R2, as a descriptive statistic to de-
scribe the strength of the linear relationship between the independent X variables and the 
dependent variable, Y. It is important to emphasize that R2 can be used only to compare 
regression models that have the same set of sample observations of yi, where i = 1, c, n. 
This result is seen from the equation form as follows:

R2 = 1 -
SSE
SST

Thus, we see that R2 can be large either because SSE is small—indicating that the observed
points are close to the predicted points—or because SST is large. We have seen that SSE and s2

e  
indicate the closeness of the observed points to the predicted points. With the same SST for two 
or more regression equations, R2 provides a comparable measure of the goodness of fit for the 
equations. This is the same result that was shown in the extended example in Section 11.4.

There is a potential problem with using R2 as an overall measure of the quality of a 
fitted equation. As additional independent variables are added to a multiple regression 
model, the explained sum of squares, SSR, will increase—in essentially all applied situa-
tions— even if the additional independent variable is not an important predictor variable. 
Thus, we might find that R2 has increased spuriously after one or more nonsignificant 
predictor variables have been added to the multiple regression model. In such a case, the 
increased value of R2 would be misleading. To avoid this problem, the adjusted coefficient 
of determination can be computed as shown in Equation 12.14.

Figure 12.7

Regression Output 
for the Savings and 
Loan Association 
Problem

Regression Analysis: Y profit versus X1 revenue, X2 offices

The regression equation is
Y profit = 1.56 + 0.237 X1 revenue - 0.000249 X2 offices

Predictor
Constant
X1 revenue
X2 offices

Coef
1.56450
0.23720

-0.00024908

SE Coef
0.07940
0.05556

0.00003205

T
19.70
4.27
-7.77

P
0.000
0.000
0.000

S = 0.0533022 R-Sq = 86.5% R-Sq(adj) = 85.3%

Analysis of Variance

Source
Regression
Residual Error
Total

DF
2
22
24

SS
0.40151
0.06250
0.46402

MS
0.20076
0.00284

F
70.66

P
0.000

Coefficients
b0, b1, b2

Source
X1 revenus
X2 offices

DF
1
1

Seq SS
0.22990
0.17161

Standard error
of the estimate se

Coefficient of
determination R2

Error variance
s2

e

MSR 5 SSR/K

SSR = 0.40151
SSE = 0.06250
SST = 0.46402

Number of independent
 X  Variables, K

Figure 12.7 presents the regression output from Minitab for the savings and loan asso-
ciation problem, with the various computed sums of squares indicated. These quantities 
are routinely computed by statistical computer packages, and the detail in Table 12.2 is 
included only to indicate how the sums of squares are computed. In all of the work that 
follows, we assume that the sums of squares are calculated by a computer package.
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Returning to our savings and loan example, we see that

n = 25 K = 2 SSE = 0.0625 SST = 0.4640

and, thus, the adjusted coefficient of determination is as follows:

R2 = 1 -
0.0625>22

0.4640>24
= 0.853

In this example the difference between R2 and R2 is not very large. However, if the regres-
sion model had contained a number of independent variables that were not important 
conditional predictors, then the difference would be substantial. Another measure of rela-
tionship in multiple regression is the coefficient of multiple correlation.

Adjusted Coefficient of Determination
The adjusted coefficient of determination, R2, is defined as follows:

 R2 = 1 -
SSE>1n - K - 12

SST>1n - 12  (12.14)

We use this measure to correct for the fact that nonrelevant independent vari-
ables will result in some small reduction in the error sum of squares. Thus, the 
adjusted R2 provides a better comparison between multiple regression models 
with different numbers of independent variables.

Coefficient of Multiple Correlation
The coefficient of multiple correlation is the correlation between the predicted 
value and the observed value of the dependent variable

 R = r1yn, y2 = 2R2 (12.15)

and is equal to the square root of the multiple coefficient of determination. We 
use R as another measure of the strength of the relationship between the de-
pendent variable and the independent variables. Thus, it is comparable to the 
correlation between Y and X in simple regression.

EXERCISES

Basic Exercises
 12.15 A regression analysis has produced the following 

analysis of variance table:

Analysis of Variance
Source DF SS MS

Regression 3 4,500

Residual error 26 500

a. Compute se and s2
e .

b. Compute SST.
c. Compute R2 and the adjusted coefficient of 

determination.

 12.16 A regression analysis has produced the following 
analysis of variance table:

Analysis of Variance
Source DF SS MS

Regression 2 7,000

Residual error 29 2,500

a. Compute se and s2
e .

b. Compute SST.

c. Compute R2 and the adjusted coefficient of 
determination.

 12.17 A regression analysis has produced the following 
analysis of variance table:

Analysis of Variance
Source DF SS MS

Regression 4 40,000

Residual error 45 10,000

a. Compute se and s2
e .

b. Compute SST.
c. Compute R2 and the adjusted coefficient of 

determination.

 12.18 A regression analysis has produced the following 
analysis of variance table:

Analysis of Variance
Source DF SS MS

Regression 5 80,000

Residual error 200 15,000
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a. Compute se and s2
e .

b. Compute SST.
c. Compute R2 and the adjusted coefficient of 

determination.

Application Exercises
 12.19 An aircraft company wanted to predict the number of 

worker-hours necessary to finish the design of a new 
plane. Relevant explanatory variables were thought to 
be the plane’s top speed, its weight, and the number of 
parts it had in common with other models built by the 
company. A sample of 27 of the company’s planes was 
taken, and the following model was estimated:

y = b0 + b1x1 + b2x2 + b3x3 + e

where
 y = design effort, in millions of worker-hours
x1 = plane’s top speed, in miles per hour
x2 = plane’s weight, in tons
x3 =  percentage of parts in common with other 

models

The estimated regression coefficients were as follows:

b1 = 0.661 b2 = 0.065 b3 = -0.018

  The total sum of squares and regression sum of 
squares were found to be as follows:

SST = 3.881 and SSR = 3.549

a. Compute and interpret the coefficient of 
determination.

b. Compute the error sum of squares.
c. Compute the adjusted coefficient of determination.
d. Compute and interpret the coefficient of multiple 

correlation.

 12.20 The following model was fitted to a sample of 30 fami-
lies in order to explain household milk consumption:

y = b0 + b1x1 + b2x2 + e

where
 y = milk consumption, in quarts per week
x1 = weekly income, in hundreds of dollars
x2 = family size

The least squares estimates of the regression pa-
rameters were as follows:

b0 = -0.025 b1 = 0.052 b2 = 1.14

  The total sum of squares and regression sum of 
squares were found to be as follows:

SST = 162.1 and SSR = 88.2

a. Compute and interpret the coefficient of 
determination.

b. Compute the adjusted coefficient of 
determination.

c. Compute and interpret the coefficient of multiple 
correlation.

 12.21 The following model was fitted to a sample of 25 stu-
dents using data obtained at the end of their fresh-
man year in college. The aim was to explain students’ 
weight gains:

y = b0 + b1x1 + b2x2 + b3x3 + e

where
 y =  weight gained, in pounds, during freshman year
x1 =  average number of meals eaten per week
x2 =  average number of hours of exercise per week
x3 =  average number of beers consumed per week

  The least squares estimates of the regression param-
eters were as follows:

b0 = 7.35 b1 = 0.653 b2 = -1.345 b3 = 0.613

  The regression sum of squares and error sum of 
squares were found to be as follows:

SSR = 79.2 and SSE = 45.9

a. Compute and interpret the coefficient of 
determination.

b. Compute the adjusted coefficient of 
determination.

c. Compute and interpret the coefficient of multiple 
correlation.

 12.22 Refer to the savings and loan association data given in 
Table 12.1.

a. Estimate, by least squares, the regression of profit 
margin on number of offices.

b. Estimate, by least squares, the regression of net 
revenues on number of offices.

c. Estimate, by least squares, the regression of profit 
margin on net revenues.

d. Estimate, by least squares, the regression of number 
of offices on net revenues.

12.4  CONFIDENCE INTERVALS AND HYPOTHESIS TESTS  
FOR INDIVIDUAL REGRESSION COEFFICIENTS

In Section 12.2 we developed and discussed the point estimators for the parameters of the 
multiple regression model:

yi = b0 + b1x1i + b2x2i + g + bKxKi + ei

Now, we will develop confidence intervals and tests of hypotheses for the estimated 
 regression coefficients. These confidence intervals and hypothesis tests depend on the 
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 variance of the coefficients and the probability distribution of the coefficients. In Section 11.5 
we showed that the simple regression coefficient is a linear function of the dependent vari-
able, Y. Multiple regression coefficients, denoted by bj, are also linear functions of the depen-
dent variable, Y, but the algebra is somewhat more complex and is not presented here. In 
the previous multiple  regression equation, we see that the dependent variable, Y, is a linear 
function of the X variables plus the random error, e. For a given set of X terms the function

b0 + b1x1i + b2x2i + g + bKxKi

is actually a constant. We also know from Chapters 4 and 5 that adding a constant to a ran-
dom variable e results in the random variable Y having the same probability distribution 
and variance as the original random variable e. As a result, the dependent variable, Y, has 
the same normal distribution and variance as the error term, e. Then it follows that the re-
gression coefficients, bj—which are linear functions of Y—also have a normal distribution, 
and their variance can be derived by using the linear relationship between the regression 
coefficients and the dependent variable. This computation would follow the same process 
as used for simple regression in Section 11.5, but the algebra is more complex.

Based on the linear relationship between the coefficients and Y, we know that the 
coefficient estimates are normally distributed if the model error, e, is normally distrib-
uted. Because of the central limit theorem, we generally find that the coefficient estimates 
are approximately normally distributed even if e is not normally distributed. Thus, the 
hypothesis tests and confidence intervals we develop are not seriously affected by depar-
tures from normality in the distribution of the error terms.

We can think of the error term, e, in the population regression model as including the 
combined influences on the dependent variable of a multitude of factors not included in 
the list of independent variables. These factors individually may not have an important 
influence, but in combination their effect can be important. The fact that the error term is 
made up of a large number of components whose effects are random provides an intuitive 
argument for assuming that the coefficient errors are also normally distributed.

As we have seen previously, the coefficient estimators, bj, are linear functions of Y, 
and the predicted value of Y is a linear function of the regression coefficient estimators. 
However, these relationships can sometimes cause interpretation problems. Thus, we will 
spend time gaining important insights into the variance computations. If we do not un-
derstand how the variances are computed, we will not be able to adequately understand 
hypothesis tests and confidence intervals.

The variance of a coefficient estimate is affected by the sample size, the spread of 
the X variables, the correlations between the independent variables, and the model er-
ror term. Thus, these correlations affect both confidence intervals and tests of hypotheses. 
Previously, we saw how the correlations between the independent variables influence 
the coefficient estimators. These correlations between independent variables also increase the 
variance of the coefficient estimators. An important conclusion is that the variance of 
the coefficient estimators, in addition to the coefficient estimators, is conditional on the entire 
set of independent variables in the regression model.

The previous discussion under three-dimensional graphing emphasized the complex ef-
fects of several variables on the coefficient variance. As the relationships between indepen-
dent variables become stronger, estimates of coefficients become more unstable—that is, they 
have higher variance. The following discussion provides a more formal discussion of these 
complexities. To obtain good coefficient estimates—those that are low in variance—you 
should seek a wide range for the independent variables, choose independent variables that 
are not strongly related to each other, and find a model that is close to all data points. The re-
ality of applied statistical work in business and economics is that we often must use data that 
are less than ideal, such as the data for the savings and loan example. But by knowing the 
effects discussed here, we can make good judgments about the applicability of our models.

To gain some understanding of the effect of independent variable correlations, we 
consider the variance estimators from the estimated multiple regression model with two 
predictor variables:

yni = b0 + b1x1i + b2x2i
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The coefficient variance estimators are

 s2
b1
=

s2
e1n - 12s2

x1
11 - r2

x1x2
2 (12.16)

 s2
b2
=

s2
e1n - 12s2

x2
11 - r2

x1x2
2 (12.17)

and the square roots of these variance estimators, sb1
 and sb2

, are called the coefficient stan-
dard errors.

The variance of the coefficient estimators increases directly with the distance of the 
points from the line, measured by s2

e , the estimated error variance. In addition, a wider 
spread of the independent variable values—measured by s2

x1
 or by s2

x2
—decreases the coef-

ficient variance. Recall that these results also apply for simple regression coefficient esti-
mators. We also see that the variance of the coefficient estimators increases with increases 
in the correlation between the independent variables in the model. As the correlation in-
creases between two independent variables, it becomes more difficult to separate the ef-
fect of the individual variables for predicting the dependent variables. As the number of 
independent variables in a model increases, the influences on the coefficient variance con-
tinue to be important, but the algebraic structure becomes very complex and is not pre-
sented here. The correlation effect leads to the result that coefficient variance estimators 
are conditional on the other independent variables in the model. Recall that the actual co-
efficient estimators are also conditional on the other independent variables in the model, 
again because of the effect of correlations between the independent variables.

The basis for inference about population regression coefficients is summarized next. 
We are typically more interested in the regression coefficients bj than in the constant or 
intercept b0. Thus, we concentrate on the former, noting that inference about the latter 
proceeds along similar lines.

Confidence Intervals

Confidence intervals for the bj can be derived by using Equation 12.19.

Basis for Inference about the Population Regression 
Parameters
Let the population regression model be as follows:

yi = b0 + b1x1i + b2x1i + g + bKxKi + ei

Let b0, b1, c, bK be the least squares estimates of the population parameters 
and sb0

, sb1
, c, sbK

 be the estimated standard deviations of the least squares 
estimators. Then, if the standard regression assumptions hold and if the error 
terms, ei, are normally distributed,

 tbj
=

bj - bj

sbj

 1 j = 1, 2, c, K2 (12.18)

is distributed as a Student’s t distribution with 1n - K - 12 degrees of freedom.

Confidence Intervals for Regression Coefficients
If the population regression errors, ei, are normally distributed and the stan-
dard regression assumptions hold, the 100(1 - a)% two-sided confidence inter-
vals for the regression coefficients, bj, are given by

 bj - tn- K- 1, a>2sbj
6 bj 6 bj + tn- K- 1, a>2sbj

 (12.19)
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where tn -K -1, a>2 is the number for which

P1tn- K- 1 7 tn- K- 1, a>22 = a2
and the random variable tn -K -1 follows a Student’s t distribution with 1n - K - 12 degrees of freedom.

Example 12.4 Developing the Savings and Loan 
Model (Confidence Interval Estimation)

We have been asked to determine confidence intervals for the coefficients of the sav-
ings and loan regression model developed in Example 12.3.

Solution The Minitab regression output for the savings and loan regression model is 
shown in Figure 12.8. The coefficient estimators and their standard deviations for the 
revenue, b1, and number of offices, b2, predictor variables are computed as follows:

b1 = 0.2372, sb1
= 0.0556; b2 = -0.000249 and sb2

= 0.00003205

Figure 12.8 Savings and Loan Regression: Minitab Output

Regression Analysis: Y profit versus X1 revenue, X2 offices

The regression equation is
Y profit = 1.56 + 0.237 X1 revenue - 0.000249 X2 offices

Predictor
Constant
X1 revenue
X2 offices

Coef
1.56450
0.23720

-0.00024908

SE Coef
0.07940
0.05556

0.00003205

T
19.70
4.27
-7.77

P
0.000
0.000
0.000

S = 0.0533022 R-Sq = 86.5% R-Sq(adj) = 85.3%

Analysis of Variance

Source
Regression
Residual Error
Total

DF
2
22
24

SS
0.40151
0.06250
0.46402

MS
0.20076
0.00284

F
70.66

P
0.000

Source

X1 revenue
X2 offices

DF Seq SS

1
1

0.22990
0.17161

b1

b2

sb1
tb1

tb2

sb2

Thus, we see that the standard deviation of the sampling distribution of the least 
squares estimator for b1 is estimated as 0.05556 and for b2 is estimated as 0.00003205.

To obtain the 99% confidence intervals for b1 and b2, we use the Student’s t value 
from Appendix Table 8.

tn -K -1, a>2 = t22, 0.005 = 2.819

Using these results, we find that the 99% coefficient confidence interval for b1 is

0.237 - 12.819210.055562 6 b1 6 0.237 + 12.819210.055562
or

0.080 6 b1 6 0.394
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Tests of Hypotheses

Tests of hypotheses for regression coefficients can be developed using the coefficient vari-
ance estimates. Of particular interest is the hypothesis test

H0 : bj = 0

which is frequently used to determine if a specific independent variable is conditionally 
important in a multiple regression model.

Thus, the 99% confidence interval for the expected increase in the savings and loan profit 
margin resulting from a one-unit increase in net revenue per dollar, given a fixed number 
of offices, runs from 0.080 to 0.394. The 99% coefficient confidence interval for b2 is

-0.000249 - 12.819210.00003202 6 b2 6 -0.000249 + 12.819210.00003202
or

-0.000339 6 b2 6 -0.000159

Therefore, we see that the 99% confidence interval for the expected decrease in the 
profit margin resulting from an increase of 1,000 offices, for a fixed level of net revenue 
per dollar, runs from 0.159 to 0.339.

Tests of Hypotheses for the Regression Coefficients
If the regression errors, ei, are normally distributed and the standard regression 
assumptions hold, then the following hypothesis tests have significance level a:

1. To test either null hypothesis

H0 : bj = b* or H0 : bj … b*

against the alternative

H1 : bj 7 b*

the decision rule is as follows:

 reject H0 if 
bj - b*

sbj

7 tn- K- 1,a (12.20)

2. To test either null hypothesis

H0 : bj = b* or H0 : bj Ú b*

against the alternative

H1: bj 6 b*

the decision rule is as follows:

 reject H0 if 
bj - b*

sbj

6 - tn- K- 1,a (12.21)

3. To test the null hypothesis

H0 : bj = b*

against the two-sided alternative

H1 : bj � b*

the decision rule is as follows:

 reject H0 if 
bj - b*

sbj

7 tn- K- 1,a>2 or 
bj - b*

sbj

6 - tn- K- 1,a>2 (12.22)
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Many analysts argue that if we cannot reject the conditional hypothesis that the coef-
ficient is 0, then we must conclude that the variable should not be included in the regres-
sion model. The Student’s t statistic for this two-tailed test is typically computed in most 
regression programs and is printed next to the coefficient variance estimate; in addition, 
the p-value for the hypothesis test is typically included. These are shown in the Minitab 
output in Figure 12.8. Using the printed Student’s t statistic or the p-value, we can imme-
diately conclude whether or not a particular predictor variable is conditionally significant, 
given the other variables in the regression model.

There are clearly other procedures for deciding if an independent variable should be in-
cluded in a regression model. We see that the preceding selection procedure ignores Type 
II error—the population coefficient is not equal to 0, but we fail to reject the null hypothesis 
that it is equal to 0. This is a particular problem when a model based on economic or another 
theory that is carefully specified to include certain independent variables. Then, because of 
a large error, e, or correlations between independent variables, or both, we cannot reject the 
hypothesis that the coefficient is 0. In this case many analysts will include the independent 
variable in the model because the original model specification based on economic theory or 
experience is believed to dominate. This is a difficult issue and requires good judgment based 
on both statistical results and theory concerning the underlying relationship being modeled.

Example 12.5 Developing the Savings and Loan 
Model (Coefficient Hypothesis Tests)

We have been asked to determine if the coefficients in the savings and loan regression 
model are conditionally significant predictors of profit margin.

Solution The hypothesis test for this question will use the Minitab regression results 
shown in Figure 12.8. First, we wish to determine if the variable net revenue per dollar 
has a significant effect on increasing profit margin, conditional on or controlling for the 
effect of the variable number of offices. The null hypothesis is

H0 : b1 = 0

versus the alternative hypothesis

H1 : b1 7 0

The test can be performed by computing the Student’s t statistic associated with the 
coefficient, given H0:

tb1
=

b1 - b1

sb1

=
0.237 - 0
0.05556

= 4.27

From the Student’s t table, Appendix Table 8, we can determine that the critical value—
for a = 0.005– for the Student’s t statistic is as follows:

t22,0.005 = 2.819

Figure 12.8 also indicates that the p-value for the null hypothesis test

H0 : b1 = 0

versus the alternative hypothesis

H1 : b1 � 0

is less than 0.005. Based on this evidence, we reject H0 and accept H1 and conclude that 
net revenue per dollar is a statistically significant predictor of increased profit margin for 
savings and loans, given that we have controlled for the effect of the number of offices.

Similarly, we can determine if the total number of offices has a significant effect on 
reducing profit margins. The null hypothesis is

H0 : b2 = 0
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It is important to emphasize that both of the hypothesis tests are based on the particu-
lar set of variables included in the regression model. If, for example, additional predic-
tor variables were included, then these tests would no longer be valid. With additional 
variables in the model the coefficient estimates and their estimated standard deviations 
would be different, and, thus, the Student’s t statistics would also be different.

Note that in the Minitab regression output for this problem, shown in Figure 12.8, the 
Student’s t statistic for the null hypothesis—H0 : bj = 0—is computed as the ratio of the es-
timated coefficient divided by the estimated coefficient standard error—contained in the 
two columns to the left of the Student’s t. The probability, or p-value, for the two-tailed hy-
pothesis test—Hj : bj � 0—is also displayed. Thus, an analyst can perform these hypothesis 
tests directly by examining the multiple regression output. The Student’s t and the p-value 
are computed in every modern statistical package. Most analysts routinely look for these 
test results as they examine regression output from a computer statistical package.

versus the alternative hypothesis

H1 : b2 6 0

The test can be performed by computing the Student’s t statistic associated with the 
coefficient, given H0:

tb2
=

b2 - b2

sb2

=
-0.000249 - 0

0.0000320
= -7.77

From Appendix Table 8 we find that the critical value for the Student’s t statistic is as follows:

t22, 0.005 = -2.819

Figure 12.8 also indicates that the p-value for the null hypothesis test

H0 : b2 = 0

versus the alternative hypothesis

H1 : b2 � 0

is less than 0.005. Based on this evidence, we reject H0 and accept H1 and conclude that 
number of offices is a statistically significant predictor of lower profit margin for sav-
ings and loans, given that we have controlled for the effect of net revenue per dollar.

Example 12.6 Factors Affecting Property Tax Rate 
(Analysis of Regression Coefficients)

A group of city managers commissioned a study to determine the factors that influence 
urban property-tax rates for cities with populations between 100,000 and 200,000.

Solution Using a sample of 20 U.S. cities, the following regression model was estimated:

  yn = 1.79 + 0.000567x110.0001392 + 0.0183x210.00822 - 0.000191x310.0004462
 R2 = 0.71   n = 20

where

 y = effective property tax rate (actual levies divided by market value of the tax base)
x1 = number of housing units per square mile
x2 =  percentage of total city revenue represented by grants from state and federal 

governments
x3 = median per capita personal income, in dollars

The numbers in parentheses under the coefficients are the estimated coefficient stan-
dard errors.
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The preceding presentation of the regression equation and variable definition provides 
a good format for displaying the results of a regression analysis model. The results indicate 
that the conditional estimates of the effects of the three predictor variables are as follows:

1. An increase of one housing unit per square mile increases the effective property 
tax rate by 0.000567. Note that property tax rates are typically expressed in terms of 
 dollars per $1,000 of assessed property value. Thus, an increase of 0.000567 indicates 
that property tax rates are higher by $0.567 per $1,000 of assessed property value.

2. An increase of 1% of the total city revenue from state and federal grants increases the 
effective tax rate by 0.0183.

3. An increase of $1 in median per capita personal income leads to an expected de-
crease in the effective tax rate by 0.000191. Note that the ratio of 0.000191 divided by 
0.000446 gives a t value less than 2.

We emphasize again that these coefficient estimates are valid only for a model with all 
three predictor variables included.

To better understand the accuracy of these effects, we construct conditional 95% confi-
dence intervals. For the estimated regression model there are 120 - 3 - 12 = 16 degrees 
of freedom for error. Thus, the Student’s t statistic for computing confidence intervals is, 
from the Appendix, t16,0.025 = 2.12. The format for confidence intervals is as follows:

bj - tn -K -1, a>2sbj 6 bj 6 bj + tn -K -1, a>2sbj

Thus, the coefficient for the number of housing units per square mile has a 95% confi-
dence interval of

 0.000567 - 12.12210.0001392 6 b1 6 0.000567 + 12.12210.0001392
 0.000272 6 b1 6 0.000862

The coefficient for the percentage of revenue represented by grants has a 95% confi-
dence interval of

 0.0183 - 12.12210.00822 6 b2 6 0.0183 + 12.12210.00822
 0.0009 6 b2 6 0.0357

Finally, the coefficient for median per capita personal income has a 95% confidence 
interval of

 -0.000191 - 12.12210.0004462 6 b3 6 -0.000191 + 12.12210.0004462
 -0.001137 6 b3 6 0.000755

Again, we emphasize that these intervals are conditional on all three predictor vari-
ables being included in the model.

We see that the 95% confidence interval for b3 includes 0, and, thus, we could not 
reject the two-tailed hypothesis that this coefficient is 0. Based on this confidence inter-
val, we conclude that X3 is not a statistically significant predictor variable in the mul-
tiple regression model. However, the confidence intervals for the other two variables 
do not include 0, and, thus, we conclude that they are statistically significant.

Example 12.7 Effects of Fiscal Factors on Housing 
Prices (Regression Model Coefficient Estimation)

Northern City, Minnesota, was interested in the effect of local property development 
on the market price of houses in the city. Northern City is one of many small, nonmet-
ropolitan, midwestern cities with populations in the range from 6,000 to 40,000. One 
of the objectives was to determine how increased commercial property development 
would influence the value of local housing. Data are stored in the data file Citydatr.
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Solution To answer this question, data were collected from a number of cities and 
used to construct a regression model that estimates the effect of key variables on 
housing price. For this study the following variables were obtained for each city:

 Y 1hseval2 = mean market price for houses in the city
 X1 1sizehse2 = mean number of rooms in houses
 X2 1 incom722 = mean household income
 X3 1 taxrate2 = tax rate per thousand dollars of assessed value for houses
 X4 1Comper2 = percentage of taxable property that is commercial property

The multiple regression output, prepared using Minitab, is shown in Figure 12.9. The 
coefficient for the mean number of rooms in city houses is 7.878, with a coefficient stan-
dard deviation of 1.809. In this study housing values are in units of $1,000, with a mean 
of $21,000 over all cities. Thus, if the mean number of rooms in a city’s houses was 
larger by 1.0, then the mean price would be larger by $7,878. The resulting Student’s 
t statistic is 4.35 and the p-value is 0.000. Thus, the conditional hypothesis that this co-
efficient is equal to 0 is rejected. The same result occurs for the income and tax rate 
variables. The incom72 variable is in units of dollars, and, thus, if a city’s mean income 
is higher by $1,000, the coefficient of 0.003666 indicates that mean housing price will 
be $3,666 higher. If the tax rate increases by 1%, mean housing price is reduced by 
$1,718. We see that the regression analysis leads to the conclusion that each of these 
three variables is a significant predictor of the mean house price in the cities included 
in this study. However, we see that the coefficient for the percent of commercial prop-
erty, Comper, is - 10.614, with a coefficient standard deviation of 6.491, resulting in a 
Student’s t statistic equal to - 1.64. Note that here is an important area for judgment. 
The coefficient would have a single-tail p-value of 0.053 or a two-tailed p-value of 0.106. 
Thus, it appears to have some effect in reducing the mean price of houses. Given that 
the effects of house size, income, and tax rate on the market price for houses have been 
included, we see that the percent of commercial property does not increase housing 
prices. Thus, the argument that the market value of houses will increase if more com-
mercial property is developed is not supported by this analysis. That conclusion is true 
only for a model that includes these four predictor variables. Note also that the values 
of R2 = 47.4% and se (standard error of the regression) = 3.677 are included in the re-
gression output.

Figure 12.9 Housing Price Regression Model (Minitab Output)

Regression Analysis: hseval versus sizehse, income72, taxrate, Comper

The regression equation is
hseval = -28.1 + 7.88 sizehse + 0.00367 incom72 - 172 taxrate -10.6 Comper

Predictor
Constant
sizehse
incom72
taxrate
Comper

Coef
-28.075

7.878
0.003666
-171.80
-10.614

SE Coef
9.766
1.809

0.001344
43.09
6.491

T
-2.87
4.35
2.73
-3.99
-1.64

P
0.005
0.000
0.008
0.000
0.106

S = 3.67686 R-Sq = 47.4% R-Sq(adj) = 45.0%

Analysis of Variance

Source
Regression
Residual Error
Total

DF
4

85
89

SS
1037.49
1149.14
2186.63

MS
259.37
13.52

F
19.19

P
0.000
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The advocates of increased commercial development also claimed that increas-
ing the amount of commercial property would decrease the taxes paid on owner-
occupied houses. This claim was tested using the regression output in Figure 12.10, 
prepared using Excel. The coefficient estimators and their standard errors are indi-
cated. The Student’s t statistics for the size of house and the tax-rate coefficients are 
2.65 and 6.36, indicating that these variables are important predictors. The Student’s 
t statistic for income is 1.83, with a p-value of 0.07 for a two-tailed test. Thus, income 
has some influence as a predictor, but its effect is not as strong as the previous two 
variables. Again, we see a place for good judgment that considers the problem con-
text. The conditional hypothesis that increased commercial property decreases taxes 
on owner-occupied houses can be tested using the conditional Student’s t statistic 
for the variable “Comper” in the regression output. The conditional Student’s t sta-
tistic is -1.03, with a p-value of 0.308. Thus, the hypothesis that increased commer-
cial property does not decrease house taxes cannot be rejected. There is no evidence 
from this analysis that house taxes would be lowered if there was additional com-
mercial development.

Figure 12.10 House-Tax Regression Model (Excel Output)

Multiple coefficient
of determination R2

SSR
SSE
SST

Student t
statistics

Coefficient
standard errors

Coefficients
b0, b1, b2, b3, b4

Based on the regression analyses performed in this study, the consultants con-
cluded that there was no evidence that increased commercial property would either 
increase the market value of houses or lower the property taxes for a house.
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EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

Basic Exercises
 12.23 The following are results from a regression model 

analysis:

 yn = 1.50 + 4.8x112.12 + 6.9x213.72 - 7.2x3     12.82
 R2 = 0.71     n = 24

The numbers below the coefficient estimates are the 
sample standard errors of the coefficient estimates.

a. Compute two-sided 95% confidence intervals for 
the three regression slope coefficients.

b. For each of the slope coefficients, test the hypothesis

H0 : bj = 0
 12.24 The following are results from a regression model 

analysis:

  yn = 2.50 + 6.8x113.12 + 6.9x213.72 - 7.2x313.22
 R2 = 0.85  n = 34

The numbers below the coefficient estimates are the 
estimated coefficient standard errors.

a. Compute two-sided 95% confidence intervals for 
the three regression slope coefficients.

b. For each of the slope coefficients test the hypothesis

H0 : bj = 0

 12.25 The following are results from a regression model 
analysis:

  yn = -101.50 + 34.8x1112.12 + 56.9x2123.72 - 57.2x3132.82
 R2 = 0.71  n = 65

The numbers in parentheses under the coefficients are 
the estimated coefficient standard errors.

a. Compute two-sided 95% confidence intervals for 
the three regression slope coefficients.

b. For each of the slope coefficients test the hypothesis

H0 : bj = 0

 12.26 The following are results from a regression model 
analysis:

  yn = -9.50 + 17.8x117.12 + 26.9x2113.72 - 9.2x313.82
 R2 = 0.71  n = 39

The numbers in parentheses under the coefficients are 
the estimated coefficient standard errors.

a. Compute two-sided 95% confidence intervals for 
the three regression slope coefficients.

b. For each of the slope coefficients test the hypothesis

H0 : bj = 0

Application Exercises
 12.27 An aircraft company wanted to predict the number of 

worker-hours necessary to finish the design of a new 

plane. Relevant explanatory variables were thought to 
be the plane’s top speed, its weight, and the number of 
parts it had in common with other models built by the 
company. A sample of 27 of the company’s planes was 
taken, and the following model was estimated:

y = b0 + b1x1 + b2x2 + b3x3 + e

where

 y = design effort, in millions of worker-hours
x1 = plane’s top speed, in miles per hour
x2 = plane’s weight, in tons
x3 =  percentage of parts in common with other 

models

The estimated regression coefficients were as follows:

b1 = 0.661 b2 = 0.065 b3 = -0.018

The estimated standard errors were as follows:

sb1
= 0.099 sb2

= 0.032 sb3
= 0.0023

a. Find 90% and 95% confidence intervals for b1.
b. Find 95% and 99% confidence intervals for b2.
c. Test against a two-sided alternative the null hy-

pothesis that, all else being equal, the plane’s 
weight has no linear influence on its design effort.

d. The error sum of squares for this regression was 0.332. 
Using the same data, a simple linear regression of 
design effort on the percentage of common parts was 
fitted, yielding an error sum of squares of 3.311. Test, 
at the 1% level, the null hypothesis that, taken together, 
the variable’s top speed and weight contribute nothing 
in a linear sense to explaining the changes in the vari-
able, design effort, given that the variable percentage of 
common parts is also used as an explanatory variable.

 12.28 The following model was fitted to a sample of 30 fami-
lies in order to explain household milk consumption:

y = b0 + b1x1 + b2x2 + e

where

 y = milk consumption, in quarts per week
x1 = weekly income, in hundreds of dollars
x2 = family size

The least squares estimates of the regression param-
eters were as follows:

b0 = -0.025 b1 = 0.052 b2 = 1.14

The estimated standard errors were as follows:

sb1
= 0.023 sb2

= 0.35

a. Test, against the appropriate one-sided alternative, 
the null hypothesis that, for fixed family size, milk 
consumption does not depend linearly on income.

b. Find 90%, 95%, and 99% confidence intervals for b2.

 12.29 The following model was fitted to a sample of 25 students 
using data obtained at the end of their freshman year in 
college. The aim was to explain students’ weight gains:

y = b0 + b1x1 + b2x2 + b3x3 + e
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where

 y = weight gained, in pounds, during freshman year
x1 = average number of meals eaten per week
x2 = average number of hours of exercise per week
x3 = average number of beers consumed per week

The least squares estimates of the regression param-
eters were as follows:

b0 = 7.35 b1 = 0.653 b2 = -1.345 b3 = 0.613

The estimated standard errors were as follows:

sb1
= 0.189 sb2

= 0.565 sb3
= 0.243

a. Test, against the appropriate one-sided alternative, 
the null hypothesis that, all else being equal, hours 
of exercise do not linearly influence weight gain.

b. Test, against the appropriate one-sided alternative, 
the null hypothesis that, all else being equal, beer 
consumption does not linearly influence weight gain.

c. Find 90%, 95%, and 99% confidence intervals for b1.

 12.30 Refer to the data of Example 12.6.

a. Test, against a two-sided alternative, the null 
hypothesis that, all else being equal, median per 
capita personal income has no influence on the ef-
fective property tax rate.

b. Test the null hypothesis that, taken together, the 
three independent variables do not linearly influence 
the effective property tax rate.

 12.31 Refer to the data of Example 12.7 with the data 
file Citydatr.

a. Find 95% and 99% confidence intervals for the 
expected change in the market price for houses 
resulting from a one-unit increase in the mean 
number of rooms when the values of all other in-
dependent variables remain unchanged.

b. Test the null hypothesis that, all else being equal, 
mean household income does not influence the 
market price against the alternative that the higher 
the mean household income, the higher the market 
price.

 12.32 In a study of revenue generated by national lotteries, 
the following regression equation was fitted to data 
from 29 countries with lotteries:

 y = -31.323 + 0.4045x110.007552 + 0.8772x210.31072 - 365.01x31263.882 - 9.9298x413.45202
 R2 = .51

where
 y =  dollars of net revenue per capita per year gen-

erated by the lottery
x1 =  mean per capita personal income of the 

country
x2 =  number of hotel, motel, inn, and resort rooms 

per thousand persons in the country
x3 =  spendable revenue per capita per year gener-

ated by pari-mutuel betting, racing, and other 
legalized gambling

x4 =  percentage of the nation’s border contiguous 
with a state or states with a lottery

The numbers in parentheses under the coefficients are 
the estimated coefficient standard errors.

a. Interpret the estimated coefficient on x1.
b. Find and interpret a 95% confidence interval for 

the coefficient on x2 in the population regression.
c. Test the null hypothesis that the coefficient on x3 in the 

population regression is 0 against the alternative that 
this coefficient is negative. Interpret your findings.

 12.33 A study was conducted to determine whether certain 
features could be used to explain variability in the 
prices of furnaces. For a sample of 19 furnaces, the fol-
lowing regression was estimated:

 y = -68.236 + 0.0023x110.0052 + 19.729x218.9922 + 7.653x3    13.0822  R2 = 0.84

where

 y = price, in dollars
x1 = rating of furnace, in BTU per hour
x2 = energy efficiency ratio
x3 = number of settings

The numbers in parentheses under the coefficients are 
the estimated coefficient standard errors.

a. Find a 95% confidence interval for the expected 
increase in price resulting from an additional set-
ting when the values of the rating and the energy 
efficiency ratio remain fixed.

b. Test the null hypothesis that, all else being equal, 
the energy efficiency ratio of furnaces does not affect 
their price against the alternative that the higher the 
energy efficiency ratio, the higher the price.

 12.34 In a study of differences in levels of community demand 
for firefighters, the following sample regression was ob-
tained, based on data from 39 towns in Maryland:

 y = -0.00232 - 0.00024x110.000102 - 0.00002x210.0000182 + 0.00034x310.000122
+ 0.48122x410.779542 + 0.04950x510.011722 - 0.00010x610.000052 + 0.00645x710.003062

R 2 = 0.3572

where

 y = number of full@time firefighters per capita
x1 =  maximum base salary of firefighters, in thou-

sands of dollars
x2 = percentage of population
x3 =   estimated per capita income, in thousands of 

dollars
x4 = population density
x5 =  amount of intergovernmental grants per cap-

ita, in thousands of dollars
x6 = number of miles from the regional city
x7 =  percentage of the population that is male and 

between 12 and 21 years of age

The numbers in parentheses under the coefficients are 
the estimated coefficient standard errors.

a. Find and interpret a 99% confidence interval for b5.
b. Test, against a two-sided alternative, the null 

 hypothesis that b4 is 0, and interpret your result.
c. Test, against a two-sided alternative, the null 

 hypothesis that b7 is 0, and interpret your result.
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12.5 TESTS ON REGRESSION COEFFICIENTS

In the previous section we showed how a conditional hypothesis test can be conducted 
to determine if a specific variable coefficient is conditionally significant in a regression 
model. There are, however, situations where we are interested in the effect of the combi-
nation of several variables. For example, in a model that predicts quantity sold, we might 
be interested in the combined effect of both the seller’s price and the competitor’s price. In 
other cases we might be interested in knowing if the combination of all variables is a use-
ful predictor of the dependent variable.

Tests on All Coefficients

First, we present hypothesis tests to determine if sets of several coefficients are all simulta-
neously equal to 0. Consider again the model:

y = b0 + b1x1 + b2x1 + g + bKxK + e

We begin by considering the null hypothesis that all the coefficients are simultane-
ously equal to zero:

H0 : b1 = b2 = g = bK = 0

Accepting this hypothesis would lead us to conclude that none of the predictor variables 
in the regression model is statistically significant and, thus, that they provide no useful in-
formation. If this were to occur, then we would need to go back to the model-specification 
process and develop a new set of predictor variables. Fortunately, in most applied regres-
sion situations this hypothesis is rejected because the specification process usually leads 
to identification of at least one significant predictor variable.

To test this hypothesis, we can use the partitioning of variability developed in Section 12.3:

SST = SSR + SSE

Recall that SSR is the amount of variability explained by the regression and that SSE is the 
amount of unexplained variability. Also recall that the variance of the regression model 
can be estimated by using the following:

s2
e =

SSE1n - K - 12
If the null hypothesis that all coefficients are equal to 0 is true, then the mean square regression,

MSR =
SSR

K

is also a measure of error with K degrees of freedom. As a result, the ratio

 F =
SSR>K

SSE>1n - K - 12
 =

MSR
s2

e

has an F distribution with K degrees of freedom for the numerator and 1n - K - 12 
 degrees of freedom for the denominator. If the null hypothesis is true, then both the nu-
merator and the denominator provide estimates of the population variance. As noted in 
Section 11.5, the ratio of independent sample variances from populations with equal pop-
ulation variances follows an F distribution if the populations are normally distributed. 
The computed value of F is compared with the critical value of F from Appendix Table 9 
at a significance level a. If the computed value exceeds the critical value from the table, 
we reject the null hypothesis and conclude that at least one coefficient is not equal to 0. 
This test procedure is summarized in Equation 12.23.
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Test on All the Coefficients of a Regression Model
Consider the multiple regression model:

y = b0 + b1x1 + b2x2 + g + bKxK + e

To test the null hypothesis

H0 : b1 = b2 = g = bK = 0

against the alternative hypothesis

H1 : at least one bj � 0

at a significance level a, we use the decision rule

 reject H0 : if  FK,n- K- 1 =
MSR

s2
e

7 FK,n- K- 1,a (12.23)

where FK,n -K -1,a is the critical value of F from Appendix Table 9 for which

P 1FK,n- K- 1 7 FK,n- K- 1, a2 = a
The computed random variable FK,n -K -1 follows an F distribution with numera-
tor degrees of freedom K and denominator degrees of freedom 1n - K - 12.

Example 12.8 Housing Price Prediction Model 
(Simultaneous Coefficient Testing)

During the development of the housing price prediction model for Northern City, the 
analysts wanted to know if there was evidence that the combination of four predictor 
variables was not a significant predictor of housing price. That is, they wanted to test, 
at a 99% confidence level, the hypothesis

H0 : b1 = b2 = b3 = b4 = 0

Solution This testing procedure can be illustrated by the housing price regression 
in Figure 12.9 prepared using the Citydatr data file. In the analysis of variance table, 
the computed F statistic is 19.19, with 4 degrees of freedom for the numerator and 
85 degrees of freedom for the denominator. The computation of F is as follows:

F =
259.37
13.52

= 19.184

This exceeds the critical value of F = 3.548 for a = 0.01 from Appendix Table 9. In ad-
dition, note that Minitab—and most statistics packages—compute the p-value, which 
in this example is equal to 0.000. Thus, we would reject the hypothesis that all coeffi-
cients are equal to zero.

Test on a Subset of Regression Coefficients

In the previous sections we developed hypothesis tests for individual regression param-
eters and for all regression parameters taken together. Next, we develop a hypothesis test 
for a subset of regression parameters, such as the combined price example previously dis-
cussed. We use this test to determine if the combined effect of several independent vari-
ables is significant in a regression model.

Consider a regression model that contains independent variables designated as Xj 
and Zj terms:

y = b0 + b1x1 + g + bKxK + a1z1 + g + aRzR + e
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and the null hypothesis to be tested is as follows:

H0 : a1 = a
2
= g = aR = 0 given bj � 0, j = 1, c, K

If H0 is true, then the Zj variables should not be included in the regression model because 
they provide nothing further to explain the behavior of the dependent variable beyond 
what the Xj variables provided. The procedure for performing this test is summarized in 
Equation 12.24, following a detailed discussion of the testing procedure.

The test is conducted by comparing the error sum of squares, SSE, from the complete 
regression model, which includes both the X and the Z variables, with the SSE(R) from a 
restricted model that includes only the X variables. First, we run a regression on the com-
plete regression model and obtain the error sum of squares, designated as SSE. Next, we 
run the restricted regression, which excludes the Z variables (note that the coefficients aj 
are all restricted to values of 0 in this regression):

y = b0 + b1x1 + g + bKxK + e*

From this regression we obtain the restricted error sum of squares, designated as SSE(R). 
Then we compute the F statistic with r degrees of freedom for the numerator, where r is 
the number of variables removed simultaneously from the restricted model and there are 1n - K - R - 12 degrees of freedom for the denominator, the degrees of freedom for error 
in the model that includes both the X and the Z independent variables. The F statistic is

F =
1SSE1R2 - SSE2>R

s2
e

where s2
e  is the estimated variance of the error for the complete model. This statistic fol-

lows an F distribution with R degrees of freedom in the numerator and 1n - K - R - 12 
degrees of freedom in the denominator. If the computed F is greater than the critical value 
of F, then the null hypothesis is rejected, and we conclude that the Z variables as a set 
should be included in the model. Note that this test does not imply that individual Z vari-
ables should not be excluded by, for example, using the Student’s t test discussed previ-
ously. In addition, the test for all Z’s does not imply that a subset of the Z variables cannot 
be excluded by using this test procedure with a different subset of Z variables.

Test on a Subset of the Regression Parameters
Given a regression model with the independent variables partitioned into X 
and Z subsets,

y = b0 + b1x1 + g + bKxK + a1z1 + g + aRzR + e

To test the null hypothesis

H0 : a1 = a2 = g = g = aR = 0

which states that the regression parameters in a particular subset are simulta-
neously equal to 0, against the alternative hypothesis

H1 : At least one aj � 0 1 j = 1, c, R2
We compare the error sum of squares for the complete model with the error 
sum of squares for the restricted model. First, run a regression for the complete 
model, which includes all independent variables, and obtain the error sum of 
squares, SSE. Next, run a restricted regression, which excludes the Z variables 
whose coefficients are the ai’s—the number of variables excluded is R. From 
this regression obtain the restricted error sum of squares, SSE(R). Then com-
pute the F statistic and apply the decision rule for significance level a:

 reject H0 if F =
1SSE1R2 - SSE2>R

s2
e

7 FR,n- K- R- 1,a (12.24)
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Comparison of F and t Tests

If we used Equation 12.24 with R = 1, we could test the hypothesis that a single variable, 
Xj, does not improve the prediction of the dependent variable, given the other indepen-
dent variables in the model. Thus, we have the following hypothesis test:

 H0 : bj = 0 �bl � 0, j � l l = 1, c, K

 H1 : bj � 0 �bl � 0, j � l l = 1, c, K

Previously, we saw that this test could also be performed using a Student’s t test. Using 
methods beyond this book, we can show that the corresponding F and t tests provide 
 exactly the same conclusions regarding the hypothesis test for a single variable. In addition, 
the computed t statistic for the coefficient bj is equal to the square root of the corresponding 
computed F statistic. That is,

t2
bj
= Fxj

where Fxj
 is the F statistic computed using Equation 12.24 when variable xj is excluded 

from the model and, thus, R = 1. We show this numerical result in Example 12.9.
Statistical distribution theory also shows that an F random variable with 1 degree of 

freedom in the numerator is the square of a t random variable with the same degrees of 
freedom as the denominator of the F random variable. Thus, the F and t tests will always 
provide the same conclusions regarding the hypothesis test for a single independent vari-
able in a multiple regression model.

Example 12.9 Housing Price Prediction for Small 
Cities (Hypothesis Tests for Coefficient Subsets)

The developers of the housing price prediction model from Example 12.8 wanted to 
determine if the combined effect of tax rate and percent commercial property contrib-
utes to the prediction after the effects of house size and income have been previously 
included. Data for this example are in the data file Citydatr.

Solution Continuing with the problem from Examples 12.7 and 12.8, we have 
a conditional test of the hypothesis that two variables are not significant predictors, 
given that the other two are significant predictors:

H0 : b3 = b4 = 0 �  b1, b2 � 0

This test will be conducted using the procedure in Equation 12.24. Figure 12.9 presents 
the regression for the complete model with all four predictor variables. In that regres-
sion SSE = 1,149.14. In Figure 12.11 we have the reduced regression with only house 
size and income as predictor variables. In that regression SSE = 1,426.93. The hypoth-
esis is tested by first computing the F statistic whose numerator is the error sum of 
squares for the reduced model 3SSE1R24  minus the SSE for the complete model:

F =
11426.93 - 1149.142>2

13.52
= 10.27

The F statistic has 2 degrees of freedom—for the two variables being tested simulta-
neously—for the numerator and 85 degrees of freedom for the denominator. Note that 
the variance estimator, s2

e = 13.52, is obtained from the complete model in Figure 12.9, 
which has 85 degrees of freedom for error. The critical value for F with a = 0.01 and 2 
and 85 degrees of freedom, from Appendix Table 9, is approximately 4.9. Since the com-
puted value of F exceeds the critical value, we reject the null hypothesis that tax rate and 
percent commercial property are not in combination conditionally significant. The com-
bined effect of these two variables does improve the model that predicts housing price. 
Therefore, tax rate and percent commercial property should be included in the model.
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We also computed this regression with the variable “comper” excluded and found 
that the resulting SSE was as follows:

SSE112 = 1,185.29

Then the computed F statistic for this variable was as follows:

F =
11185.29 - 1149.142>1

13.52
= 2.674

The square root of 2.674 is 1.64, which is the computed t statistic for the variable Comper 
in the regression output in Figure 12.9. Using either the computed F or the computed t, we 
would obtain this result for the hypotheses for this variable:

 H0 : bComper = 0 �  bl � 0, l � Comper

 H1 : bComper � 0 �  bl � 0, l � Comper

Figure 12.11 Housing-Price Regression: Reduced Model (Minitab Output)

Regression Analysis: hseval versus sizehse, income72

The regression equation is
hseval = -42.2 + 9.14 sizehse + 0.00393 incom72

Predictor
Constant
sizehse
incom72

Coef
-42.208

9.135
0.003927

SE Coef
9.810
1.940

0.001473

T
–4.30
4.71
2.67

P
0.000
0.000
0.009

S = 4.04987 R-Sq = 34.7% R-Sq(adj) = 33.2%

Analysis of Variance

Source
Regression
Residual Error
Total

DF
2
87
89

SS
759.70
1426.93
2186.63

Source
sizehse
incom72

DF
1
1

 Seq SS
643.12
116.58

MS
379.85
16.40

F
23.16

P
0.000

SSE(R)

EXERCISES

Basic Exercise
 12.35 Suppose that you have estimated coefficients for the 

following regression model:

Y = b0 + b1X1 + b2X2 + b3X3

Test the hypothesis that all three of the predictor vari-
ables are equal to 0, given the following analysis of 
variance tables:

a. Analysis of variance

Source DF SS MS

Regression  3 4,500
Residual error 26 500

b. Analysis of variance

Source DF SS MS
Regression  3 9,780
Residual error 26 2,100

c. Analysis of variance

Source DF SS MS
Regression  3 46,000
Residual error 26 25,000

d. Analysis of variance

Source DF SS MS
Regression  3 87,000
Residual error 26 48,000
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Application Exercises
 12.36 An aircraft company wanted to predict the number of 

worker-hours necessary to finish the design of a new 
plane. Relevant explanatory variables were thought to 
be the plane’s top speed, its weight, and the number of 
parts it had in common with other models built by the 
company. A sample of 27 of the company’s planes was 
taken, and the following model was estimated:

y = b0 + b1x1 + b2x2 + b3x3 + e

where

 y = design effort, in millions of worker-hours
x1 = plane’s top speed, in miles per hour
x2 = plane’s weight, in tons
x3 =  percentage of parts in common with other 

models

The estimated regression coefficients were as follows:

b1 = 0.661 b2 = 0.065 b3 = -0.018

The total sum of squares and regression sum of 
squares were found to be as follows:

SST = 3.881 and SSR = 3.549

a. Test the null hypothesis:

H0 : b1 = b2 = b3 = 0

b. Set out the analysis of variance table.

 12.37 In a study of the influence of financial institutions on 
bond interest rates in Germany, quarterly data over 
a period of 12 years were analyzed. The postulated 
model was

y = b0 + b1x1 + b2x2 + e

where

 y = change over the quarter in the bond interest rates
x1 =  change over the quarter in bond purchases by fi-

nancial institutions
x2 =  change over the quarter in bond sales by finan-

cial institutions

The estimated partial regression coefficients were as 
follows:

b1 = 0.057 b2 = -0.065

The corrected coefficient of determination was found 
to be R2 = 0.463. Test the null hypothesis:

H0 : b1 = b2 = 0

 12.38 The following model was fitted to a sample of 30 fami-
lies in order to explain household milk consumption:

y = b0 + b1x1 + b2x2 + e

where

 y = milk consumption, in quarts per week
x1 = weekly income, in hundreds of dollars
x2 = family size

The least squares estimates of the regression param-
eters were as follows:

b0 = -0.025 b1 = 0.052 b2 = 1.14

The estimated standard errors were as follows:

sb1
= 0.023 sb2

= 0.35

The total sum of squares and regression sum of 
squares were found to be as follows:

SST = 162.1 and SSR = 88.2

a. Test the null hypothesis:

H0 : b1 = b2 = 0

b. Set out the analysis of variance table.

 12.39 The following model was fitted to a sample of 25 stu-
dents using data obtained at the end of their fresh-
man year in college. The aim was to explain students’ 
weight gains:

y = b0 + b1x1 + b2x2 + b3x3 + e

where
 y = weight gained, in pounds, during freshman year
x1 = average number of meals eaten per week
x2 = average number of hours of exercise per week
x3 = average number of beers consumed per week

The least squares estimates of the regression param-
eters were as follows:

b0 = 7.35 b1 = 0.653 b2 = -1.345 b3 = 0.613

The estimated standard errors were as follows:

sb1
= 0.189 sb2

= 0.565 sb3
= 0.243

The regression sum of squares and error sum of 
squares were found to be as follows:

SSR = 79.2 and SSE = 45.9

a. Test the null hypothesis:

H0 : b1 = b2 = b3 = 0

b. Set out the analysis of variance table.

 12.40 A dependent variable is regressed on K indepen-
dent variables, using n sets of sample observations. 
We denote SSE as the error sum of squares and R2 
as the coefficient of determination for this estimated 
regression. We want to test the null hypothesis that 
K1 of these independent variables, taken together, 
do not linearly affect the dependent variable, given 
that the other 1K - K12 independent variables are 
also to be used. Suppose that the regression is re-
estimated with the K1 independent variables of in-
terest excluded. Let SSE* denote the error sum of 
squares and R*2, the coefficient of determination for 
this regression. Show that the statistic for testing our 
null hypothesis, introduced in Section 12.5, can be 
 expressed as follows:1SSE* - SSE2>K1

SSE>1n - K - 12 =
R2 - R*2

1 - R2  #  
n - K - 1

K1

 12.41 The following model was fitted to a sample of 30 fami-
lies in order to explain household milk consumption:

y = b0 + b1x1 + b2x2 + e
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where

y = milk consumption, in quarts per week
x1 = weekly income, in hundreds of dollars
x2 = family size

The least squares estimates of the regression param-
eters were as follows:

b0 = -0.025 b1 = 0.052 b2 = 1.14

The total sum of squares and regression sum of 
squares were found to be as follows:

SST = 162.1 and SSR = 88.2

A third independent variable—number of preschool 
children in the household—was added to the regres-
sion model. The sum of squared errors when this 
augmented model was estimated by least squares 
was found to be 83.7. Test the null hypothesis that, 
all other things being equal, the number of preschool 
children in the household does not linearly affect milk 
consumption.

 12.42 Suppose that a dependent variable is related to K in-
dependent variables through a multiple regression 
model. Let R2 denote the coefficient of determination 
and R2, the corrected coefficient. Suppose that n sets of 
observations are used to fit the regression.

a. Show that

R2 =
1n - 12R2 - K

n - K - 1

b. Show that

R2 =
1n - K - 12R2 + K

n - 1

c. Show that the statistic for testing the null hypothesis 
that all the regression coefficients are 0 can be written as

SSR>K
SSE>1n - K - 12 =

n - K - 1
K

 #  
R2 + A
1 - R2

where

A =
K

n - K - 1

12.6 PREDICTION

An important application of regression models is to predict or forecast values of the de-
pendent variable, given values for the independent variables. Forecasts can be computed 
directly from the estimated regression model using the coefficient estimates in that model, 
as shown in Equation 12.25.

Predictions from the Multiple Regression Models
Given that the population regression model

yi = b0 + b1x1i + b2x1i + g + bKxKi + ei

holds and that the standard regression assumptions are valid, let b0, b1, c, bK 
be the least squares estimates of the model coefficients, bj, where j = 1, c, K, 
based on the x1, x2, c, xK 1 i = 1, c, n2 data points. Then, given a new obser-
vation of a data point, x1,n +1, x2,n +1, c, xK,n +1 the best linear unbiased forecast 
of yn +1 is

 yni = b0 + b1x1i + b2x1i + g + bKxKi i = n + 1 (12.25)

It is very risky to obtain forecasts that are based on X values outside the 
range of the data used to estimate the model coefficients because we do not 
have data evidence to support the linear model at those points.

In addition to the predicted value of Y for a particular set of xj terms, we are often 
 interested in a confidence interval or a prediction interval associated with the prediction. 
As we discussed in Section 11.6, the confidence interval includes the expected value of Y 
with probability 1 - a. In contrast, the prediction interval includes individual predicted 
values—expected values of Y plus the random error term. To obtain these intervals, we 
need to compute estimates of the standard deviations for the expected value of Y and 
for the individual points. These computations are similar in form to those used in simple 
regression, but the estimator equations are much more complicated. The standard devia-
tions for predicted values, s

ny, are a function of the standard error of the estimate, se; the 
standard deviation of the predictor variables; the correlations between the predictor vari-
ables; and the square of the distance between the mean of the independent variables and 



512 Chapter 12 Multiple Variable Regression Analysis

Example 12.10 Forecast of Savings and Loan Profit 
Margin (Regression Model Forecasts)

You have been asked to forecast the savings and loan profit margin for a year in which 
the percentage net revenue is 4.50 and there are 9,000 offices, using the savings and 
loan regression model. Data are stored in the file Savings and Loan.

Solution Using the notation from Equation 12.25, we have the following variables:

x1,n +1 = 4.50 x2,n +1 = 9,000

Using these values, we find that our point predictor of profit margin is as follows:

 ynn +1 = b0 + b1x1,n +1 + b2,n +1

 = 1.565 + 10.237214.502 - 10.000249219,0002 = 0.39

Thus, for a year when the percentage net revenue per deposit dollar is 4.50 and the 
number of offices is 9,000, we predict that the profit margin for savings and loan asso-
ciations will be 0.39.

Figure 12.12 Forecasts and Forecast Intervals for Multiple Regression (Minitab Output)

Regression Analysis: Y profit versus X1 revenue, X2 offices

The regression equation is
Y profit = 1.56 + 0.237 X1 revenue – 0.000249 X2 offices

Predictor
Constant
X1 revenue
X2 offices

Coef
1.56450
0.23720

-0.00024908

SE Coef
0.07940
0.05556

0.00003205

T
19.70
4.27
–7.77

P
0.000
0.000
0.000

S = 0.0533022   R-Sq = 86.5%   R-Sq(adj) = 85.3%

Analysis of Variance

Source
Regression
Residual Error
Total

DF
2

22
24

SS
0.40151
0.06250
0.46402

MS
0.20076
0.00284

F
70.66

P
0.000

Predicted Values for New Observations

New
Obs

1

New
Obs

1
X1 revenue

4.50

X2
offices

9000

Fit
0.3902

SE Fit
0.0277

95% CI
(0.3327, 0.4476)

95% PI
(0.2656, 0.5148)

Values of Predictors for New Observations

Predicted value

Prediction interval

Confidence interval

Predictior variable values

Standard error for
predicted value

the X terms for the prediction. This standard deviation is similar to the standard devia-
tion for simple regression predictions in Chapter 11. However, the equations for multiple 
regression are very complex and are not presented here—instead, we compute the values 
using Minitab. The standard deviations for the prediction interval, the confidence inter-
val, and the corresponding intervals are computed by most good statistics packages. Excel 
does not have the capability to compute the standard deviation of the predicted variables.
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Predicted values, confidence intervals, and prediction intervals can be computed 
directly in the Minitab regression routine.

The regression output is shown in Figure 12.12. The predicted value, yn = 0.39, and 
its standard deviation, 0.0277, are presented, along with the confidence interval and the 
prediction interval. The confidence interval—CI—provides an interval for the expected 
value of Y on the linear function defined by the values of the independent variables. This 
interval is a function of the standard error of the regression model, the distance that the 
xj values are from their individual sample means, and the correlation between the xj vari-
ables used to fit the model. The prediction interval—PI—provides an interval for a single 
observed value. Thus, it includes the variability associated with the expected value plus 
the variability of a single point about the predicted value.

EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

Basic Exercise
 12.43 Given the estimated multiple regression equation

yn = 6 + 5x1 + 4x2 + 7x3 + 8x4

  what is the predicted value of Y in each case?

a. x1 = 10, x2 = 23, x3 = 9, and x4 = 12
b. x1 = 23, x2 = 18, x3 = 10, and x4 = 11
c. x1 = 10, x2 = 23, x3 = 9, and x4 = 12
d. x1 = -10, x2 = 13, x3 = -8, and x4 = -16

Application Exercises
 12.44 The following model was fitted to a sample of 25 students 

using data obtained at the end of their freshman year in 
college. The aim was to explain students’ weight gains:

y = b0 + b1x1 + b2x2 + b3x3 + e
  where

  y =  weight gained, in pounds, during freshman  
year

x1 = average number of meals eaten per week
x2 =  average number of hours of exercise per week
x3 = average number of beers consumed per week

  The least squares estimates of the regression param-
eters were as follows:

b0 = 7.35 b1 = 0.653 b2 = -1.345 b3 = 0.613

  Predict the weight gain for a freshman who eats an 
average of 20 meals per week, exercises an average 
of 10 hours per week, and consumes an average of 6 
beers per week.

 12.45 The following model was fitted to a sample of 30 fam-
ilies in order to explain household milk consumption:

y = b0 + b1x1 + b2x2 + e
  where

  y = milk consumption, in quarts per week
x1 = weekly income, in hundreds of dollars
x2 = family size

  The least squares estimates of the regression param-
eters were as follows:

b0 = -0.025 b1 = 0.052 b2 = 1.14

  Predict the weekly milk consumption of a family of 
four with an income of $600 per week.

 12.46 An aircraft company wanted to predict the number of 
worker-hours necessary to finish the design of a new 
plane. Relevant explanatory variables were thought 
to be the plane’s top speed, its weight, and the num-
ber of parts it had in common with other models 
built by the company. A sample of 27 of the compa-
ny’s planes was taken, and the following model was 
estimated:

y = b0 + b1x1 + b2x2 + b3x3 + e

  where

  y = design effort, in millions of worker-hours
x1 = plane’s top speed, in miles per hour
x2 = plane’s weight, in tons
x3 =  percentage number of parts in common with 

other models

  The estimated regression coefficients were as follows:

b1 = 0.661 b2 = 0.065 b3 = -0.018

  and the estimated intercept was 2.0.
Predict design effort for a plane with a top speed 

of Mach 1.0, weighing 7 tons, and having 50% of its 
parts in common with other models.

 12.47 A real estate agent hypothesizes that in her town the 
selling price of a house in dollars (y) depends on its 
size in square feet of floor space 1x12, the lot size in 
square feet 1x22, the number of bedrooms 1x32, and 
the number of bathrooms 1x42. For a random sample 
of 20 house sales, the following least squares esti-
mated model was obtained:

 yn = 1998.5 + 22.352x1 + 1.4686x2 + 6767.3x3 + 2701.1x412.55432   11.44922   11820.82   11996.22
  R2 = 0.9843
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  The numbers in parentheses under the coefficients 
are the estimated coefficient standard errors.

a. Interpret in the context of this model the esti-
mated coefficient on x2.

b. Interpret the coefficient of determination.
c. Assuming that the model is correctly specified, 

test, at the 5% level against the appropriate one-
sided alternative, the null hypothesis that, all else 
being equal, selling price does not depend on 
number of bathrooms.

d. Estimate the selling price of a house with 1,250 
square feet of floor space, a lot of 4,700 square feet, 
3  bedrooms, and 1 bathroom.

 12.48 Transportation Research, Inc., has asked you to 
prepare a multiple regression equation to esti-

mate the effect of variables on fuel economy. The data 
for this study are contained in the data file Motors, 

and the dependent variable is miles per gallon—
milpgal—as established by the Department of Trans-
portation certification.

a. Prepare a regression equation that uses vehicle 
horsepower—horsepower—and vehicle weight—
weight—as independent variables. Determine 
the predicted value, the confidence interval of the 
prediction, and the prediction interval when the 
horsepower is 140 and the vehicle weight is 3,000 
pounds.

b. Prepare a second regression equation that adds the 
number of cylinders—cylinder—as an independent 
variable to the equation from part a. Determine 
the predicted value, the confidence interval of the 
prediction, and the prediction interval when the 
horsepower is 140, the number of cylinders is 6 and 
the vehicle weight is 3,000 pounds.

12.7  TRANSFORMATIONS FOR NONLINEAR  
REGRESSION MODELS

We have seen how regression analysis can be used to estimate linear relationships that 
predict a dependent variable as a function of one or more independent variables. These 
applications are very important. However, in addition, there are a number of economic 
and business relationships that are not strictly linear. In this section we develop proce-
dures for modifying certain nonlinear model formats so that multiple regression proce-
dures can be used to estimate the model coefficients. Thus, our objective in Sections 12.7 
and 12.8 is to expand the range of problems that are adaptable to regression analysis. In 
this way we see that regression analysis has even broader applications.

By examining the least squares algorithm, we will see that, with careful manipulation 
of nonlinear models, it is possible to use least squares for a broader set of applied prob-
lems. The assumptions concerning independent variables in multiple regression are not 
very restrictive. Independent variables define points at which we measure a random vari-
able Y. We assume that there is a linear relationship between the levels of the independent 
variables Xj, where j = 1, c, K, and the expected value of the dependent variable Y. 
We can take advantage of this freedom to expand the set of models that can be estimated. 
Thus, we can move beyond linear models in our multiple regression applications. Three 
examples are shown in Figure 12.13:

Figure 12.13 Examples of Quadratic Functions
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 1. Supply functions may be nonlinear.
 2. The increase in total output with increases in the number of workers may become 

flatter as more workers are added.
 3. Average cost per unit produced is often minimized at an intermediate level of 

production.

Quadratic Transformations

We have spent considerable time developing regression analysis to estimate linear equa-
tions. There are also many processes that can best be represented by nonlinear equations. 
Total revenue has a quadratic relationship with price, with maximum revenue occurring 
at an intermediate price level if the demand function has a negative slope. In many cases 
the minimum production cost per unit occurs at an intermediate level of output, with cost 
per unit decreasing as we approach the minimum cost per unit and then increasing after 
passing the minimum unit cost level. We can model a number of these economic and busi-
ness relationships by using a quadratic model:

Y = b0 + b1X1 + b2X
2
1 + e

To estimate the coefficients of a quadratic model for applications such as these, we can 
transform or modify the variables, as shown in Equations 12.26 and 12.27. In this way 
a nonlinear quadratic model is converted to a model that is linear in a modified set of 
variables.

Quadratic Model Transformations
The quadratic function

 Y = b0 + b1X1 + b2X
2
1 + e (12.26)

can be transformed into a linear multiple regression model by defining new 
variables:

 z1 = x1

 z2 = x2
1

and then specifying the model as

 yi = b0 + b1z1i + b2z2i + ei (12.27)

which is linear in the transformed variables. Transformed quadratic variables 
can be combined with other variables in a multiple regression model. Thus, 
we can fit a multiple quadratic regression using transformed variables. The 
goal is to find models that are linear in other mathematical forms of a variable.

By transforming the variables, we can estimate a linear multiple regression model and 
use the results as a nonlinear model. Inference procedures for transformed quadratic mod-
els are the same as those that we have previously developed for linear models. In this way 
we avoid confusion that would result if different statistical procedures were used for linear 
versus quadratic models. The coefficients must be combined for interpretation. Thus, if we 
have a quadratic model, then the effect of a variable, X, is indicated by the coefficients of 
both the linear and the quadratic terms. We can also perform a simple hypothesis test to de-
termine if a quadratic model is an improvement over a linear model. The Z2 or X2

1 variable 
is merely an additional variable whose coefficient can be tested—H0 : b2 = 0—using the 
conditional Student’s t or F statistic. If a quadratic model fits the data better than a linear 
model, then the coefficient of the quadratic variable—Z2 = X2

1—will be significantly differ-
ent from 0. The same approach applies if we have variables such as Z3 = X3

1 or Z4 = X2
1X2.
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Example 12.11 Production Costs (Quadratic Model 
Estimation)

Arnold Sorenson, production manager of New Frontiers Instruments, Inc., was inter-
ested in estimating the mathematical relationship between the number of electronic 
assemblies produced during an 8-hour shift and the average cost per assembly. This 
function would then be used to estimate cost for various production order bids and to 
determine the production level that would minimize average cost. Data are found in 
the data file Production Cost.

Solution Arnold collected data from nine shifts during which the number of 
assemblies ranged from 100 to 900. In addition, he obtained the average cost per unit 
for those days from the accounting department. These data are presented in a scatter 
plot prepared using Excel, shown in Figure 12.14. As a result of his study of economics 
and his experience, Arnold suspected that the function might be quadratic with an 
intermediate minimum average cost. He designed his analysis to consider both a linear 
and a quadratic average production cost function.

Figure 12.14 Mean Production Cost as a Function of Number of Units
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Figure 12.15 is the simple regression of cost as a linear function of the number of 
units. We see that the linear relationship is almost flat, indicating no linear relationship 

Figure 12.15 Linear Regression Average Cost on Number of Units

Regression Analysis: Mean Cost per Unit versus Number of Units

The regression equation is
Mean Cost per Unit = 4.43 - 0.000855 Number of Units

Predictor
Constant
Number of Units

Coef
4.4330

-0.0008547

SE Coef
0.3994

0.0007029

T
11.10
-1.22

P
0.000
0.263

S = 0.547614 R-Sq = 17.4% R-Sq(adj) = 5.6%

Analysis of Variance

Source
Regression
Residual Error
Total

DF
1
7
8

SS
0.4433
2.0992
2.5425

MS
0.4433
0.2999

F
1.48

P
0.263
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Logarithmic Transformations

A number of economic relationships can be modeled by exponential functions. For exam-
ple, if the percent change in quantity of goods sold changes linearly in response to percent 
changes in the price, then the demand function will have an exponential form:

Q = b0P
b1

where Q is the quantity demanded and P is the price per unit. Exponential demand 
functions have constant elasticity, and, thus, a 1% change in price results in the same 
percent change in quantity demanded for all price levels. In contrast, linear de-
mand models indicate that a unit change in the price variable will result in the same 
change in quantity demanded for all price levels. Exponential demand models are 
widely used in the analysis of market behavior. One important feature of exponen-
tial models is that the coefficient b1 is the constant elasticity, e, of demand Q with 
respect to price P:

e =
0Q>Q
0P>P = b1

This result is developed in most microeconomics textbooks. Exponential model coeffi-
cients are estimated using logarithmic transformations, as shown in Equation 12.29.

The logarithmic transformation assumes that the random error term multiplies the 
true value of Y to obtain the observed value. Thus, in the exponential model the error is 
a percentage of the true value, and the variance of the error distribution increases with 
increases in Y. If this result is not true, the log transformation is not correct. In that case a 
much more complex nonlinear estimation technique must be used. Those techniques are 
considerably beyond the scope of this book.

between average cost and number of units produced. If Arnold had simply used this re-
lationship, he would have been led to serious errors in his cost-estimation procedures.

Figure 12.16 presents the quadratic regression that shows mean cost per unit as a 
nonlinear function of the number of units produced. Note that b2 is different from 0 
and thus should be included in the model. In addition, note that R2 for the quadratic 
model is 0.962 compared to 0.174 for the linear model. By using the quadratic model, 
Arnold has produced a substantially more useful mean cost model.

Figure 12.16 Quadratic Model Analysis for Average Cost on Number of Units

Regression Analysis: Mean Cost per Unit versus Number of Units,
No Units Squared

The regression equation is
Mean Cost per Unit = 5.91 - 0.00884 Number of Units + 0.000008
No Units Squared

Predictor
Constant
Number of Units
No Units Squared

Coef
5.9084

-0.0088415
-0.00000793

SE Coef
0.1614

0.0007344
0.00000071

T
36.60
-12.04
11.15

P
0.000
0.000
0.000

S = 0.126875 R-Sq = 96.2% R-Sq(adj) = 94.9%

Analysis of Variance

Source
Regression
Residual Error
Total

DF
2
6
8

SS
2.4459
0.0966
2.5425

MS
1.2230
0.0161

F
75.97

P
0.000
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Another important application of exponential models is the Cobb-Douglas produc-
tion function, which has the form

Q = b0L
b1Kb2

where Q is the quantity produced, L is the amount of labor used, and K is the amount 
of capital. b1 and b2 are the relative contributions of changes in labor and changes in 
capital to changes in quantity produced. In one special case the sum of the coefficients is 
restricted to 1, and we have constant returns to scale. In that case b1 and b2 are the percent 
contributions of labor and capital to productivity increase.

The estimation of the coefficients when their sum is equal to 1 is one example of re-
stricted estimation in regression models. Equation 12.29 is modified by the restriction

b1 + b2 = 1

and, therefore, substitution of the form

b2 = 1 - b1

is included, and the new estimation equation becomes

 log1Y2 = log1b02 + b1 log1X12 + 11 - b12 log1X22 + log1e2
 log1Y2 - log1X22 = log1b02 + b13 log1X12 - log1X224 + log1e2

  loga Y
X2
b = log1b02 + b1 logaX1

X2
b + log1e2  (12.30)

Thus, we see that the b1 coefficient is obtained by regressing log1Y>X22 on log1X1>X22. 
Then, b2 is computed by subtracting b1 from 1.0.

All quality computer-based statistical packages can easily compute the required trans-
formations of the data for logarithmic models. In the following example, we used Minitab, 
but similar results could be obtained using many other packages.

Exponential Model Transformations
Coefficients for exponential models of the form

 Y = b0X
b1
1 Xb2

2 e (12.28)

can be estimated by first taking the logarithm of both sides in order to obtain 
an equation that is linear in the logarithms of the variables:

 log1Y2 = log1b02 + b1 log1X12 + b2 log1X22 + log1e2  (12.29)

Using this form, we can regress the logarithm of Y on the logarithms of the two 
X variables and obtain estimates for the coefficients b1 and b2 directly from the 
regression analysis. Since the coefficients are elasticities, many economists use 
this model form where they can assume that elasticities are constant over the 
range of the data. Note that this estimation procedure requires that the random 
errors are multiplicative in the original exponential model. Thus, the error term, 
e, is expressed as a percentage increase or decrease instead of by the addition 
or subtraction of a random error, as we have seen for linear regression models.

Example 12.12 Production Function for Minong Boat 
Works (Exponential Model Estimation)

The Minong Boat Works began producing small fishing boats in the early 1970s for 
northern Wisconsin fishermen. The owners developed a low-cost production method 
for producing quality boats. As a result, they have experienced increased demand over 
the years. The production method uses a workstation with a set of jigs and power tools 
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that can be operated by a varying number of workers. Over the years the number of 
workstations (units of capital) has grown from 1 to 20 to meet the demand for boats. At 
the same time the workforce has grown from 2 to 25 full-time workers. The owners are 
now considering expanding their sales to potential markets in Michigan and Minne-
sota. Therefore, they need to decide how much to increase the number of workstations 
and number of workers to achieve various levels of increased production.

Solution The owners’ daughter, a senior economics major, suggests that they 
estimate a restricted Cobb-Douglas production function using data from previous 
years of operation. She explains that this production function will enable them to 
predict the number of boats produced for different levels of workstations and workers. 
The owners agree that such an analysis is a good idea and ask their daughter to prepare 
the analysis. She begins the analysis by collecting the production data, contained in 
the data file Boat Production, from old company records. To obtain the coefficient 
estimates, she first must transform the original model specification to a form that can be 
estimated by least squares regression. The Cobb-Douglas production function model is

Y = b0K
b1Lb2

with the restriction

b1 = 1 - b2

where Y is the number of boats produced each year, K is the number of production sta-
tions (units of capital) used each year, and L is the number of workers used each year.

The restricted Cobb-Douglas production function was transformed to the estima-
tion form,

lnaY
K
b = ln1b02 + b2 lna L

K
b

for least squares estimation.
The regression model estimate is shown in Figure 12.17 with the resulting equation:

 lnaY
K
b = 3.02 + 0.845 lna L

K
b  (12.31)

Figure 12.17 Restricted Production Function Regression Analysis (Minitab Output)

The regression equation is
logbotunit = 3.02 + 0.845 logworunit

Predictor
Constant
logworun

Coef
3.02325
0.84479

SE Coef
0.04387
0.09062

T
68.92
9.32

P
0.000
0.000

S = 0.1105 R-Sq = 79.8% R-Sq(adj) = 78.9%

Analysis of Variance

Source
Regression
Residual Error
Total

DF
1
22
23

SS
1.0618
0.2688
1.3306

MS
1.0618
0.0122

F
86.90

P
0.000

From this result we see that the estimated model coefficient, b2, is 0.845. Therefore, 
b1 = 1 - 0.845 = 0.155. Finally, ln1b02 = 3.02. This analysis shows that 84.5% of the 
changes in production comes from changes in labor and 15.5% comes from capital. After ap-
plying the appropriate algebraic transformations, the production function model is as follows:

 Y = 20.49K0.155L0.845 (12.32)
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This production function can be used as a tool for predicting the expected output ob-
tained by using various levels of capital and labor. In this example the model devel-
oped as Equation 12.32 would be used to compute output beyond the range of the 
data used to estimate the model coefficients. Thus in order to use this model, the own-
ers of Minong Boat Works must assume that output will continue to increase at the 
same rate with labor and capital expansion. They strongly believe that this is a correct 
assumption.

Figure 12.18 presents a comparison of the observed number of boats and the fore-
cast number of boats from the transformed regression equation. The forecast number of 
boats was computed using Equation 12.32. That analysis also indicates that the R2 for 
the regression of the number of boats on the predicted number of boats is 0.987. This 
R2 can be interpreted just as you would an R2 for any linear regression model, and, 
thus, we see that the predicted number of boats provides a good fit for the observed 
boat production data. The R2 for the transformed regression data in Figure 12.17 cannot 
be easily interpreted as an indicator of the relationship between the number of boats 
produced and the independent variables of labor and capital because the units are in 
logarithms of ratios.

Figure 12.18 Comparison of Observed and Predicted Production

EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

Basic Exercises
 12.49 Consider the following two equations estimated us-

ing the procedures developed in this section:
 i. yi = 4x1.5

ii. yi = 1 + 2xi + 2x2
i

  Compute values of yi when xi = 1, 2, 4, 6, 8, 10.
 12.50 Consider the following two equations estimated us-

ing the procedures developed in this section:
 i. yi = 4x1.8

ii. yi = 1 + 2xi + 2x2
i

  Compute values of yi when xi = 1, 2, 4, 6, 8, 10.

 12.51 Consider the following two equations estimated us-
ing the procedures developed in this section:

 i. yi = 4x1.5

ii. yi = 1 + 2xi + 1.7 x2
i

  Compute values of yi when xi = 1, 2, 4, 6, 8, 10.
 12.52 Consider the following two equations estimated us-

ing the procedures developed in this section.

 i. yi = 3x1.2

ii. yi = 1 + 5xi - 1.5x2
i

  Compute values of yi when xi = 1, 2, 4, 6, 8, 10.
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Application Exercises
 12.53 Describe an example from your experience in which 

a quadratic model would be better than a linear 
model.

 12.54 John Swanson, president of Market Research Inc., 
has asked you to estimate the coefficients of the 
model

Y = b0 + b1X1 + b2X
2
1 + b3X2

  where Y is the expected sales of office supplies for 
a large retail distributor of office supplies, X1 is 
the total disposable income of residents within 
5 miles of the store, and X2  is the total number 
of persons employed in information-based busi-
nesses within 5 miles of the store. Recent work by 
a national consulting firm has concluded that the 
coefficients in the model must have the following 
restriction:

b1 + b2 = 2

  Describe how you would estimate the model coeffi-
cients using least squares.

 12.55 In a study of the determinants of household expen-
ditures on vacation travel, data were obtained from 
a sample of 2,246 households (Hagermann 1981). The 
model estimated was

 log y = -4.054 + 1.1556 log x1 - 0.4408 log x2
      10.05462    10.04902

 R2 = .168

where

 y = expenditure on vacation travel
x1 = total annual consumption expenditure
x2 = number of members in household

The numbers in parentheses under the coefficients 
are the estimated coefficient standard errors.

a. Interpret the estimated regression coefficients.
b. Interpret the coefficient of determination.
c. All else being equal, find a 95% confidence 

interval for the percentage increase in ex-
penditures on vacation travel resulting from 
a 1% increase in total annual consumption 
expenditures.

d. Assuming that the model is correctly specified, test, 
at the 1% significance level, the null hypothesis that, 
all else being equal, the number of members in a 
household does not affect expenditures on vacation 
travel against the alternative that the greater the 
number of household members, the lower the vaca-
tion travel expenditures.

 12.56 The following model was estimated for a sample 
of 322 supermarkets in large metropolitan areas 
( Macdonald and Nelson 1991):

 log1y2 = 2.921 + 0.680 log1x210.0772
 R2 = 0.19

where
y = store size
x =  median income in zip-code area in which store 

is located

The number in parentheses under the coefficient is 
the estimated coefficient standard error.

a. Interpret the estimated coefficient on log x.
b. Test the null hypothesis that income has no im-

pact on store size against the alternative that 
higher income tends to be associated with larger 
store size.

 12.57 An agricultural economist believes that the amount 
of beef consumed (y) in tons in a year in the United 
States depends on the price of beef 1x12 in dollars per 
pound, the price of pork 1x22 in dollars per pound, 
the price of chicken 1x32 in dollars per pound, and 
the income per household 1x42 in thousands of dol-
lars. The following sample regression was obtained 
through least squares, using 30 annual observations:

 log y = -0.024 - 0.52910.1682  log x1 + 0.21710.1032  log x2 + 0.19310.1062  log x3

+ 0.4161.1632  log x4     R2 = 0.683

The numbers in parentheses under the coefficients 
are the estimated coefficient standard errors.

a. Interpret the coefficient on log x1.
b. Interpret the coefficient on log x2.
c. Test, at the 1% significance level, the null hypoth-

esis that the coefficient on log x4 in the population 
regression is 0 against the alternative that it is 
positive.

d. Test the null hypothesis that the four variables 1 log x1, log x2, log x3, log x42 do not, as a set, have 
any linear influence on log y.

e. The economist is also concerned that, over the 
years, the increasing awareness of the effects of 
heavy red-meat consumption on health may have 
influenced the demand for beef. If this is indeed 
the case, how would this influence your view of 
the original estimated regression?

 12.58 You have been asked to develop an exponential pro-
duction function—Cobb-Douglas form—that will 
predict the number of microprocessors produced 
by a manufacturer, Y, as a function of the units of 
capital, X1; the units of labor, X2; and the number of 
computer science staff involved in basic research, X3. 
Specify the model form and then carefully and com-
pletely indicate how you would estimate the coeffi-
cients. Do this first using an unrestricted model and 
then a second time including the restriction that the 
coefficients of the three variables should sum to 1.

 12.59 Consider the following nonlinear model with multi-
plicative errors:

Y = b0X
b1
1 Xb2

2 Xb3
3 Xb4

4 e

b1 + b2 = 1

b3 + b4 = 1
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a. Show how you would obtain the coefficient esti-
mates. Coefficient restrictions must be satisfied. 
Show all your work and explain what you are 
doing.

b. What is the constant elasticity for Y versus X4? 
Show all your work.

The following exercises require the use of a computer.

 12.60 Angelica Chandra, president of Benefits Re-
search, Inc., has asked you to study the salary 

structure of her firm. Benefits Research provides 
consulting and management for employee health 
care and retirement programs. Its clients are mid- to 
large-sized firms. As a first step you are asked to es-
timate a regression model that estimates expected 
salary as a function of years of experience in the 

firm. You are to consider linear, quadratic, and cu-
bic models and determine which one would be most 
suitable. Estimate appropriate regression models 
and write a short report that recommends the best 
model. Use the data contained in the file Benefits 
Research.

 12.61 The data file German Imports shows Ger-
man real imports (y), real private consump-

tion 1x12, and real exchange rate 1x22, in terms of 
U.S. dollars per mark, over a period of 22 years. 
Estimate the model

log yt = b0 + b1 log x1t + b2 log x2t + ei

  and write a report on your findings.

12.8 DUMMY VARIABLES FOR REGRESSION MODELS

In the discussion of multiple regression up to this point, we have assumed that the in-
dependent variables, xj, have existed over a range and contained many different values. 
However, in the multiple regression assumptions the only restriction on the indepen-
dent variables is that they are fixed values. Thus, we could have an independent variable 
that took on only two values: xj = 0 and xj = 1. This structure is commonly defined as 
a dummy variable, and we will see that it provides a valuable tool for applying multiple 
regression to situations involving categorical variables. One important example is a lin-
ear function that shifts in response to some influence. Consider first a simple regression 
equation:

Y = b0 + b1X1

Now, suppose that we introduce a dummy variable, X2, that has values 0 and 1 and that 
the resulting equation is as follows:

Y = b0 + b1X1 + b2X2

When X2 = 0 in this equation, the constant is b0, but when X2 = 1, the constant is 
b0 + b2. Thus, we see that the dummy variable shifts the linear relationship between Y 
and X1 by the value of the coefficient b2. In this way we can represent the effect of shifts in 
our regression equation. Dummy variables are also called indicator variables. We begin our 
discussion with an example of an important application.

Example 12.13 Wage Discrimination Analysis 
(Dummy Variable Model Estimation)

The president of Investors, Ltd., wants to determine if there is any evidence of wage 
discrimination in the salaries of male and female financial analysts. Figure 12.19 
presents an example of annual wages versus years of experience for the analysts. See 
the data file Gender and Salary.
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Figure 12.19 Example of Data Pattern Indicating Wage Discrimination

Solution Examining the data and the graph, we see two different subsets of salaries, 
and that salaries for males appears to be uniformly higher across the years of experience.

This problem can be analyzed by estimating a multiple regression model of salary, 
Y, versus years of experience, X1, with a second variable, X2, that is coded as follows:

 0  Female employees
 1  Male employees

The resulting multiple regression model,

yn = b0 + b1x1 + b2x2

can be estimated using the procedures we have learned, noting that the coefficient b1 
is an estimate of the expected annual increase in salary per year of experience and b2 
is the shift in mean salary from male to female employees. If b2 is positive, we have an 
indication that male salaries are uniformly higher.

Figure 12.20 shows the multiple regression analysis from Minitab for this problem. 
From this analysis we see that the coefficient of x2—gender—has a Student’s t statistic 

Figure 12.20 Regression Analysis for Wage Discrimination Example Regression 
Analysis: Annual Salary versus Gender (X2), Years Experience

The regression equation is
Annual Salary (Y) = 23608 + 14684 Gender (X2) 0=Female 1=Male
      + 4076 Years Experience (X1)

Predictor
Constant
Gender (X2) 0=Female 1=Male

Coef
23608

14683.7
4076.5

SE Coef
1434
987.0
121.3

T
16.46
14.88
33.61

P
0.000
0.000
0.000

S = 1709.48 R-Sq = 99.3% R-Sq(adj) = 99.2%

Analysis of Variance

Source
Regression
Residual Error
Total

DF
2
9
11

SS
3948240796

26300913
3974541710

MS
1974120398

2922324

F
675.53

P
0.000

Year Experience (X1)
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Examples such as the previous one have wide application to a number of problems, 
including the following:

 1. The relationship between the number of units sold and the price is likely to shift if a 
new competitor moves into the market.

 2. The relationship between aggregate consumption and aggregate disposable income 
may shift in time of war or other major national event.

 3. The relationship between total output and number of workers may shift as the result 
of the introduction of new production technology.

 4. The demand function for a product may shift because of a new advertising campaign 
or a news release relating to the product.

The dummy variable procedure is summarized as follows.

equal to 14.88 and a p-value of 0, which leads us to reject the null hypothesis that the 
coefficient is equal to 0. This result indicates that male salaries are significantly higher. 
We also see that b1 = 4,076.5, indicating that the expected value for the annual increase 
is $4,076.50 and that b2 = 14,683.7, indicating that the male salaries are, on average, 
$14,683.70 higher. Analyses such as these have been used successfully in a number of 
wage-discrimination lawsuits. As a result, most companies perform a similar analysis 
to determine if there is any evidence of salary discrimination.

Dummy Variable Regression Analysis
The relationship between Y and X1,

Y = b0 + b1X1 + e

can shift in response to a changed condition. The shift effect can be estimated 
by using a dummy variable that has values of 0 (condition not present) and 1 
(condition present). As shown in Figure 12.19, all the observations from the 
upper set of data points have dummy variable x2 = 1, and the observations for 
the lower points have x2 = 0. In these cases the relationship between Y and X1 
is specified by the multiple regression model:

 yn = b0 + b2x2 + b1x1 (12.33)

The coefficient b2 represents the shift of the function between the upper and 
lower sets of points in Figure 12.19. The functions for each set of points are

yn = b0 + bx1 when x2 = 0

and

yn = 1b0 + b2x22 + b1x1 when x2 = 1

In the first function the constant is b0, whereas in the second the constant is 
b0 + b2. In Chapter 13 we show how dummy variables can be used to analyze 
problems with more than two discrete categories.

This simple specification of the regression model is a very powerful tool for problems 
that involve a shift of the linear function by identifiable categorical factors. In addition, 
the multiple regression structure provides a direct procedure for performing a hypothesis 
test, as we did in Example 12.13. The hypothesis test is as follows:

H0 : b2 = 0 �b1 � 0

H1 : b2 � 0 �b1 � 0



 12.8 Dummy Variables for Regression Models 525

Rejection of the null hypothesis, H0, leads to the conclusion that the constant is different 
between the two subsets of data. In Example 12.13 we saw that this difference in the con-
stant led to the conclusion that there was a significant difference in wages between the 
male and female subgroups after the effect of years of experience has been removed.

Differences in Slope

We can also use dummy variables to model and test for differences in the slope coefficient by 
adding an interaction variable. Figure 12.21 presents a typical example. To test for both differ-
ences in the constant and differences in the slope, we use a more complex regression model.

Dummy Variable Regression for Differences in Slope
To determine if there are significant differences in slopes between two discrete 
conditions, we need to expand our regression model to a more complex form:

 Y = b0 + b2X2 + 1b1 + b3X22X1 (12.34)

Now, we see that the slope coefficient of X1 contains two components, b1 and 
b3X2. When X2 equals 0, the slope is the usual b1. However, when X2 equals 1, the 
slope is equal to the algebraic sum of b1 + b3. To estimate the model, we actu-
ally need to create a new set of transformed variables that are linear. There-
fore, the model actually used for estimation is as follows:

 yn = b0 + b2x2 + b1x1 + b3x2x1 (12.35)

The resulting regression model is now linear with three variables. The new 
variable, x1x2, is often called an interaction variable. Note that when the 
dummy variable x2 = 0, this variable has a value of 0, but when x2 = 1, this 
variable has the value of x1. The coefficient b3 is an estimate of the difference 
in the coefficient of x1 when x2 = 1 compared to x2 = 0. Thus, the Student’s t 
statistic for b3 can be used to test the following hypotheses:

 H0 : b3 = 0 �  b1 � 0, b2 � 0

 H1 : b3 � 0 �  b1 � 0, b2 � 0

If we reject the null hypothesis, we conclude that there is a difference in the 
slope coefficient for the two subgroups. In many cases we will be interested in 
both the difference in the constant and the difference in the slope and will test 
both of the hypotheses presented in this section.

Example 12.14 Salary Model for Systems, Inc. 
(Dummy Variable Model Estimation)

The president of Systems, Inc., is interested in knowing if the annual salary increases for 
the female engineers in the company have maintained the same level as those for the male 
engineers. There have been some complaints from both male and female engineers that the 
salaries for female engineers have not increased at the same rate as those for male engineers.

Solution The scatter plot and regression analysis output are shown in Figure 12.21. 
The scatter plot suggests that the slope is higher for the upper subgroup, representing 
male engineers. A multiple regression analysis was run to estimate the effect of experience 
and gender on annual salary. This multiple regression analysis can be used to test the 
hypothesis that the rates of increase are the same for both subgroups of engineers. From this 
analysis we see that the gender-experience variable, which is an estimate of the difference 
between male and female annual salary increases, has a coefficient of 2,487, a Student’s 
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EXERCISES

t statistic of 18.66, and a p-value of 0. Thus we estimate that the annual salary increases 
for males are $2,487 greater than the increases for females. We reject the null hypothesis 
that, as their experience increases, the salaries of both male and female engineers have 
increased at the same rate. In addition we see that the gender variable has a coefficient of 
4,806 with a Student’s t statistic of 4.04 indicating that on average male salaries are $4,806 
higher. Thus, it will be important to take steps to deal with the salary discrimination that is 
evident in the data. The data are stored in the file Gender and Salary.

Figure 12.21 Regression Analysis for Annual Salary versus Experience and Gender
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Scatterplot of Salary vs years experience
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Regression Analysis: Salary versus years experi, Gender, gender-exper

The regression equation is
Salary = 36990 + 4216 years experience + 4806 Gender + 2487 gender-experience

Predictor             Coef  SE Coef      T      P
Constant           36989.6    827.2  44.72  0.000
years experience   4215.79    92.15  45.75  0.000
Gender                4806     1188   4.04  0.000
gender-experience   2487.1    133.3  18.66  0.000

S = 1964.98   R-Sq = 99.6%   R-Sq(adj) = 99.6%

Analysis of Variance

Source          DF           SS           MS        F      P
Regression       3  32062830877  10687610292  2768.00  0.000
Residual Error  34    131278408      3861130
Total           37  32194109284

S
al

ar
y

50000

12 1484

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

Basic Exercises
 12.62 What is the model constant when the dummy vari-

able equals 1 in the following equations, where x1 is a 
continuous variable and x2 is a dummy variable with 
a value of 0 or 1?

a. yn = 4 + 8x1 + 3x2
b. yn = 7 + 6x1 + 5x2
c. yn = 4 + 8x1 + 3x2 + 4x1x2

 12.63 What are the model constant and the slope coeffi-
cient of x1 when the dummy variable equals 1 in 
the following equations, where x1 is a continuous 
variable and x2 is a dummy variable with a value of 
0 or 1?

a. yn = 4 + 9x1 + 1.78x2 + 3.09x1x2
b. yn = -3 + 7x1 + 4.15x2 + 2.51x1x2
c. yn = 10 + 5x1 + 3.67x2 + 3.98x1x2
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Application Exercises
 12.64 The following model was fitted to observations from 

1972 to 1979 in an attempt to explain oil-pricing behavior:

yn = 37x1 + 5.22x210.0292       10.502
  where

 yn =  difference between price in the current year and 
price in the previous year, in dollars per barrel

x1 =  difference between spot price in the current 
year and spot price in the previous year

x2 =  dummy variable taking the value 1 in 1974 and 0 
otherwise to represent the specific effect of the 
oil embargo of that year

The numbers in parentheses under the coefficients are 
the estimated coefficient standard errors.

Interpret verbally and graphically the estimated 
coefficient on the dummy variable.

 12.65 The following model was fitted to explain the selling 
prices of condominiums in a sample of 815 sales:

 yn = -1264 + 48.18x1 + 3382x2 - 1859x3 + 3219x4
 10.912 15152 14882 19472 17682
 + 2005x5     R2 = 0.86
 17682
where

 yn = selling price of condo, in dollars
 x1 = square footage of living area
 x2 = size of garage, in number of cars
 x3 = age of condo, in years
 x4 =  dummy variable taking the value 1 if the 

condo has a fireplace and 0 otherwise
 x5 =  dummy variable taking the value 1 if the condo 

has hardwood floors and 0 if it has vinyl floors

a. Interpret the estimated coefficient of x4.
b. Interpret the estimated coefficient of x5.
c. Find a 95% confidence interval for the impact of 

a fireplace on selling price, all other things being 
equal.

d. Test the null hypothesis that type of flooring has no 
impact on selling price against the alternative that, 
all other things equal, condos with hardwood floors 
have a higher selling price than those with vinyl 
flooring.

 12.66 The following model was fitted to data on 32 insur-
ance companies:

yn = 7.62 - 0.16x1 + 1.23x2  R2 = 0.37
 10.0082 10.4962
where

 yn = price-earnings ratio
 x1 =  size of insurance company assets, in billions 

of dollars
 x2 =  dummy variable taking the value 1 for regional 

companies and 0 for national companies

  The numbers in parentheses under the coefficients are 
the estimated coefficient standard errors.

a. Interpret the estimated coefficient on the dummy 
variable.

b. Test against a two-sided alternative. the null hy-
pothesis that the true coefficient on the dummy 
variable is 0.

c. Test, at the 5% level, the null hypothesis 
b1 = b2 = 0, and interpret your result.

 12.67 A business school dean wanted to assess the impor-
tance of factors that might help in predicting success 
in law school. For a random sample of 50 students, 
data were obtained when students graduated from 
law school, and the following model was fitted:

y = a + b1x1 + b2x2 + b3x3 + e

where

 y =  score reflecting overall performance while in 
law school

 x1 = undergraduate grade point average
 x2 = score on GMAT
 x3 =  dummy variable taking the value 1 if a stu-

dent’s letters of recommendation are unusually 
strong and 0 otherwise

  Use the portion of the computer output from the esti-
mated regression shown here to write a report sum-
marizing the findings of this study.

 
Source

 
DF

Sum of 
Squares

Mean 
Square

F 
Value

R-
Square

Model  3  641.04 212.68 8.48 0.356

Error 46 1,159.66  25.21

Total 49 1,800.70

 
Parameter

 
Estimate

t for H0 :
bj = 0

Std. Error of  
Estimate

Intercept  6.512

X1  3.502 1.45 2.419

X2  0.491 4.59 0.107

X3 10.327 2.45 4.213

 12.68 The following model was fitted to data on 50 states:

yn = 13,472 + 547x1 + 5.48x2 + 493x3 + 32.7x4
  1124.32 11.8582 1208.92 12342 
 + 5,793x5 - 3,100x6        R2 = .54
 12, 8972 11, 7612
where

 yn =   annual salary of the attorney general of the 
state

 x1 =   average annual salary of lawyers, in thou-
sands of dollars

 x2 =   number of bills enacted in previous legisla-
tive session

 x3 =   number of due process reviews by state 
courts that resulted in overturn of legislation 
in previous 40 years

 x4 =   length of term of the attorney general of the 
state

x5 =   dummy variable taking value 1 if justices of 
the state supreme court can be removed from 
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office by the governor, judicial review board, 
or majority vote of the supreme court and 0 
otherwise

x6 =   dummy variable taking value 1 if supreme 
court justices are elected on partisan ballots 
and 0 otherwise

  The numbers in parentheses under the coefficients are 
the estimated coefficient standard errors.

a. Interpret the estimated coefficient on the dummy 
variable x5.

b. Interpret the estimated coefficient on the dummy 
variable x6.

c. Test, at the 5% level, the null hypothesis that the 
true coefficient on the dummy variable x5 is 0 
against the alternative that it is positive.

d. Test, at the 5% level, the null hypothesis that the 
true coefficient on the dummy variable x6 is 0 
against the alternative that it is negative.

e. Find and interpret a 95% confidence level for the pa-
rameter b1.

 12.69 A consulting group offers courses in financial man-
agement for executives. At the end of these courses 
participants are asked to provide overall ratings of the 
value of the course. For a sample of 25 courses, the fol-
lowing regression was estimated by least squares:

yn = 42.97 + 0.38x1 + 0.52x2 - 0.08x3 + 6.21x4  R2 = 0.569
 10.292 10.212 10.112 10.3592

where

 yn = average rating by participants of the course
 x1 =   percentage of course time spent in group dis-

cussion sessions
 x2 =   money, in dollars, per course member spent 

on preparing course material
 x3 =  money, in dollars, per course member spent 

on food and drinks
 x4 =   dummy variable taking the value 1 if a visiting 

guest lecturer is brought in and 0 otherwise

  The numbers in parentheses under the coefficients are 
the estimated coefficient standard errors.

a. Interpret the estimated coefficient on x4.
b. Test, against the alternative that it is positive, the 

null hypothesis that the true coefficient on x4 is 0.
c. Interpret the coefficient of determination, and use 

it to test the null hypothesis that, taken as a group, 
the four independent variables do not linearly in-
fluence the dependent variable.

d. Find and interpret a 95% confidence interval for b2.

 12.70 A regression model was estimated to compare perfor-
mance of students taking a business statistics course—
either as a standard 14-week course or as an intensive 
3-week course. The following model was estimated 
from observations of 350 students (Van Scyoc and 
Gleason 1993):

yn = - .7052 + 1.4170x1 + 2.1624x2 + .8680x3 + 1.0845x410.45682 10.32872 1.43932 10.37662
+ 0.4694x5 + 0.0038x6 + 0.0484x7  R2 = 0.34410.06282 10.00942 10.07762

where
 yn =  score on a standardized test of understanding 

of statistics after taking the course
 x1 =  dummy variable taking the value 1 if the 

3-week course was taken and 0 if the 14-week 
course was taken

 x2 = student's grade point average
 x3 =  dummy variable taking the value 0 or 1, de-

pending on which of two teachers had taught 
the course

 x4 =  dummy variable taking the value 1 if the stu-
dent is male and 0 if female

 x5 =  score on a standardized test of understanding 
of mathematics before taking the course

 x6 =  number of semester credit hours the student 
had completed

 x7 = age of student

  The numbers in parentheses under the coefficients are 
the estimated coefficient standard errors.

Write a report discussing what can be learned 
from this fitted regression.

The following exercises will require a computer.

 12.71 In a survey of 27 undergraduates at the Uni-
versity of Illinois the accompanying results 

were obtained with grade point averages (y), the 
number of hours per week spent studying 1x12, the 
average number of hours spent preparing for tests 1x22, the number of hours per week spent in bars 1x32,  whether students take notes or mark high-
lights when reading texts 1x4 = 1 if yes, 0 if no2, and 
the average number of credit hours taken per se-
mester 1x52. Estimate the regression of grade point 
average on the five independent variables, and 
write a report on your findings. The data are in the 
data file Student Performance.

 12.72 You have been asked to develop a model to an-
alyze salary in a large business organization. 

The data for this model are stored in the file named 
Salorg; the variable names are self-explanatory.

a. Using the data in the file, develop a regression 
model that predicts salary as a function of the 
variables you select. Compute the conditional F 
and conditional t statistics for the coefficient of 
each predictor variable included in the model. 
Show all work and carefully explain your analysis 
process.

b. Test the hypothesis that female employees have 
a lower annual salary conditional on the vari-
ables in your model. The variable “Gender_1F” 
is coded 1 for female employees and 0 for male 
employees.

c. Test the hypothesis that the female employees have 
had a lower rate of salary increase conditional on the 
variables in the model developed for part b.
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12.9  MULTIPLE REGRESSION ANALYSIS APPLICATION 
PROCEDURE

In this section we present an extended case study that indicates how a statistical study 
would be conducted. Careful study of this example can provide guidance in using many 
of the analysis procedures developed in this chapter and previous chapters.

The objective in this study is to produce a multiple regression model to predict sales 
of cotton fabric. Data for the project are obtained from the data file Cotton. The variables 
in the data file are as follows:

Quarter Quarter of Year

year Year of observation
cottonq Quantity of cotton fabric produced
whoprice Wholesale price index
impfab Quantity of imported fabric
expfab Quantity of exported fabric

Model Specification

The first step in model development is the selection of an appropriate economic theory 
that provides a rationale for the model analysis. This process of identifying a set of likely 
predictor variables and the mathematical form of the model is known as model specifica-
tion. In this case the appropriate theory is based on that of economic demand models. Eco-
nomic theory indicates that price should have an important effect—increased price reduces 
the quantity demanded. In addition, there are likely to be other variables that influence 
the quantity of cotton demanded. We would anticipate that the quantity of cotton fabric 
 imported is likely to reduce the demand for domestic fabric and that the quantity of cotton 
fabric exported is likely to increase the demand for domestic fabric. In economic language, 
imports and  exports of fabric shift the demand function. Based on this analysis, our origi-
nal specification includes price with an expected negative coefficient, exported fabric with 
an expected positive coefficient, and imported fabric with an expected negative coefficient. 
All coefficients are initially specified as having linear effects. Thus, the model has the form

y = b0 + b1x1 + b2x2 + b3x3 + e

where x1 is the wholesale price, x2 is the quantity of imported fabric, and x3 is the quantity 
of exported fabric.

There is also the possibility that the quantity demanded varies over time, and, thus, 
the model should include the possibility of a time variable to reduce unexplained vari-
ability. For this analysis we wish to use a variable that represents time. Because time is 
indicated by a combination of year and quarter, we used the transformation

time = year + 0.25* quarter

to produce a new variable for time that is continuously increasing with each quarter.
The next step in the analysis is to prepare a statistical description of the variables 

and their relationships. We exclude year and quarter from this analysis because they 
have been replaced by time and their inclusion would only add confusion to the analy-
sis. We use Minitab to produce measures of central tendency and dispersion and also to 
obtain some understanding of the pattern of the observations. Figure 12.22 contains the 
output produced using Minitab. Examination of the mean, the standard deviation, and 
the minimum and maximum indicates the potential application region for the model. 
The estimated regression model always passes through the mean of the model vari-
ables. Predicted values of the dependent variable, cottonq, are usable over the range of 
the independent variables.

The next step is to examine the simple relationships between the variables, using both 
the correlation matrix and the matrix plots option. These should be examined together to 
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determine the strength of the linear relationships (correlations) and to determine the form 
of the relationships (matrix plot).

Figure 12.23 contains the correlation matrix for the variables in the study prepared using 
Minitab. The p-value shown with each correlation indicates the probability that the hypoth-
esis of 0 correlation between the two variables is true. Using our screening rule based on hy-
pothesis testing, we can conclude that a p-value less than 0.05 provides  evidence for a strong 
linear relationship between the two variables. Examining the first column, we see that there 
are strong linear relationships between cottonq and both whoprice and time. The variable 
expfab has a possible marginally significant simple relationship. A good rule to remember, as 
shown in Section 11.7, for examining correlation coefficients is that the absolute value of the 
correlation should be greater than 2 divided by the square root of the sample size, n. For this 
problem the screening value is 2>128 = 0.38.

The second task is to determine if there are strong simple relationships between the 
pairs of possible predictor variables. We see a very high correlation between time and 
whoprice and significant relationships between impfab and both time and whoprice. 
These high correlations will lead to a high variance for the coefficient estimators for both 
time and whoprice if they are both included as predictor variables.

Figure 12.22 

Minitab Output for 
Descriptive Statistics 
for Cotton Market 
Variables

Results for: Cotton.MtW
Descriptive Statistics: conttonq. whoprice, impfab, expfab, time

Variable
cottonq
whoprice
impfab
expfab
time

Variable
cottonq
whoprice
impfab
expfab
time

N
28
28
28
28
28

N*
0
0
0
0
0

Mean
1779.8
106.81

7.52
274.0
69.625

SE Mean
54.9
1.16
1.38
20.3
0.389

StDev
290.5
6.11
7.33
107.7
2.056

Minimum
1277.0
98.00
1.30
80.0

66.250

Q1
1535.3
100.45

2.78
190.5
67.813

Median
1762.5
107.40

4.85
277.1
69.625

Q3
2035.0
112.20
9.05
358.1
71.438

Maximum
2287.0
115.80
27.00
477.0

73.000

Figure 12.23 

Minitab Output: 
Correlations for 
Cotton Variables

Correlations: cottonq, whoprice, impfab, expfab, time

whoprice

impfab

expfab

time

Cell Contents: Pearson correlation
P–Value

–0.950
0.000

–0.392
0.039

–0.238
0.222

0.992
0.000

0.370
0.052

–0.285
0.142

0.291
0.133

–0.950
0.000

–0.439
0.019

cottonq whoprice impfab expfab

0.181
0.357

We can also examine the relationships between variables by using matrix plots shown 
in Figure 12.24. The individual scatter plots show the relationships between a number of 
different variables simultaneously. Thus, they provide a display format that is similar to a 
correlation matrix. The advantage of the scatter plot is that it includes all the data points. 
Thus, one can also see if there is a simple nonlinear relationship between variables and/
or if there is some strange grouping of observations. All variables except year and quarter 
are included in the same order as in the correlation matrix so that there is a direct com-
parison between the correlation matrix and the matrix plots.
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Note the correspondence between the correlations and the scatter plots. Both whoprice 
and time have strong negative linear relationships with cottonq. However, the strong posi-
tive  linear relationship between whoprice and time will have a major influence on the esti-
mated  coefficients, as shown in Section 12.2, and on the coefficient standard errors, as shown 
in  Section 12.4. There are no other strong simple relationships between the potential predictor 
variables. Neither imports nor exports are correlated with wholesale price, time, or each other.

Multiple Regression

The next step is to estimate the first multiple regression model. The economic theory for this 
analysis suggests that the quantity of cotton fabric produced should be inversely related 
to price and to the amount of fabric imported and directly related to the amount of fabric 
exported. In addition, the strong correlation between time and cotton fabric production in-
dicates that production declined linearly over time but that wholesale price also increased 
linearly over time. The resulting very high positive correlation between time and wholesale 
price influences both coefficients in a multiple regression equation. We select cottonq as the 
dependent variable and whoprice, impfab, expfab, and time, in that order, as the indepen-
dent variables. The first multiple regression analysis is shown in Figure 12.25.

Analysis of the regression statistics indicates a high R2, and the standard error of the 
estimate (S) equals 78.91, compared to the standard deviation of 290.5 (Figure 12.22) for 
cottonq by itself. The variables impfab and expfab are both conditionally significant with 
signs corresponding to economic theory. The small Student’s t statistics for whoprice and 
time indicate that, in fact, there is a serious problem. Both variables cannot be included 
as predictors because they both represent the same effect, as shown by the correlation be-
tween whoprice and time equal to 0.992 and by the matrix plot in Figure 12.24.

The rules for dropping variables are based on a combination of both the model theory 
and the statistical indicators. The statistical rule would be to drop the variable with the 
smallest absolute Student’s t, that is, time. Economic theory would argue for including a 
price variable in a model to predict quantity produced or quantity demanded. We see that 
in this case, both rules lead to the same conclusion. This is not always the case, and, thus, 
good judgment and clear thinking about model objectives are very important.

It is important that we clearly state the rationale for variable selection before examin-
ing the statistical output. In economic demand or supply models such as the one consid-
ered here, we would have a very strong desire to follow economic theory and include 
price unless the statistical results were very strong against that prior judgment. For ex-
ample, if the absolute value of the Student’s t for time was greater than 2.5 or 3 and the 
absolute value of the Student’s t for wholesale price was less than 1, there would be strong 
evidence against the theory that price is an important variable.

Figure 12.24 

Matrix Plots for 
Variables in the 
Study (Minitab 
Output)
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Based on this analysis, a second regression model is estimated, as shown in Figure 12.26, 
with time excluded as a predictor variable. We see now that whoprice is highly significant 
and that the s and R2 statistics are essentially the same as those in the first regression analysis 
(Figure 12.25). Note also that the explained regression sum of squares (SSR) and the residual 
error sum of squares (SSE) are essentially the same. The standard deviation for the whoprice 
coefficient has dropped from 24.45 to 2.835, and, as a result, the Student’s t is substantially 
larger. As we learned in Section 12.4, high correlations between independent variables  result 
in much larger variances for the coefficient estimator. We see that effect here. Note also that 
for this regression model, the wholesale price coefficient estimate changed from -24.31 to 
-46.956. In Section 12.2 we saw that correlations between predictor variables have a com-
plex effect on coefficient estimates, so there will not always be a difference that is this large. 
 However, correlations between independent variables always increase the coefficient stan-
dard error. The standard errors for the other two coefficients have not changed substantially 
because the correlations with time were not large.

Minitab also provides a list of observations with extreme residuals. We see in obser-
vation 18 that the observed value of cottonq is substantially above the value predicted by 
the equation. In this case, we might decide to go back to the original data and try to deter-
mine if there was an error in the reported data. Such an investigation might also provide 
some important insights into the process being studied using multiple regression.

Effect of Dropping a Statistically Significant Variable

In this section we consider the effect of removing a conditionally significant variable from the 
regression model. We saw in Figure 12.26 that expfab is a statistically significant predictor of 
the quantity of cotton produced. However, the regression analysis in Figure 12.27 has removed 
expfab from the regression model in Figure 12.26 because it has the smallest absolute t value.

Figure 12.25 

Initial Multiple 
Regression Model 
(Minitab Output)

Regression Analysis: cottonq versus whoprice, impfab, expfab, time

The regression equation is
cottonq =8876 – 24.3 whoprice – 5.57 impfab + 0.376 expfab – 65.5 time

Predictor Coef SE Coef T P
Constant 8876 2295 3.87 0.001
whoprice –24.31 24.45 –0.99 0.331
impfab –5.565 2.527 –2.20 0.038
expfab 0.3758 0.1595 2.36 0.027
time –65.51 70.24 –0.93 0.361

Source DF SS MS F P
Regression 4 2134572 533643 85.69 0.000
Residual Error 23 143231 6227
Total 27 2277803

Source DF Seq SS
whoprice 1 2055110
impfab 1 44905
expfab 1 29141
time 1 5417

Unusual Observations

S = 78.9141   R–Sq = 93.7%  R-Sq(adj) = 92.6%

Analysis of Variance

Obs Whoprice Cottonq Fit SE Fit Residual St Resid
18 110 1810.0 1663.3 29.6 146.7 2.00R

R denotes an observation with a large standardized residual.

Note
This table indicates the 
conditional explained
variability for each variable,
given the order of entry
used for this regression
analysis.
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Figure 12.26 

Final Regression 
Analysis Model 
(Minitab Output)

Regression Analysis: cottonq versus whoprice, impfab, expfab, time

The regression equation is
cottonq = 6757 – 47.0 whoprice – 6.52 impfab + 0.319 expfab

Predictor Coef SE Coef T P
Constant 6757.0 322.2 20.97 0.000
whoprice –46.956 2.835 –16.56 0.000
impfab –6.517 2.306 –2.83 0.009
expfab 0.3190 0.1471 2.17 0.040

Source DF SS MS F P
Regression 3 2129156 709719 114.59 0.000
Residual Error 24 148648 6194
Total 27 2277803

Source DF Seq SS
whoprice 1 2055110
impfab 1 44905
expfab 1 29141

Unusual Observations

S = 78.6998   R–Sq = 93.5%  R-Sq(adj) = 92.7%

Analysis of Variance

Obs Whoprice Cottonq Fit SE Fit Residual St Resid
18 110 1810.0 1642.0 18.7 168.0 2.20R

R denotes an observation with a large standardized residual.

Note
These sequential conditional
explained sums of squares are
the same as those for the
regression in Figure 12.25,
which included time as a
predictor variable.

Figure 12.27 

Minitab Output: 
Regression Analysis 
with Exported Fabric 
Eliminated

Regression Analysis: cottonq versus whoprice, impfab, expfab, time

The regression equation is
cottonq = 6995 – 48.4 whoprice – 6.20 impfab

Predictor Coef SE Coef T P
Constant 6994.8 324.6 21.55 0.000
whoprice –48.388 2.955 –16.38 0.000
impfab –6.195 2.465 –2.51 0.019

Source DF SS MS F P
Regression 2 2100015 1050007 147.65 0.000
Residual Error 25 177788 7112
Total 27 2277803

S = 84.3299   R–Sq = 92.2%  R-Sq(adj) = 91.6%

Analysis of Variance

Note that, as a result of removing expfab, the standard error of the estimate has in-
creased from 78.70 to 84.33 and R2 has decreased from 93.5% to 92.2%. These results indi-
cate that the model error term is now larger and, thus, the quality of the model has been 
reduced.

The conditional F statistic for expfab can be computed using the analysis of variance 
tables from the models in Figures 12.26 and 12.27. In the following equation we define the 
final regression from Figure 12.26 as model 1 and the regression from Figure 12.27, with 
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expfab removed, as model 2. Using these conventions, the conditional F statistic for the 
variable expfab, X3, under the null hypothesis that its coefficient is 0, can be computed as 
follows:

Fx3
=

SSR1 - SSR2

s2
e

=
12,129,156 - 2,100,0152

6,194
= 4.705

We can also compute the conditional Student’s t statistic for variable x3 by taking the 
square root of the conditional Fx3

tx3
= 24.705 = 2.17

and, of course, we see that this is the same as the Student’s t statistic for the expfab 1x32 
variable in Figure 12.26. The conditional F test for a single independent variable is  always 
exactly the same as the conditional F because an F with 1 degree of freedom for the 
 numerator is exactly equal to t2.

Analysis of Residuals

After fitting the regression model, it is valuable to examine the residuals to determine 
how the model actually fits the data and the regression assumptions. In Section 11.9 we 
discussed the analysis of outliers and extreme points in simple regression. Those ideas 
carry over directly to multiple regression and should be part of your analysis of residuals. 
Recall that the residuals are computed as follows:

ei = yi - yni

A variable that contains the residuals for a particular regression analysis can be com-
puted in Minitab or any other good statistical package. This has been done for the final 
regression model in Figure 12.26. The first step is to examine the pattern of the residuals 
by constructing a histogram, as shown in Figure 12.28. We see that the distribution of 
the residuals is approximately symmetric. The distribution also appears to be somewhat 
uniform. Note that this results in part from the small sample size used to construct the 
histogram.

Figure 12.28 
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Preparing a normal probability plot, as shown in Figure 12.29, is useful in determin-
ing the pattern of the residuals. The plot indicates an approximate linear relationship, and, 
thus, it is not possible to reject the assumption of normally distributed residuals.

Figure 12.30 

Scatter Plot of 
Residuals versus 
Wholesale Price
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Figure 12.29 
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It is also a good practice to plot the residuals against each of the independent vari-
ables included in the analysis. This provides a check that there were not a few unusual 
data points or a complex conditional nonlinear relationship for one of the indepen-
dent variables. If the model has been correctly specified and estimated, we expect that 
there is no pattern of relationship between the independent variables and the  residuals. 
 Figure 12.30 presents the plot of residuals versus the wholesale price variable. We do 
not see any  unusual patterns in this plot except the large positive outlier when the 
wholesale price is approximately 110.

In Figure 12.31 we show the plot of residuals versus imported fabric. Again, we do not 
see any unusual residual patterns, but we do observe that most of the imports are concen-
trated between 0 and 10. Thus, the larger values of imported fabric could be having a large 
effect on the regression slope coefficient. Finally, in Figure 12.32, we see a plot of residuals 
versus exported fabric. Again, the pattern of residuals does not suggest an alternative to 
the linear relationship.
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The final residuals analysis examines the relationship between the residuals 
and the dependent variable. We consider a plot of the residuals versus the observed 
value of the dependent variable in Figure 12.33 and versus the predicted value of 
the dependent variable in Figure 12.34. We can see in Figure 12.33 that there is a 
positive relationship between the residuals and the observed value of cottonq. There 
are more negative residuals at low values of cottonq and more positive residuals at 
high values of cottonq. It is possible to show mathematically that there is always a 
positive correlation between the residuals and the observed values of the depen-
dent variable. Therefore, a plot of the residuals versus the observed value does not 
provide any useful information. However, one should always plot the residuals ver-
sus the predicted or fitted values of the dependent variable. This provides a way to 
determine if the model errors are stable over the range of predicted values. In this 
example note that there is not a relationship between the residuals and the predicted 
values. Thus, the model errors are stable over the range.

In Chapter 13 we use residuals analysis to identify two regression model situations, 
heteroscedasticity and autocorrelation, that violate the regression assumption that the 
 error variance is the same over the range of the model.

Figure 12.31 

Scatter Plot of 
Residuals versus 
Imported Fabric
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Figure 12.32 

Scatter Plot of 
Residuals versus 
Exported Fabric
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Figure 12.34 

Scatter Plot of 
Residuals versus 
Predicted Value of 
Cotton

1800 2000 2200

50

250

16001400
Fitted Value

100

150

200

R
es

id
u

al

0

2100

Figure 12.33 

Scatter Plot of 
Residuals versus 
Observed Value of 
Cotton
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EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

Basic Exercises
 12.73 Suppose that two independent variables are included 

as predictor variables in a multiple regression analy-
sis. What can you expect will be the effect on the es-
timated slope coefficients when these two variables 
have each of the given correlations?
a. 0.78  b. 0.08  c. 0.94  d. 0.33

 12.74 Consider a regression analysis with n = 34 and four po-
tential independent variables. Suppose that one of the 
independent variables has a correlation of 0.23 with the 
dependent variable. Does this imply that this indepen-
dent variable will have a very small Student’s t statistic in 
the regression analysis with all four predictor variables?

 12.75 Consider a regression analysis with n = 47 and three 
potential independent variables. Suppose that one of 
the independent variables has a correlation of 0.95 
with the dependent variable. Does this imply that this 
independent variable will have a very large Student’s 
t statistic in the regression analysis with all three pre-
dictor variables?

 12.76 Consider a regression analysis with n = 49 and two 
potential independent variables. Suppose that one of 
the independent variables has a correlation of 0.56 
with the dependent variable. Does this imply that this 
independent variable will have a very small Student’s 
t statistic in the regression analysis with both predic-
tor variables?

Application Exercises
 12.77 In order to assess the effect in one state of a casualty 

insurance company’s economic power on its political 
power, the following model was hypothesized and fit-
ted to data from all 50 states:

Y = b0 + b1X1 + b2X2 + b3X3 + b4x4 + b5X5 + e

where

Y =   ratio of company’s payments for state and  local 
taxes, in thousands of dollars, to total state and 
local tax revenues in millions of dollars

X1 =  insurance company state concentration ratio 
(a measure of the concentration of banking 
resources)
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X2 =  per capita income in the state in thousands 
of dollars

X3 =  ratio of nonfarm income to the sum of farm 
and nonfarm income

X4 =  ratio of insurance company’s net after-tax in-
come to insurance reserves (multiplied by 1,000)

X5 =  average of insurance reserves (divided by 
10,000)

  Part of the computer output from the estimated re-
gression is shown here. Write a report summarizing 
the findings of this study.

R@Square = 0.515

Parameter

 
 

Estimate

Student’s t
for H 0: 

Parameter = 0

 
Std. Error of 

Estimate
Intercept   10.60   2.41 4.40

X1  -0.90 -0.69 1.31

X2    0.14   0.50 0.28

X3 -12.85 -2.83 4.18

X4     0.080   0.50  0.160

X5     0.100   5.00  0.020

 12.78 A random sample of 93 freshmen at the University of 
Illinois was asked to rate, on a scale of 1 (low) to 10 
(high), their overall opinion of residence hall life. They 
were also asked to rate their levels of satisfaction with 
roommates, with the floor, with the hall, and with the 
resident advisor. (Information on satisfaction with the 
room itself was obtained, but this was later discarded 
as it provided no useful additional power in explaining 
overall opinion.) The following model was estimated:

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + e

where

 Y = overall opinion of residence hall
 X1 = satisfaction with roommates
 X2 = satisfaction with floor
 X3 = satisfaction with hall
 X4 = satisfaction with resident advisor

  Use the accompanying portion of the computer output 
from the estimated regression to write a report sum-
marizing the findings of this study.

Dependent Variable: Y Overall Opinion

Source
 

DF
Sum of 
Squares

Mean 
Square

 
F Value

 
R-Square

Model  4 37.016 9.2540 9.958 0.312

Error 88 81.780 0.9293

Total 92 118.79

Parameter

 
 

Estimate

Student’s t 
for H0: 

Parameter = 0

 
Std. Error of  

Estimate
Intercept 3.950 5.84 0.676

X1 0.106 1.69 0.063

X2 0.122 1.70 0.072

X3 0.092 1.75 0.053

X4 0.169 2.64 0.064

 12.79 The following model was fitted to 47 monthly observa-
tions in an attempt to explain the difference between 
certificate of deposit rates and commercial paper rates:

Y = b0 + b1X1 + b2X2 + e

where

 Y =  commercial paper certificate of deposit rate 
less commercial paper rate

 X1 =  commercial paper rate
 X2 = ratio of loans and investments to capital

  Use the part of the computer output from the esti-
mated regression shown here to write a report sum-
marizing the findings of this analysis.

R@Square = 0.730

Parameter

 
 

Estimate

Student’s t 
for H0: 

parameter = 0

 
Std. Error of 

Estimate
Intercept -5.559 -4.14 1.343

X1   0.186   5.64 0.033

X2   0.450   2.08 0.216

 12.80 You have been asked to develop a multiple re-
gression model to predict the traffic fatality rate 

per 100 million miles in 2007. The data file Vehicle 
Travel State contains traffic data by state for the year 
2007; the variables are described in the Chapter 11 ap-
pendix. Consider the following possible predictor 
variables and select only those that are conditionally 
significant; per capita disposable income, percent of 
population in urban areas, total licensed drivers, total 
motor vehicle registrations, percent interstate high-
way miles, motor vehicle fuel tax in cents per gallon, 
total highway expenditure divided by number of li-
censed drivers, doctors per 1,000 population, nurses 
per 1,000 population, and Medicaid enrollment as a 
fraction of total population.

 12.81 The data file Economic Activity contains data 
for the 50 states in the United States; the vari-

ables are described in the Chapter 11 appendix. You 
are asked to develop a model to predict the percentage 
of females that are in the labor force. The possible pre-
dictor variables are per capita disposable personal in-
come, the percentage of males unemployed, the 
manufacturing payroll per worker, and the unem-
ployment rate of women 1x32. Compute the multiple 
regression and write a report on your findings.

 12.82 The United Nations has hired you as a consul-
tant to help identify factors that predict manu-

facturing growth in developing countries. You have 
decided to use multiple regression to develop a model 
and identify important variables that predict growth. 
You have collected the data in the data file Develop-
ing Country from 48 countries. The variables included 
are percentage manufacturing growth (y), percentage 
agricultural growth 1x12, percentage exports growth 1x22, and percentage rate of inflation 1x32 in 48 devel-
oping countries. Develop the multiple regression 
model and write a report on your findings.
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CHAPTER EXERCISES AND APPLICATIONS

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

 12.83 The method of least squares is used far more often 
than any alternative procedure to estimate the param-
eters of a multiple regression model. Explain the basis 
for this method of estimation, and discuss why its use 
is so widespread.

 12.84 It is common practice to compute an analysis of vari-
ance table in conjunction with an estimated multiple 
regression. Carefully explain what can be learned 
from such a table.

 12.85 State whether each of the following statements is true 
or false.

a. The error sum of squares must be smaller than the 
regression sum of squares.

b. Instead of carrying out a multiple regression, we 
can get the same information from simple linear 
regressions of the dependent variable on each in-
dependent variable.

c. The coefficient of determination cannot be negative.
d. The adjusted coefficient of determination cannot 

be negative.

e. The coefficient of multiple correlation is the square 
root of the coefficient of determination.

 12.86 If an additional independent variable, however  
irrelevant,  is  added to a multiple regression 
model, a smaller sum-of-squared errors will re-
sult. Explain why this is so, and discuss the conse-
quences for the interpretation of the coefficient of 
determination.

 12.87 A dependent variable is regressed on two inde-
pendent variables. It is possible that the hypoth-
eses H0 : b1 = 0  and H0 : b2 = 0  cannot be rejected 
at low significance levels, yet the hypothesis 
H0 : b1 = b2 = 0 can be rejected at a very low signif-
icance level. In what circumstances might this result 
arise?

 12.88 [This exercise requires the material in the chapter appen-
dix.] Suppose that the regression model

y = b0 + b1x1 + b2x2 + e

is estimated by least squares. Show that the residuals, 
ei, from the fitted model sum to 0.
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 12.89 A study was conducted to assess the influence of vari-
ous factors on the start of new firms in the computer 
chip industry. For a sample of 70 countries the follow-
ing model was estimated:

yn = -59.31 + 4.983x1 + 2.198x2 + 3.816x3 - 0.310x4
 11.1562 10.2102 12.0632 10.3302

-0.886x5 + 3.215x6 + 0.85x7
 13.0552 11.5682 10.3542

R2 = 0.766

where

 yn = new business starts in the industry
 x1 = population in millions
 x2 = industry size
 x3 = measure of economic quality of life
 x4 = measure of political quality of life
 x5 = measure of environmental quality of life
 x6 =  measure of health and educational quality 

of life
 x7 = measure of social quality of life

The numbers in parentheses under the coefficients are 
the estimated coefficient standard errors.

a. Interpret the estimated regression coefficients.
b. Interpret the coefficient of determination.
c. Find a 90% confidence interval for the increase in 

new business starts resulting from a one-unit in-
crease in the economic quality of life, with all other 
variables unchanged.

d. Test, against a two-sided alternative at the 5% 
level, the null hypothesis that, all else remaining 
equal, the environmental quality of life does not 
influence new business starts.

e. Test, against a two-sided alternative at the 5% 
level, the null hypothesis that, all else remaining 
equal, the health and educational quality of life 
does not influence new business starts.

f. Test the null hypothesis that, taken together, these 
seven independent variables do not influence new 
business starts.

 12.90 A survey research group conducts regular studies of 
households through mail questionnaires and is con-
cerned about the factors influencing the response 
rate. In an experiment, 30 sets of questionnaires 
were mailed to potential respondents. The regres-
sion model fitted to the resulting data set was as 
follows:

Y = b0 + b1X1 + b2X2 + e

where

 Y =  percentage of responses received
 X1 =  number of questions asked
 X2 =  length of questionnaire in number of words

  Part of the SAS computer output from the estimate re-
gression is shown next.

R@Square = 0.637

 
 
Parameter

 
 

Estimate

Student’s t 
for H0:

Parameter = 0

 
Std. Error of 

Estimate
Intercept  74.3652

X1 -1.8345 -2.89 0.6349

X2 -0.0162 -1.78 0.0091

a. Interpret the estimated regression coefficients.
b. Interpret the coefficient of determination.
c. Test, at the 1% significance level, the null hypoth-

esis that, taken together, the two independent vari-
ables do not linearly influence the response rate.

d. Find and interpret a 99% confidence interval for b1.
e. Test the null hypothesis

H0 : b2 = 0

 against the alternative

H1 : b2 6 0

 and interpret your findings.

 12.91 A consulting group offers courses in financial man-
agement for executives. At the end of these courses, 
participants are asked to provide overall ratings of the 
value of the course. To assess the impact of various 
factors on ratings, the model

Y = b0 + b1X1 + b2X2 + b3X3 + e

  was fitted for 25 such courses, where

 Y = average rating by participants of the course
 X1 =  percentage of course time spent in group dis-

cussion sessions
 X2 =  amount of money (in dollars) per course 

member spent on the preparation of subject 
matter material

 X3 =  amount of money per course member spent on 
the provision of non-course-related material 
(food, drinks, and so forth)

  Part of the SAS computer output for the fitted regres-
sion is shown next.

R@Square = 0.579

 
 
Parameter

 
 

Estimate

Student’s t 
for H0:

Parameter = 0

 
Std. Error of 

Estimate
Intercept 42.9712

X1  0.3817 1.89 0.2018

X2  0.5172 2.64 0.1957

X3  0.0753 1.09 0.0693

a. Interpret the estimated regression coefficients.
b. Interpret the coefficient of determination.
c. Test, at the 5% level, the null hypothesis that, taken 

together, the three independent variables do not 
linearly influence the course rating.

d. Find and interpret a 90% confidence interval for b1.
e. Test the null hypothesis

H0 : b2 = 0



Chapter Exercises and Applications  541

 against the alternative

H1 : b2 7 0

 and interpret your result.
f. Test at the 10% level the null hypothesis

H0 : b3 = 0

 against the alternative

H1 : b3 � 0

 and interpret your result.

 12.92 At the end of classes professors are rated by their 
students on a scale of 1 (poor) to 5 (excellent). 

Students are also asked what course grades they expect, 
and these are coded as A = 4, B = 3, and so on. The 
data file Teacher Rating contains, for a random sample 
of 20 classes, ratings of professors, the average expected 
grades, and the numbers of students in the classes. The 
variables are defined in the data file. Compute the mul-
tiple regression of rating on expected grade and num-
ber of students, and write a report on your findings.

 12.93 Flyer Computer, Inc., wishes to know the effect of var-
ious variables on labor efficiency. Based on a sample 
of 64 observations, the following model was estimated 
by least squares:

yn = -16.528 + 28.729x1 + .022x2 - 0.023x3 - 0.054x4
-0.077x5 + 0.411x6 + 0.349x7 + 0.028x8 R2 = .467

where

 yn =  index of direct labor efficiency in production 
plant

 x1 =  ratio of overtime hours to straight-time hours 
worked by all production workers

 x2 = average number of hourly workers in the plant
 x3 =  percentage of employees involved in some 

quality-of-work-life program
 x4 = number of grievances filed per 100 workers
 x5 = disciplinary action rate
 x6 = absenteeism rate for hourly workers
 x7 =  salaried workers’ attitudes, from low (dissat-

isfied) to high, as measured by questionnaire
 x8 =  percentage of hourly employees submitting 

at least one suggestion in a year to the plant’s 
suggestion program

  Also obtained by least squares from these data was the 
fitted model:

yn = 9.062 - 10944x1 + 0.320x2 + 0.019x3 R2 = 0.242

  The variables x4, x5, x6, x7, and x8 are measures of the 
performance of a plant’s industrial relations system. 
Test, at the 1% level, the null hypothesis that they do 
not contribute to explaining direct labor efficiency, 
given that x1, x2, and x3 are also to be used.

 12.94 Based on 107 students’ scores on the first examination 
in a course on business statistics, the following model 
was estimated by least squares:

yn = 2.178 + 0.469x1 + 3.369x2 + 3.054x310.0902 10.4562 11.4572
R2 = .686

where

 yn = student’s actual score on the examination
 x1 = student’s expected score on the examination
 x2 = hours per week spent working on the course
 x3 = student’s grade point average

  The numbers in parentheses under the coefficients are 
the estimated coefficient standard errors.

a. Interpret the estimate of b1.
b. Find and interpret a 95% confidence interval for b2.
c. Test, against a two-sided alternative, the null hy-

pothesis that b3 is 0, and interpret your result.
d. Interpret the coefficient of determination.
e. Test the null hypothesis that b1 = b2 = b3 = 0.
f. Find and interpret the coefficient of multiple 

correlation.
g. Predict the score of a student who expects a score 

of 80, works 8 hours per week on the course, and 
has a grade point average of 3.0.

 12.95 Based on 25 years of annual data, an attempt was 
made to explain savings in India. The model fitted 
was as follows:

y = b0 + b1x1 + b2x2 + e

where

 y = change in real deposit rate
 x1 = change in real per capita income
 x2 = change in real interest rate

  The least squares parameter estimates (with standard 
errors in parentheses) were (Ghatak and Deadman 
1989) as follows:

b1 = 0.097410.02152 b2 = 0.37410.2092
  The adjusted coefficient of determination was as 

follows:

R2 = .91

a. Find and interpret a 99% confidence interval 
for b1.

b. Test, against the alternative that it is positive, the 
null hypothesis that b2 is 0.

c. Find the coefficient of determination.
d. Test the null hypothesis that b1 = b2 = 0.
e. Find and interpret the coefficient of multiple 

correlation.

 12.96 Based on data on 2,679 high school basketball players, 
the following model was fitted:

y = b0 + b1x1 + b2x2 + g + b9x9 + e

where

 y = minutes played in season
 x1 = field@goal percentage
 x2 = free@throw percentage
 x3 = rebounds per minute
 x4 = points per minute
 x5 = fouls per minute
 x6 = steals per minute
 x7 = blocked shots per minute
 x8 = turnovers per minute
 x9 = assists per minute
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  The least squares parameter estimates (with standard 
errors in parentheses) were as follows:

 b0 = 358.848 144.6952  b1 = 0.6742 10.06392  b2 = 0.2855 10.03882
 b3 = 303.81 177.732  b4 = 504.95 143.262  b5 = -3923.5 1120.62
 b6 = 480.04 1224.92  b7 = 1350.3 1212.32  b8 = -891.67 1180.872
 b9 = 722.95 1110.982
  The coefficient of determination was as follows:

R2 = 0.5239

a. Find and interpret a 90% confidence interval  
for b6.

b. Find and interpret a 99% confidence interval  
for b7.

c. Test, against the alternative that it is negative, the 
null hypothesis that b8 is 0. Interpret your result.

d. Test, against the alternative that it is positive, the 
null hypothesis that b9 is 0. Interpret your result.

e. Interpret the coefficient of determination.
f. Find and interpret the coefficient of multiple 

correlation.

 12.97 Based on data from 63 counties, the following model 
was estimated by least squares:

yn = 0.58 - .052x1 - .005x2 R2 = .17
 1.0192 1.0422
where

 yn = growth rate in real gross domestic product
 x1 = real income per capita
 x2 =  average tax rate, as a proportion of gross 

 national product

  The numbers in parentheses under the coefficients are 
the estimated coefficient standard errors.

a. Test against a two-sided alternative the null hy-
pothesis that b1 is 0. Interpret your result.

b. Test against a two-sided alternative the null hy-
pothesis that b2 is 0. Interpret your result.

c. Interpret the coefficient of determination.
d. Find and interpret the coefficient of multiple 

correlation.

 12.98 The following regression model was fitted to data on 
60 U.S. female amateur golfers:

yn = 164,683 + 341.10x1 + 170.02x2 + 495.19x3 - 4.23x41100.592 1167.182 1305.482 190.02
-136,040x5 - 35,549x6 + 202.52x7
   125.6342  116, 2402  1106.202

R2 = .516

where

 yn = winnings per tournament in dollars
 x1 = average length of drive in yards
 x2 = percentage times drive ends in fairway
 x3 = percentage times green reached in regulation
 x4 =  percentage times par saved after hitting into 

sand trap
 x5 =  average number of putts taken on greens 

reached in regulation

 x6 =  average number of putts taken on greens not 
reached in regulation

 x7 =  number of years the golfer has played

The numbers in parentheses under the coefficients are 
the estimated coefficient standard errors.

Write a report summarizing what can be learned 
from these results.

The following exercises use a data set and require a statisti-
cal computer package to prepare the regression analysis for 
the problem solution.

 12.99 The Economics Department wishes to develop a 
multiple regression model to predict student GPA 

for economics courses. Department faculty have collected 
data for 112 graduates, which include the variables eco-
nomics GPA, SAT verbal, SAT mathematics, ACT Eng-
lish, ACT social science, and high school percentile rank. 
The data are stored in a file named Student GPA on your 
data disk and described in the Chapter 11 appendix.

a. Use the SAT variables and class rank to determine 
the best prediction model. Remove any indepen-
dent variables that are not significant. What are 
the coefficients, their Student’s t statistics, and the 
model?

b. Use the ACT variables and class rank to determine 
the best prediction model. Remove any indepen-
dent variables that are not significant. What are 
the coefficients, their Student’s t statistics, and the 
model?

c. Which model predicts an economics GPA better? 
Present the evidence to support your conclusion.

12.100 Use the data in the file Citydatr to estimate a 
regression equation that can be used to deter-

mine the marginal effect of the percent of commercial 
property on the market value per owner-occupied res-
idence. Include the percent of owner-occupied resi-
dences, the percent of industrial property, the median 
number of rooms per residence, and the per capita in-
come as additional predictor variables in your multi-
ple regression equation. The variables are included on 
your data disk and described in the chapter appendix. 
Indicate which of the variables are conditionally sig-
nificant. Your final equation should include only sig-
nificant variables. Discuss and interpret your final 
regression model, including an indication of how you 
would select a community for your house.

12.101 The administrator of the National Highway Traf-
fic Safety Administration (NHTSA) wants to 

know if the different types of vehicles in a state have a 
relationship to the highway death rate in the state. She 
has asked you to develop multiple regression analyses to 
determine if the average vehicle weight, the percentage 
of imported cars, the percentage of light trucks, and the 
average car age are related to crash deaths in automo-
biles and pickups. The data for the analysis are located in 
the data file named Vehicle Travel State. A description 
of the variables is contained in the Chapter 11 appendix.

a. Prepare a correlation matrix for crash deaths and 
the predictor variables. Note the simple relation-
ships between crash deaths and the predictor 
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variables. In addition, indicate any potential 
multicollinearity problems between the predictor 
variables.

b. Prepare a multiple regression analysis of crash 
deaths on the potential predictor variables. Re-
move any nonsignificant predictor variables, one 
at a time, from the regression model. Indicate your 
best final model.

c. State the conclusions from your analysis and dis-
cuss the conditional importance of the variables in 
terms of their relationship to crash deaths.

12.102 The Department of Transportation wishes to know 
if states with a larger percentage of urban popula-

tion have higher automobile and pickup crash death rates. 
In addition, it wants to know if the variable average speed 
on rural roads or the variable percentage of rural roads 
that are surfaced is conditionally related to crash death 
rates, given percentage of urban population. Data for this 
study are included in the file  Vehicle Travel State; the 
variables are defined in the Chapter 11 appendix.

a. Prepare a correlation matrix and descriptive sta-
tistics for crash deaths and the potential predictor 
variables. Note the relationships and any potential 
problems of multicollinearity.

b. Prepare a multiple regression analysis of crash 
deaths on the potential predictor variables. Deter-
mine which of the variables should be retained in 
the regression model because they have a condi-
tionally significant relationship.

c. State the results of your analysis in terms of your 
final regression model. Indicate which variables 
are conditionally significant.

12.103 An economist wishes to predict the market value 
of owner-occupied homes in small midwestern cit-

ies. He has collected a set of data from 45 small cities for a 
2-year period and wants you to use this as the data source 
for the analysis. The data are in the file  Citydatr the vari-
ables are described in the chapter appendix. He wants you 
to develop a multiple regression prediction equation. The 
potential predictor variables include the size of the house, 
tax rate, percent of commercial property, per capita in-
come, and total city government expenditures.

a. Compute the correlation matrix and descriptive 
statistics for the market value of residences and the 
potential predictor variables. Note any potential 
problems of multicollinearity. Define the approxi-
mate range for your regression model by the vari-
able means {2 standard deviations.

b. Prepare multiple regression analyses using the 
predictor variables. Remove any variables that are 
not conditionally significant. Which variable, size 
of house or tax rate, has the stronger conditional 
relationship to the value of houses?

c. A business developer in a midwestern state has 
stated that local property tax rates in small towns 
need to be lowered because, if they are not, no one 
will purchase a house in these towns. Based on 
your analysis in this problem, evaluate the busi-
ness developer’s claim.

12.104 Stuart Wainwright, the vice president of purchas-
ing for a large national retailer, has asked you to 

prepare an analysis of retail sales by state. He wants to 
know if the percent of unemployment for males and for 
females and the per capita disposable income are jointly 
related to the per capita retail sales. Data for this study are 
in the data file named Economic Activity; the variables 
are described in the Chapter 11 appendix. You may have 
to compute additional variables using the variables in the 
data file.

a. Prepare a correlation matrix, compute descriptive 
statistics, and obtain a regression analysis of per 
capita retail sales on unemployment and personal 
income. Compute 95% confidence intervals for the 
slope coefficients in each regression equation.

b. What is the conditional effect of a $1,000 decrease 
in per capita income on per capita sales?

c. Would the prediction equation be improved by 
adding the state population as an additional pre-
dictor variable?

12.105 A major national supplier of building materials 
for residential construction is concerned about to-

tal sales for next year. It is well known that the compa-
ny’s sales are directly related to the total national 
residential investment. Several New York bankers are 
predicting that interest rates will rise about two percent-
age points next year. You have been asked to develop a 
regression analysis that can be used to predict the effect 
of interest rate changes on residential investment. In ad-
dition to interest rate, you believe that the GDP, money 
supply, government spending, and price index for fin-
ished goods might be predictors of residential invest-
ment. Therefore, you decide that two multiple regression 
models will be needed. One will include prime interest 
rate and important additional variables. The second will 
include federal funds interest rate and important addi-
tional variables. The time-series data for this study are 
contained in the data file named Macro2010, which is de-
scribed in the Chapter 13 appendix.

a. Develop two multiple regression models to predict 
residential investment using prime interest rate for 
one and federal funds interest rate for the other. The 
final regression models should include only pre-
dictor variables that have a significant conditional 
effect. Analyze the regression statistics and indicate 
which equation provides the best predictions.

b. Determine the 95% confidence interval for the 
interest rate conditional slope coefficient in both 
regression equations.

12.106 The Center for Disease Control (CDC) is inter-
ested in knowing if there are state-level popula-

tion characteristics that predict the occurrence of 
breast cancer death rates and the occurrence of lung 
cancer death rates. The data file Staten, whose vari-
ables are described in the chapter appendix, contains a 
number of variables that could be possible predictors 
when used in combination. Your task is to develop 
multiple regression models that will determine which 
of the K variables in the data file predict the breast 
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cancer death rate and which predict the lung cancer 
death rate. Interpret your final regression model, in-
cluding a discussion of the coefficients, their Student’s 
t’s, the standard error of the estimate, and R2.

12.107 You have been hired as a consultant to analyze 
the salary structure of Energy Futures, Inc., a 

firm that produces designs for solar energy applica-
tions. The company has operated for a number of years, 
and in recent years there have been an increasing num-
ber of complaints that the salaries paid to various work-
ers. You have been provided data in the file Salary 
Study, whose variables are described in the Chapter 12 
appendix. Your task is to determine the relationship be-
tween the various measures for each employee and the 
salary paid using a multiple regression analysis.

One particular complaint of great concern to the man-
agement is that female workers are paid less than male 
workers with the same experience and skill level. Test the 
hypothesis that the actual salary paid female workers and 
the rate of change in female salaries as a function of expe-
rience is less than the rate of change for male salaries as a 
function of experience. Your hypothesis test should be set 
up to provide strong evidence of discrimination against 
females if it exists. The test should be made conditional on 
the other significant predictor variables in your model.

12.108 Use the data in the data file named Student 
GPA, which is described in the Chapter 11 ap-

pendix, to develop a model to predict a student’s 
grade point average in economics. Begin with the vari-
ables ACT scores, gender, and HSpct.

a. Use appropriate statistical procedures to choose a 
subset of statistically significant predictor variables. 

Describe your strategy and carefully define your 
final model.

b. Discuss how this model might be used as part of 
the college’s decision process to select students for 
admission.

12.109 You have been asked to develop a model that 
will predict home prices as a function of impor-

tant economic variables. After considerable research, 
you locate the work of Prof. Robert Shiller, Princeton 
University. Shiller has compiled data for housing costs 
beginning in 1890. The data file Shiller House Price 
Cost is obtained from his data. The indexes for home 
price and building cost are developed to adjust for price 
changes over time. You are to develop a model using 
the Shiller data. Prepare a short interpretation of your 
model results. Variables are identified in the data file.

a. Does your model exhibit any tendency to predict 
high or low over the long time period? What is 
your evidence?

b. There was a housing price bubble in the first part 
of the 21st century. How could you identify this 
bubble using your model?

12.110 A major real estate developer has asked you to 
determine the effect of the interval between 

house sales, and the initial house sales price on second 
or final sales price with adjustments for the four major 
U.S. market areas identified in the data set. The data 
on housing prices are stored in the data file House 
Selling Price from the work of Robert Shiller. The 
data set includes the first and second sales price and 
the relative date of the house sales. Write a short re-
port on the results of your analysis.

12.10 CASE STUDY PROJECTS

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

Mini–Case Studies
12.111 A group of activists in Peaceful, Montana, are 

seeking increased development for this pristine 
enclave, which has received some national recognition 
on the television program Four Dirty Old Men. The 
group claims that increased commercial and industrial 
development will bring new prosperity and lower taxes 
to Peaceful. Specifically, it claims that an increased per-
centage of commercial and industrial development will 
decrease the property tax rate and increase the market 
value for owner-occupied residences.

You have been hired to analyze their claims. For this 
purpose you have obtained the data file Citydatr, which 
contains data from 45 small cities. The variables are de-
scribed in the chapter appendix. From these data you will 
first develop regression models that predict the average 
value of owner-occupied housing and the property tax 
rate. Then you will determine if and how the addition of 
the percent of commercial property and then the percent 
of industrial property affects the variability in these re-
gression models. The basic model for predicting market 

value of houses includes the size of house, the tax rate, 
the per capita income, and the percent of owner-occupied 
residences as independent variables. The basic model 
for predicting tax rate includes the tax assessment base, 
current city expenditures per capita, and the percent of 
owner-occupied residences as independent variables.

Determine if the percent of commercial and the 
percent of industrial variables improve the explained 
variability in each of the two models. Perform a con-
ditional F test for each of these additional variables. 
First, estimate the conditional effect of percent com-
mercial property by itself and then the conditional ef-
fect of percent industrial property by itself. Carefully 
explain the results of your analysis. Include in your re-
port an explanation of why it was important to include 
all the other variables in the regression model instead 
of just examining the effect of the direct and simple 
relationship between percent of commercial property 
and percent of industrial property on the tax rate and 
market value of housing.

12.112 You have been asked to develop a model that 
will predict the percentage of students who 

graduate in 4 years from highly ranked private colleges. 
The data file Private Colleges contains data collected 
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by a national news service; descriptions of the predictor 
variables are contained in the Chapter 12 appendix.

a. Specify a list of potential predictor variables with a 
short rationale for each variable.

b. Use multiple regression to determine the conditional 
effect of each of these potential predictor variables.

c. Eliminate those variables that do not have a signifi-
cant conditional effect to obtain your final model.

d. Prepare a short discussion regarding the condi-
tional effects of the predictor variables in your 
model, based on your analysis.

12.113 You have been asked to develop a model that will 
predict the cost with financial aid for students at 

highly ranked private colleges. The data file Private Col-
leges contains data collected by a national news service. 
Variables are identified in the Chapter 12 appendix.

a. Specify a list of potential predictor variables with a 
short rationale for each variable.

b. Use multiple regression to determine the condi-
tional effect of each of these potential predictor 
variables.

c. Eliminate those variables that do not have a signifi-
cant conditional effect to obtain your final model.

d. Prepare a short discussion regarding the condi-
tional effects of the predictor variables in your 
model, based on your analysis.

Nutrition-Based Mini-Case Studies
The following exercises are based on nutrition research done 
by the Economic Research Service of the U.S. Department of 
Agriculture. The data for these exercises are contained in the 
data file HEI Cost Data Variable Subset, which is described 
in the Chapter 10 appendix.

The data file HEI Cost Data Variable Subset contains 
considerable information on randomly selected individu-
als who participated in an extended interview and medical 
 examination. There are two observations for each person in 
the study. The first observation, identified by daycode = 1,
contains data from the first interview, and the second 
 observation, daycode = 2, contains data from the second 
 interview. This data file contains the data for the following 
exercises. The variables are described in the data dictionary 
in the Chapter 10 appendix. Each of the multiple regression 
models in the following exercises should contain a dummy 
variable that  adjusts for possible additive differences be-
tween data collected during the two different interviews.

12.114 You are asked to develop a multiple regression 
model that indicates the relationship between a 

person’s physical characteristics and the quality of diet 
consumed as measured by the Healthy Eating Index 
(HEI-2005). The predictor variables to be used are a doc-
tor’s diagnosis of high blood pressure (doc bp), the ratio 
of waist measure to obese waist measure (waistper), the 
body mass index (BMI), whether the subject was over-
weight (sr overweight), male compared to female (fe-
male), and age (age). Also, the model should include a 
dummy variable to indicate the effect of first versus the 
second interview.

a. Estimate the model using the basic specification 
variables indicated here.

b. Estimate the model again, but in this case include 
a variable that adjusts for immigrant versus native 
person (immigrant).

c. Estimate the model again, but in this case include a 
variable that adjusts for single status versus a per-
son with a partner (single).

d. Estimate the model again, but in this case include 
a variable that adjusts for participation in the food 
stamp program (fsp).

12.115 You are asked to develop a multiple regression 
model that indicates the relationship between a 

person’s behavioral characteristics and the quality of 
diet consumed as measured by the Healthy Eating In-
dex (HEI-2005). The predictor variables to be used are 
whether subject limited weight (sr did lm wt), whether 
the subject was a smoker (smoker), number of hours 
subject spent in front of a TV or computer screen 
(screen hours), sedentary versus active subject (activ-
ity level; note you will need to recode to a dummy 
variable), percent of subject’s calories from a fast-food 
restaurant (pff), percent of subject’s calories eaten at 
home (P ate at Home), whether subject was a college 
graduate (col grad), and subject’s household income 
(hh income est). Also, the model should include a 
dummy variable to indicate the effect of first versus 
second interview.

a. Estimate the model using the basic specification 
variables indicated here.

b. Estimate the model again. but in this case include 
a variable that adjusts for immigrant versus native 
person (immigrant).

c. Estimate the model again, but in this case include a 
variable that adjusts for single status versus a per-
son with a partner (single).

d. Estimate the model again, but in this case include 
a variable that adjusts for participation in the food 
stamp program (fsp).

12.116 You are asked to develop a multiple regres-
sion model that indicates the relationship be-

tween a person’s physical characteristics and the 
daily cost of food (daily cost). The predictor vari-
ables to be used are a doctor’s diagnosis of high 
blood pressure (doc bp), the ratio of waist measure 
to obese waist measure (waistper), the body mass in-
dex (BMI), whether the subject was overweight (sr 
overweight), male compared to female (female), and 
age (age). Also, the model should include a dummy 
variable to indicate the effect of first versus the sec-
ond interview.

a. Estimate the model using the basic specification 
variables indicated here.

b. Estimate the model again, but in this case include 
a variable that adjusts for immigrant versus native 
person (immigrant).

c. Estimate the model again, but in this case include a 
variable that adjusts for single status versus a per-
son with a partner (single).

d. Estimate the model again, but in this case include 
a variable that adjusts for participation in the food 
stamp program (fsp).
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 12.117 You are asked to develop a multiple regression 
model that indicates the relationship between a 

person’s behavioral characteristics and the daily cost 
of food (daily cost). The predictor variables to be used 
are subject’s limiting weight (sr did lm wt), subject be-
ing a smoker (smoker), subject’s number of hours in 
front of a TV or computer screen (screen hours), sub-
ject’s being sedentary versus active (activity level: note 
that you will need to recode to a dummy variable), 
percent of subject’s calories from a fast-food restau-
rant (pff), percent of subject’s calories eaten at home (P 
ate at Home), whether the subject is a college graduate 
(col grad), and household income (hh income est). 
Also, the model should include a dummy variable to 
indicate the effect of first versus second interview.

a. Estimate the model using the basic specification 
variables indicated here.

b. Estimate the model again, but in this case include 
a variable that adjusts for immigrant versus native 
person (immigrant).

c. Estimate the model again but in this case include a 
variable that adjusts for single status versus a per-
son with a partner (single).

d. Estimate the model again, but in this case include 
a variable that adjusts for participation in the food 
stamp program (fsp).

Automobile-Fuel Case Study Project
You have been asked to conduct a study to determine the vari-
ables that influence automobile fuel consumption. Your study 
is part of a national effort that will develop policies to reduce 
dependence on fossil fuels. Considerable national discussion 
and various economic studies have focused on this question 
for a number of years.

Many economists have argued that an important part of 
the solution is higher gasoline prices. They point to the fact 
that for many years European gasoline prices have been much 
higher, in part because of high taxes on each liter of gasoline 
sold for automobile consumption. And, European vehicles 
tend to be smaller and more fuel efficient compared to U.S. 
motor vehicles.

Others argue that the automobile is so important in the 
lives of U.S. citizens that they must drive, and higher prices 
will merely increase the cost of travel. The limited availability 
of public transportation compared to Europe is part of this ar-
gument. From this comes the argument that government reg-
ulation must be used to establish minimum fuel-consumption 
standards for all automobiles sold in the United States. It is 
argued that such CAFÉ (Corporate Average Fuel Economy) 
standards place manufacturers on an equal level with regard 
to fuel economy and avoid competitive vehicle features that 
would increase fuel consumption. These standards were first 
introduced in the late 1970s and then essentially ignored until 
new standards were introduced in 2010.

Another argument is that automobile driving is a central 
part of the U.S. society and fuel savings will really come only 
with changes in the overall economy. Changes would include 
increased use of public transportation, workers closer to work 
sites, working by electronic communication from home, eco-
nomic recession, and other societal factors.

Your task is to conduct appropriate statistical analysis to 
help answer some of the questions posed here and to increase 
understanding of the question. Your first step was to collect 
data from national sources and prepare the data file Automo-
bile Fuel Consumption. This data file provides monthly data 
for a number of measurements collected since 2005 and ex-
tending through 2010. The variables contained in this file are 
shown in the variable description table included in the Chap-
ter 12 appendix.

Your assignment is to prepare a rigorous statistical analysis 
and to write a report that clearly presents your conclusions 
and explains your analysis. Your report is limited to two 
pages, with appropriate supporting material in selected ap-
pendices. The reader should be able to understand your work 
from the two-page report.

Your professor will also provide various guidelines and 
analysis recommendations. You might note that when data 
are collected over time, many analysts will present graphs 
that indicate the levels of key variables over time. Recall 
from Chapter 12 how overall price elasticity can be esti-
mated using log transformations.

Appendix
MATHEMATICAL DERIVATIONS

1  LEAST SQUARES DERIVATION  
OF ESTIMATORS

The derivation of coefficient estimators for a model with two predictor variables is as follows:

yni = b0 + b1x1i + b2x2i   

Minimize

SSE = a
n

i=1
3yi - 1b0 + b1x1i + b2x2i242
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Applying differential calculus, we obtain a set of three normal equations that can be solved 
for the coefficient estimators:
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As a result of applying the least squares algorithm, we have a system of three linear equa-
tions in three unknowns:

b0, b1, b2

 nb0 + b1a
n

i=1
x1i + b2a

n

i=1
x2i = a

n

i=1
yi

 b0a
n
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n
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x2
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n
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n
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n
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n
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x2

2i = a
n
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x2iyi

The linear equations are solved for the desired coefficients by first computing the vari-
ous X- and Y-squared and cross-product terms.

The intercept term is estimated by the following:

b0 = y - b1x1 - b2x2

2 TOTAL EXPLAINED VARIABILITY

The explained variability SSR term in multiple regression is more complex than the SSR 
term in simple regression.

For the two-independent-variable regression model

Y = b0 + b1X1 + b2X2
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we find that

 SSR = a
n

i=1
1yni - y22

 = a
n

i=1
3b0 + b1x1i + b2x2i - 1b0 + b1x1 + b2x2242

 = a
n

i=1
3b2

11x1i - x122 + b2
21x2i - x222 + 2b1b21x1i - x121x2i - x224

 = 1n - 121b2
1sx1

+ b2
2s

2
x2

+ 2rx1x2
 b1b2sx1

sx2
2

We see that the explained variability has a portion directly associated with each of 
the independent variables and a portion associated with the correlation between the two 
variables.

Data File Descriptions
DATA FILE AUTOMOBILE FUEL 
CONSUMPTION

Variable Description

Date Month and Year Data Collected

Auto Miles Bi Billions of Automobile Miles Driven Measured by U.S. Dept of Transportation

Gas Price p gal $ All Types of Gasoline, U.S. City Average Retail Price Dollars per Gallon

Population U.S. Population Based on Census Bureau Estimates

Per cap inc R Per Capita Income Measured in Real Dollars 2005

Daily Gas sales 1000 gal U.S. Total Gasoline Retail Deliveries by Refiners (Thousand Gallons per Day)

Sum dum Coded 1 for May, June, July, August 0 else

Wint dum Coded 1 for January, February 0 else

Season Index Coded 1–3 for 4-Month Intervals

Mile per gal Computed Miles per Gallon

Percent Unemployment Monthly Reported Unemployment from Bureau of Labor Statistics

DATA FILE PRIVATE COLLEGES

C1 Undergrad. Enrollment

C2 Admission Rate

C3 Student/Faculty Ratio

C4 4-year Grad. Rate

C5 6-year Grad. Rate

C6 Quality Rank

C7 Total Costs

C8 Cost After Need-Based Aid

C9 Need Met

C10 Aid From Grants

C11 Cost After Non-Need-Based Aid

C12 Average Debt

C13 Cost Rank
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DATA FILE CITYDATR

This data file contains a cross-section database for project analysis. The file contains data 
from 45 nonmetropolitan Minnesota cities over two consecutive years. The data were col-
lected as part of a research project to determine the effect of economic growth on local city 
expenditures, tax rates, and housing values. The file contains a total of 90 observations.

C1 Observation sequential number

County County code

City MCD code

Sizehse Median rooms per owner-occupied house

Totexp Total current city government expenditures

Taxbase Assessment base in millions of real dollars

Taxrate Tax Levy Divided by Total Assessment

Pop Population estimate

Incom Per capita income

Hseval Market value per owner-occupied residence

Taxhse Average tax per owner-occupied residence

Homper Percent of property value: owner-occupied residence

Rentper Percent of property value: rental residence

Comper Percent of property value: commercial

Indper Percent of property value: industrial property

Utilper Percent of property value: public utility

Year Represented as 1, 2

DATA FILE STATEN

Variable Name Description

State Name of state

Population Population of state in 2008

Births Number of live births in 2007

Police Per capita expenditures on police 2007 Dept of Justice

Cortleg Per capita expenditures on courts and legal 2007

Prison Per capital expenditures on prisons 2007

Total viol Cr Total violent crimes per 100,000 population 2007

Murder Total number of murders per 100,000 population 2007

Rape Total number of rapes per 100,000 population 2007

Robbery Total number of robberies per 100,000 population 2007

Assault Total number of assaults per 100,000 population 2007

Total Prop Cr Total number of crimes against property per 100,000 2007

Burgularly Total number of burglaries per 100,000 population 2007

Larceny Total number of larcenies per 100,000 population 2007

Mtr Veh Theft Total number of motor vehicle thefts per 100,000 2007

Doctors Total number of doctors per 100,000 population 2007

Nurses Total number of nurses per 100,000 population 2007

Smoker per Percent of population who are smokers 2007

Male Smok Percent of male population who are smokers 2007

Female Smoke Percent of female population who are smokers 2007

Alcohol B Percent of binge drinkers (5 or more drinks ) 2007

B Cancer Total number of breast cancer deaths in 1,000s 2007

L Cancer Total number of lung cancer deaths in 1,000s 2007

Median Income Household median income in 2007

G 200k Proportion of households with income > $200,000 2007

Per Fam Pov Percent of families with income below poverty 2007

(continued)
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Variable Name Description

HS Grad Percent of population over age 25, high school graduates 2007

Bachelor Percent of population over age 25 with bachelor’s degree 2007

Advance Percent of population over age 25 with advanced degree 2007

HPI2007 Housing price index 11980 = 1002 2007

HPI2008 Housing price index 11980 = 1002 2008

Exp Stu secel Expenditures per student of elementary and secondary ed. 2007

Data File Description Salary Study

Age Age of person

Experience Number of years experience at the firm

Years Jr Number of years at junior level analyst

Years Senior Number of years at senior level analyst

Gender 0 - male, 1 - female

Salary Present base salary

Market Specialized skill 1- skill has high market value, 0 - else
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 13.1 Model-Building Methodology
Model Specification
Coefficient Estimation
Model Verification
Model Interpretation and Inference

 13.2 Dummy Variables and Experimental Design
Experimental Design Models
Public Sector Applications

 13.3 Lagged Values of the Dependent Variable as Regressors
 13.4 Specification Bias
 13.5 Multicollinearity
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 13.7 Autocorrelated Errors

Estimation of Regressions with Autocorrelated Errors
Autocorrelated Errors in Models with Lagged Dependent Variables

 13.8 Case Studies
Mini–Health Care Case Studies
Nutrition Model Analysis Case Study

Introduction

In Chapters 11 and 12 we developed simple and multiple regression as tools to 
estimate the coefficients for linear models for business and economic applica-
tions. We now understand that the purpose of fitting a regression equation is 
to use information about the independent variables to explain the behavior of 
the dependent variables and to derive predictions of the dependent variable. The 
model coefficients can also be used to estimate the rate of change of the depen-
dent variable as the result of changes in an independent variable, conditional on 
the particular set of other independent variables included in the model remaining 
fixed. In this chapter we study a set of alternative specifications. In addition, we 
consider situations in which the basic regression assumptions are violated.

The topics in this chapter can be selected individually to supplement your 
study of regression analysis. Almost everyone will be interested in the model-
building discussion in the next section. The process of model building is funda-
mental to all regression applications, and, thus, we begin with those ideas. The 
section dealing with dummy variables and experimental design provides methods 
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for extending the model applications. Sections such as those dealing with 
heteroscedasticity and autocorrelations indicate how to deal with violations of 
assumptions.

Regression models are developed in business and economic applications 
to increase understanding and guide decisions. Developing these models 
requires a good understanding of the system and process being studied. 
Statistical theory provides a link between the underlying process and the 
data observed from that process. This linking of the problem context and 
good statistical analysis usually requires an interdisciplinary team that can 
provide expertise on all aspects of the problem. In the authors’ experience, 
these teams are successful only when all team members learn from each 
other—production specialists need to have a basic understanding of statisti-
cal procedures and statisticians need to understand the production process.

13.1 MODEL-BUILDING METHODOLOGY

We live in a complex world, and no one believes that we can precisely capture the com-
plexities of economic and business behavior in one or more equations. However, we can 
develop a general strategy for constructing regression models. Our analysis goal is to use 
a relatively simple model that provides a close approximation of the complex reality to 
provide useful insights. The art of model building recognizes the impossibility of repre-
senting all the many individual influences on a dependent variable and tries to pick out 
the most influential variables. Next, we develop a model to depict relationships between 
these factors. We want to build a simple model that is easy to interpret but not so oversim-
plified that important influences are ignored.

The process of statistical model building is problem specific. Our approach will de-
pend on what is known about the behavior of the quantities under study and what data 
are available. The various stages of model building are depicted in Figure 13.1.

Figure 13.1 The 
Stages of Statistical 
Model Building

Model Specification

Coefficient Estimation

Model Verification 

Interpretation and Inference

Model Specification

Model building begins with model specification. This includes selection of the depen-
dent and independent variables and the algebraic form of the model. We seek a specifi-
cation that provides an adequate representation of the system and process under study. 
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The  examples in Chapters 11 and 12 that dealt with retail sales, profitability of savings 
and loan associations, and cotton production all postulated a linear relationship between 
the dependent variable and the independent variables. Linear models often provide a 
good approximation for the problem of interest, but not always.

Model specification begins with an understanding of the theory and accumulated ex-
perience that provides the context for the model. We should carefully study the existing 
literature and learn what is known about the situation that we are working to model. This 
background study should include consultation with those that have knowledge of the 
context. Included would be those who have done research in the problem area and those 
who have developed similar models. For applied work we should also contact experi-
enced practitioners who have been operating and working with the system being mod-
eled. For example, if we want to model a production process, we need to learn, from the 
production manager, about how the process really works.

Model specification typically requires considerable thinking about the system and the 
process that underlies the problem. When we have complex problems involving a number 
of factors, it is important that we have interdisciplinary teams that will carefully analyze 
all aspects of the problem. It may be necessary to do additional research and perhaps in-
clude others that have important insights. Specification requires serious study and analysis. 
If not done properly, the entire model development will be seriously compromised. This 
is also the time when we need to determine the required data for the study. In many cases 
this may involve deciding if the available data—or data that could be obtained—will be 
adequate for model estimation. If we do not know what we want to do or understand the 
context of the problem, then sophisticated analysis tools and competent analysts will not 
give us the best possible answer. Inexperienced analysts often run computer-based com-
putations before thinking carefully about the problem. Professional analysts know that 
such an approach leads to inferior results.

Coefficient Estimation

A statistical model, once specified, typically involves a number of unknown coefficients, 
or parameters. The next stage of the model-building exercise is to employ available data 
in the estimation of these coefficients. Both point estimates and interval estimates should 
be obtained for the multiple regression model:

yi = b0 + b1x1i + b2x2i +  g + bKxKi + ei

From a statistical perspective, the regression model objectives can be divided into ei-
ther a prediction of the mean of the dependent variable, Y, or an estimation of one or more 
of the individual coefficients, bj. In many cases the objectives are not completely separate, 
but these alternatives identify important options.

If the objective is prediction, we want a model that has a small standard error of the 
estimate, se. We are not as concerned about correlated independent variables because we 
know that a number of different combinations of correlated variables will result in the 
same prediction precision. However, we do need to know that the correlations between 
independent variables will continue to hold in future populations. We also need to have a 
wide spread for the independent variables to ensure a small prediction variance over the 
desired range of the model application.

Alternatively, estimation of the slope coefficients leads us to consider a wider range of 
issues. The estimated standard deviation, sbj

, of the slope coefficients is influenced directly 
by the standard error of the model and inversely by the spread of the independent vari-
ables and the correlations between independent variables, as seen in Section 12.4. Multicol-
linearity—correlations between independent variables—is a critical issue, as we discuss 
in Section 13.5. Also, we see in Section 13.4 that failure to include important predictor 
variables results in a biased estimator of the coefficients for predictor variables included 
in the model. These two results lead to a classic statistical problem. Do we include a pre-
dictor variable that is highly correlated with the other predictor variables and, thus, avoid 
a biased coefficient estimate but also substantially increase the variance of the coefficient 
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estimator? Or do we exclude a correlated predictor variable to reduce the coefficient esti-
mator variance but increase the bias? Selecting the proper balance between estimator bias 
and variance is often a problem in applied model building.

Model Verification

When developing the model specification, we incorporate insights concerning the behavior 
of the underlying system and process. Certain simplifications and assumptions occur when 
translating these insights into algebraic forms and when selecting data for model estimation. 
Since some of these might prove untenable, it is important to check the adequacy of the model.

After estimating a regression equation, we may find that the estimates do not make 
sense, given what we know about the process. For example, suppose the model indicates 
that the demand for cars increases as prices increase, which is counter to basic economic 
theory. Such a result may occur because of inadequate data or because of some high cor-
relations between price and other predictor variables. These are possible reasons for the 
wrong coefficient sign. But the problem may also result from faulty model specification. 
Failure to include the proper set of predictor variables can lead to coefficient bias and in-
correct coefficient signs. We also need to check the assumptions made about the random 
variables in the model. For example, the basic regression assumptions state that the error 
terms all have the same variance and are uncorrelated with one another. In Sections 13.6 
and 13.7 we see how these assumptions can be checked by using the available data.

If we find implausible results, then it is necessary to examine our assumptions, model 
specification, and the data. This may lead us to consider a different model specification. 
Thus, in Figure 13.1 we indicate a feedback loop in the model-building process. As we 
develop experience with model building and other difficult problem solving, we will dis-
cover that these processes tend to be iterative, with considerable cycling back to earlier 
stages until a satisfactory model and problem solution are developed.

Model Interpretation and Inference

Once a model has been constructed, it can be used to learn something about the system 
and process being studied. In regression analysis this may involve finding confidence in-
tervals for the model parameters, testing hypotheses of interest, or estimating future val-
ues of the dependent variable, given assumed values of the independent variables. It is 
important to recognize that inference of this sort is based on the assumption of appropri-
ate model specification and estimation. The more severe any specification or estimation 
errors, the less reliable any inferences derived from the estimated model.

We should also recognize that some of the results from our analysis using the avail-
able data may not agree with previous understandings. When this occurs, we will need to 
carefully compare our results with past understandings. Differences may result from a dif-
ferent or improper specification of the model, errors in the data, or some other shortcom-
ing. But we might also have discovered some important new results because of a superior 
problem specification or because of new data that represent a change in the environment 
being studied. In any case we must be prepared to either make corrections or present our 
new results in a logical manner.

13.2 DUMMY VARIABLES AND EXPERIMENTAL DESIGN

Dummy variables were introduced in Section 12.8 in applications involving regression 
models applied to two discrete categories of data. For example, we saw how they could be 
used to test for gender discrimination in the salary example.

In this section we expand the potential applications of dummy variables. First, we 
present an application in which a regression model is applied to more than two discrete 
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categories of data. Next, we show how dummy variables can be used to estimate the sea-
sonal effects on a regression model applied to time-series data. Finally, we show how 
dummy variables can be used to analyze data from experimental situations, which are 
defined by multiple-level categorical variables. We also provide an example that shows 
how dummy variables can be used for public policy analysis.

Example 13.1 Demand for Wool Products 
(Dummy Variable Model Analysis)

A senior marketing analyst for the American Wool Producers Association is interested 
in estimating the demand for wool products in various cities as a function of total dis-
posable income in the city. Data were gathered from 30 randomly selected Standard 
Metropolitan Statistical Areas (SMSAs). As a first step the analyst specifies a regression 
model for the relationship between sales and disposable income:

Y = b0 + b1X1

where X1 is the per capita annual disposable income for a city and Y is the per capita 
sales of wool products in the city. After some additional discussions, the analyst won-
ders if overall sales levels differ among different geographic regions: north, central, and 
south.

Solution The analysis begins by placing each of the cities in one of the three regions. 
Figure 13.2 is a scatter plot of per capita sales versus disposable income. The data 
appear to be separated into three distinct subgroups corresponding to geographic 
regions. Two dummy variables are used to identify each of the three regions:

North:  x2 = 0, x3 = 1
Central:  x2 = 1, x3 = 0
South:  x2 = 0, x3 = 0

Figure 13.2 Per Capita Wool Sales Versus Per Capita Disposable Income 
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In general, K distinct regions or subsets can be identified uniquely with K - 1 
dummy variables. If we try to use K dummy variables to represent K distinct subsets, 
then a linear relationship between predictor variables will result, and estimation of co-
efficients will be impossible, as discussed in Section 12.2. This is sometimes referred to 
as the “dummy variable trap.”

Shifts in the model constant could be estimated using the following model:

Y = b0 + b2X2 + b3X3 + b1X1
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Applying this model to the north, it becomes

 Y = b0 + b2102 + b3112 + b1X1

 = 1b0 + b32 + b1X1

In the central region we find the following:

 Y = b0 + b2112 + b3102 + b1X1

 = 1b0 + b22 + b1X1

Finally, for the southern region the model is as follows:

 Y = b0 + b2102 + b3102 + b1X1

 = b0 + b1X1

Summarizing these results, the constants for the various regions are as follows:

North:  b0 + b3
Central:  b0 + b2
South:  b0

This formulation defines the south as the “base” constant, with b3 and b2 defining the 
shift of the function for northern and central cities, respectively. Hypothesis tests, using 
the coefficient Student’s t statistic, could be used to determine if there are significant 
differences between the constants for the different regions compared, in this case, to the 
constant for the southern region. For additional regions, constants could be modeled by 
using dummy variables that continue this pattern. We could specify the dummy vari-
ables so that any level would be the base level to which the other levels are compared. 
In this problem specifying the south as the base condition is natural, given the problem 
objectives.

The model with differences in slope coefficients and constants is as follows:

 Y = b0 + b2X2 + b3X3 + 1b1 + b4X2 + b5X32X1

 = b0 + b2X2 + b3X3 + b1X1 + b4X2X1 + b5X3X1

Applying this model to the northern region, we see that

 Y = b0 + b2102 + b3112 + 1b1 + b4(02 + b51122X1

 = 1b0 + b32 + 1b1 + b52X1

For the central region the model is as follows:

 Y = b0 + b2112 + b3102 + 1b1 + b4(12 + b51022X1 
 = 1b0 + b22 + 1b1 + b42X1

Finally, for the southern region

 Y = b0 + b2102 + b3102 + 1b1 + b4(02 + b51022X1

 = b0 + b1X1

The X1 slope coefficients for cities in different regions are as follows:

North:  b1 + b5
Central:  b1 + b4
South:  b1

Again, the south is the base condition with slope b1. Hypothesis tests can be used to 
determine the statistical significance of slope coefficient differences compared to the 
base condition—in this case the southern region. Using this dummy variable regression 
model, the analyst can estimate the relationship between sales and disposable income 
by region of the country.
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Figure 13.3 Dummy Variable Multiple Regression Model to Estimate Per Capita 
Wool Consumption (Minitab Output) 

The regression equation is
Per Capita Wool Sales = 12.7 + 138 North X3 + 96.3 Central X2

Predictor
Constant
North X3
Central X2
Disposab
NorX3 Inc
CentX2 In

Coef
12.73
138.46
96.33

0.025231
0.016839
0.006085

StDev
27.74
39.22
39.22

0.002680
0.003790
0.003790

T
0.53
3.53
2.46
9.42
4.44
1.61

P
0.600
0.022
0.002
0.000
0.000
0.121

S = 12.17 R-Sq = 99.4% R-Sq(adj) = 99.2%

Analysis of Variance

Source
Regression
Residual Error
Total

DF
5
24
29

SS
553704

3555
557259

MS
110741

148

F
747.71

P
0.000

+ 0.0252 Disposable Income + 0.0168 NorX3Inc + 0.00608 CentX2Inc

Using the sample of 30 SMSAs divided equally among the three geographic re-
gions, a dummy variable multiple regression model was estimated using Minitab. The 
results are contained in Figure 13.3. From the regression model we can determine char-
acteristics of the wool purchase patterns. Conditional hypothesis tests of the form

 H0  :  bj = 0 �  bl � 0, l = 1, c, K, l � j

 H1  :  bi � 0 �  bl � 0, l = 1, c, K, l � j

can be used to determine the conditional effects of the various factors on the demand 
for wool. The coefficient for the X3 dummy variable, b3 = 138.46, indicates that peo-
ple in the north spend an average of $138.46 more than people in the south. Similarly, 
people in the central region spend an average of $96.33 more than people in the south. 
These coefficients are each conditionally significant. The coefficient for disposable 
income is 0.0252, indicating that for people in the south, each dollar of increased per 
capita income increases the purchase of wool products by 0.025, and this result is con-
ditionally significant. For people in the north, each dollar of increased income increases 
expenditure for wool products by 0.042 10.0252 + 0.01682, and the difference in the in-
creased slope is conditionally significant. The estimated rate of increase in purchase per 
dollar of increased income is also greater for people in the central region compared to 
the south. However, that difference is not conditionally significant. Using these results, 
sales by region can be predicted more precisely compared to a model that combines all 
regions and uses only per capita income.

Example 13.2 Forecasting Sale of Wool Products 
(Seasonal Dummy Variables)

After finishing the regional sales analysis, the analyst decided to study the relation-
ship between sales and disposable income using time-series data. After some discus-
sion he realized that sales are different for each quarter of the year. For example, during 
the fourth quarter, sales were high in anticipation of holiday-season gifts and colder 
weather. Your assistance with the study is requested.



558 Chapter 13 Additional Topics in Regression Analysis 

Experimental Design
Dummy variable regression can be used as a tool in experimental design 
work. The experiments have a single outcome variable that contains all the 
random error. Each experimental outcome is measured at discrete combina-
tions of experimental (independent) variables, Xj.

There is an important difference in philosophy for experimental designs 
in comparison to most of the problems we have considered. Experimental 
design attempts to identify causes for the changes in the dependent variable. 
This is done by prespecifying combinations of discrete independent variables 
at which the dependent variable will be measured. An important objective is 
to choose experimental points, defined by independent variables, that provide 
minimum variance estimators. The order in which the experiments are per-
formed is chosen randomly to avoid biases from variables not included in the 
experiment.

Solution After discussing the problem, you recommend that the four quarters for 
each year be represented by three dummy variables. In this way the multiple regression 
model can be used to estimate differences in sales between the different quarters. 
Specifically, you propose a structure that is similar to the regional dummy variable 
model:

First quarter:  x2 = 0, x3 = 0, x4 = 0
Second quarter:  x2 = 1, x3 = 0, x4 = 0
Third quarter:  x2 = 0, x3 = 1, x4 = 0
Fourth quarter:  x2 = 0, x3 = 0, x4 = 1

The dummy variable coefficients are estimates of shifts in the wool-consumption func-
tion between quarters in the following data model:

Y = b0 + b2X2 + b3X3 + b4X4 + b1X1

where Y is the total sales of wool products and X1 is disposable income. The constants 
for the various quarters are as follows:

First quarter:  b0
Second quarter:  b0 + b2
Third quarter:  b0 + b3
Fourth quarter:  b0 + b4

Experimental Design Models

Experimental design procedures have been a major area of statistical research and prac-
tice for a number of years. Early work dealt with agricultural research. The efforts of stat-
isticians such as R. A. Fisher and O. L. Davies in England during the 1920s provided the 
foundation for experimental design methodology and for statistical practice in general. 
Agricultural experiments require an entire growing season to obtain data. Thus, it was 
important to develop procedures that could answer a number of questions and ensure 
great precision. In addition, most of the experiments defined activity using variables with 
discrete as opposed to continuous levels. Experimental design methods have also been 
used extensively in the study of human behavior and in various industrial experiments. 
The recent emphasis on improving quality and productivity has spawned increased activ-
ity in this area of statistics, with important contributions from groups such as the Center 
for Quality and Productivity at the University of Wisconsin.
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Experimental outcomes, Y, are measured at specific combinations of levels for treat-
ment and blocking variables. A treatment variable represents a variable whose effect we 
are interested in estimating with minimum variance. For example, we might wish to 
know which of four different production machines will provide the highest productiv-
ity per hour. In that case the treatment is the production machines represented by a 
four-level categorical variable, Zj. A blocking variable represents a variable that is part 
of the environment, and, thus, we cannot preselect the variable level. But we want to 
include the level of the blocking variable in our model so that we can remove the vari-
ability in the outcome variable, Y, that is associated with different levels of the blocking 
variables. We can represent a K level treatment or blocking variable by using K - 1 
dummy variables. Let us consider a simple example that has one four-level treatment 
variable, Z1, and one three-level blocking variable, Z2. These variables could be rep-
resented by dummy variables, as shown in Table 13.1. Then, by using these dummy 
variables, the experimental design model could be estimated by the multiple regres-
sion model:

yi = b0 + b1x1i + b2x2i + b3x3i + b4x4i + b5x5i + ei 

Table 13.1 Example of Dummy Variable Specification for Treatment 
and Blocking Variables

Z1 X1 X2 X3

1 0 0 0

2 1 0 0

3 0 1 0

4 0 0 1

Z2 X4 X5

1 0 0

2 1 0

3 0 1

In this model, for example, the coefficient b3 is an estimate of the amount by which 
the productivity for treatment level 4 exceeds that for treatment level 1, for categori-
cal treatment variable, Z1. Of course, if b3 is negative, we know that treatment level 1 
has a higher productivity than treatment level 4. Following the logic of multiple re-
gression, we know that variables X4 and X5 have the effect of explaining some of the 
variability in Y and hence result in a smaller variance estimator. This model can easily 
be expanded to include several treatment variables simultaneously with several other 
blocking variables. In addition, if there is a continuous variable—for example, ambient 
temperature—that affects productivity, then that variable can also be added directly 
to the regression model. In many cases several replications of the basic design are con-
ducted to provide sufficient degrees of freedom for error. This process is demonstrated 
in Example 13.3.

Example 13.3 Worker-Training Program 
(Dummy Variable Model Specification)

Mary Cruz is the production manager for a large auto parts factory. She is interested 
in determining the effect of a new training program on worker productivity. Consider-
able research supports the conclusion that productivity is influenced by the machine 
type and by the amount of education a worker has received.
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Solution Mary defines the following variables for the experiment:

Y The number of units produced per 8-hour shift
Z1 The type of training

1. Traditional classroom lecture and film presentation
2. Interactive computer-assisted instruction (CAI)

Z2 Machine type

1. Machine type 1
2. Machine type 2
3. Machine type 3

Z3 Worker’s educational level

1. High school education
2. At least one year of post-high school education

The variable Z1 is called a treatment variable because the major study objective is an 
evaluation of the training program. The variables Z2 and Z3 are called blocking variables 
because they are included to help reduce or block out some of the unexplained vari-
ability. In this way the variance is reduced, and the test for the main treatment effects 
has greater power. The term blocking variable is a carryover from the agricultural experi-
ments where fields were separated into small blocks, each of which had different soil 
conditions. It is also possible to estimate the effect of these blocking variables. Thus, one 
does not lose information by calling certain variables blocking variables instead of treat-
ment variables.

Experimental design observations are predefined using the independent variables. 
Table 13.2 presents a listing of the observations with each observation designated using 
levels of the Z variables. In this design, which is called a full factorial design, there are 
12 observations, one for each combination of the treatment and blocking variables. The 
Yi observations represent the measured responses at each of the experimental condi-
tions. In the data, model Yi contains the effect of the treatment and blocking variables 
plus random error. In many experimental designs this pattern of 12 observations is rep-
licated (repeated) to provide more degrees of freedom for error and lower variance 
estimates of the effects of the design variables. This design can also be analyzed using 
analysis of variance procedures. However, we show here how the analysis can be per-
formed using dummy variable regression.

Table 13.2 Experimental Design for Productivity Study

PRODUCTION Y TRAINING Z1 MACHINE Z2 EDUCATION Z3

Y1 1 1 1

Y2 1 1 2

Y3 1 2 1

Y4 1 2 2

Y5 1 3 1

Y6 1 3 2

Y7 2 1 1

Y8 2 1 2

Y9 2 2 1

Y10 2 2 2

Y11 2 3 1

Y12 2 3 2



 13.2 Dummy Variables and Experimental Design 561

The levels for each of the three design variables—Z1, Z2, and Z3—can be expressed 
as a set of dummy variables. Define the following dummy variables:

 z1 = 1 S x1 = 0

 z1 = 2 S x1 = 1

 z2 = 1 S x2 = 0 and x3 = 0

 z2 = 2 S x2 = 1 and x3 = 0

 z2 = 3 S x2 = 0 and x3 = 1

 z3 = 1 S x4 = 0

 z3 = 2 S x4 = 1

Using these relationships, the experimental design model in Table 13.2, which uses the 
Z variables, can be represented by dummy variables, as shown in Table 13.3. Using 
these dummy variables, we can define a multiple regression model:

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4

Table 13.3 Experimental Design for Productivity Study Using Dummy Variables

PRODUCTIVITY Y X1 X2 X3 X4

Y1 0 0 0 0

Y2 0 0 0 1

Y3 0 1 0 0

Y4 0 1 0 1

Y5 0 0 1 0

Y6 0 0 1 1

Y7 1 0 0 0

Y8 1 0 0 1

Y9 1 1 0 0

Y10 1 1 0 1

Y11 1 0 1 0

Y12 1 0 1 1

The regression coefficients are estimated using the variables as previously speci-
fied. The 12 experiments, or observations, defined in Tables 13.2 and 13.3 are de-
fined as one replication of the experimental design. A replication contains all the 
individual experiments that are included in the experimental design. Often sev-
eral replications of the design are made to provide greater accuracy for the coef-
ficient estimates and to provide sufficient degrees of freedom for estimating the 
variance. In the dummy variable model we estimate four coefficients and a con-
stant, leaving (n - 4 - 1) degrees of freedom for estimating the variance. With 
one replication, n = 12, we have 7 degrees of freedom for estimating the variance. 
With two replications of the design, n = 24, we have 19 degrees of freedom for 
estimating the variance, and with three replications we have 31 degrees of free-
dom. Usually, at least 15 or 20 degrees of freedom are required to obtain stable 
estimates of variance. Using the definitions of the dummy variables, we find that 
the estimated regression coefficients are interpreted as follows:

1. b1 is the productivity increase for the new CAI training compared to the standard 
classroom training.

2. b2 is the productivity increase for machine type 2 compared to machine type 1.
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In this section we introduced experimental designs and their analysis using dummy 
variables. Experimental design is a major area for applied statistics that can be studied in 
many other courses and books. Statistical software, such as Minitab, typically contains an 
extensive set of routines for developing various sophisticated experimental design mod-
els. These should be used only after you have learned about their specific details and in-
terpretations. However, even with the introduction presented here, you have a powerful 
tool for handling some important productivity problems.

3. b3 is the productivity increase for machine type 3 compared to machine type 1.
4. b4 is the productivity increase for the post–high school education compared to high 

school alone.

Any of these “increases” could be negative, implying a decrease.
The significance of each of these effects can be tested using our standard 

hypothesis-testing procedures. Note that if an experimental observation is lost 
or fails, the same regression model can still be used to estimate the coefficients. 
However, we then have a larger variance, and, hence, the hypothesis tests have 
lower power.

It is also possible to add continuous variables or covariates to the model. Suppose 
that Mary suspects that the number of years of worker experience and the ambient tem-
perature also influence productivity. These two continuous variables can be measured 
for each experiment and added to the dummy variable regression model. The regres-
sion model then becomes

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b6X6

where X5 is the years of experience and X6 is the ambient temperature. If these latter 
variables are important, they will reduce the variance and increase the power of the 
hypothesis tests for the effects of other variables.

Another possible extension is the inclusion of interaction effects. Suppose that 
Mary suspects that the CAI training provides greater benefits for workers working 
with machine type 3. To test for this effect, she can include an interaction variable, 
X7 = X1X3. The values for X7 are the product of the X1 and the X3 variables. Thus, 
in Table 13.3 we would add a column for X7, which has 1s for the 11th and 12th ob-
servations and 0s for the remaining observations. If she also suspects that the CAI 
training benefits workers with more education, she can define another interaction 
variable, X8 = X1X4. This variable adds another column to Table 13.3 with 1s for 
the 8th, 10th, and 12th observations and 0s for the remaining observations. It is pos-
sible to add other variables and interaction terms. Thus, the number of options with 
these experimental designs is very large.

With all these additions the regression model is as follows:

Y = b0 + b1X1 + b2X2 + b3X3 + b4X4 + b5X5 + b6X6 + b7X7 + b8X8

In this equation there are eight coefficients and a constant to estimate, leaving 
only 3 degrees of freedom for estimating the variance if only one replication of 
the design is performed. In situations where measurements can be made accu-
rately and the various effects are large, this design, with even one replication, 
can provide useful information about the factors that influence productivity. In 
most cases more than one replication is desirable. More observations provide bet-
ter coefficient estimates and a smaller coefficient variance. However, in an indus-
trial situation, experiments may involve the entire factory and, thus, can be very 
expensive. Analysts try to maximize the understanding gained from each set of 
experiments.
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Applications of experimental design have become increasingly important in man-
ufacturing and other business operations. Experiments to identify variables related 
to increased production and decreased defects are important in efforts to improve 
production operations. The use of dummy variables and multiple regression for ex-
perimental design analysis extends the problem types that you can handle without 
learning additional analysis techniques. This is an important additional advantage for 
dummy variable procedures.

Public Sector Applications

Applications of dummy variable regression have become increasingly popular in nu-
merous areas of public sector research and policy analysis. Many of these projects 
make use of discrete policy options and work with specific subgroups. Many of these 
studies make use of extensive data files collected by government agencies as part of 
their programs to identify various public health and safety issues and to provide in-
formation for policy and legislative development. The following examples from pub-
lished research provides an indication of the kind of research pursued and the size of 
the studies.

Example 13.4 Food Source Makes a Difference 
in Diet Quality

In a study to examine the relationship between diet quality and source of food, Andrea 
Carlson and Shirley Gerrior (2006) analyzed data from 9,407 adults contained in the 
1994 Continuing Survey of Food Intake by Individuals (SFII) using the Healthy Eating 
Index as the measure of diet quality. The authors grouped the participants in 10 dif-
ferent groups, or clusters, based on where they purchased the food that they reported 
eating during a 24-hour period. Home Cookers represented 46.5% of the sample. They 
estimated a large multiple regression model that included nine sources of food intake 
represented as dummy variables with home cookers specified as the base condition. In 
addition they included a number of other variables that have been traditionally known 
to predict the quality of diet. These factors were included to reduce error variance and, 
thus, to provide more efficient coefficient estimators. For our purposes, this example 
indicates the extensive possibilities that result from carefully specified dummy variable 
regression models.

Example 13.5 Are Food Prices Lower 
at Discount Stores?

A study conducted by Ephraim Leibtag, Catherine Barker, and Paula Dutko at the 
Economic Research Service of the Department of Agriculture examined the effect 
of discount stores on retail food prices (Ephraim, Barker, Dutko, 2010). The study 
analyzed 2004–06 Nielsen Homescan data, which includes all food at-home pur-
chases for about 40,000 households in 52 markets and selected nonmetropolitan 
areas. The study compared price differences at the national and market level for 
four broad food groups—dairy, meat, fruits and vegetables, and grains. A linear 
regression model was used to control for other factors that may influence the av-
erage price for a given food item or group of foods, such as region and calendar 
quarter when purchased.
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Figure 13.4 Regression results for Yoplait Original Low-Fat Strawberry 
Yogurt 6 oz1, 2006

DEPENDENT VARIABLE:  
PRICE PER UPC PRODUCT 

PARAMETER 
ESTIMATE 

STANDARD 
ERROR 

 
t-STATISTIC

Independent variables:
Store format

Traditional stores Default store type
Nontraditional stores -0.011 0.001 -15.92
Drug/convenience stores  0.029 0.008 3.56

Region
East  Default region
Central -0.002 0.002 -1.07
South -0.002 0.002 -1.32 
West  0.003 0.002 1.82

Income  0.000 0.000 5.93

Household size -0.001 0.000 -3.39

Race
White Default race
Black  0.000 0.001 0.06
Asian  0.005 0.002 2.28
Other  0.001 0.002 0.38
Hispanic  0.002 0.002 -0.67

Quarter purchased

First Default quarter
Second  0.000 0.001 0.08
Third  0.001 0.001 1.14
Fourth  0.002 0.001 2.33

Constant  0.096 0.005 18.61

Note: Observations: 5910; R-squared: 0.1168; mean of the dependent variable: 0.092 (9.2 cents/ounce).
1As measured by Universal Product Code (UPC); oz =  ounce(s). 

Source: USDA, Economic Research Service estimates using Nielsen Homescan.

Nielsen Homescan data—2004–06—was used in the analysis. Homescan data 
is household-based scanner data in which households scan the UPC of each item 
after every food-shopping trip. For each of the years, the data sample includes 
about 40,000 households in 52 markets and selected nonmetro areas. In addition 
to describing each purchase’s product details, such as brand name and flavor, the 
data set includes household demographic information, such as income level and 
marital status.

A linear regression model was used to control for factors other than the store 
where the item was purchased. The model included region, time, household in-
come, size, and race. Dummy variables were used to control for other differences 
across space, time, and demographics. Household income used the midpoints of 
19 income levels ranging from below $5,000 to above $200,000 per year to con-
struct a continuous variable. The household-size variable is treated as continuous, 
ranging from one-person households to nine-person households. For the dummy 
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variables used in these regressions, the defaults are traditional for store type, East 
for region, White for race, and 1st quarter for quarter purchased. Almost all of the 
independent variables are significant for a majority of the regressions, with higher 
prices being associated with the East, higher incomes, and smaller households. An 
example of a regression at the UPC aggregation level for yogurt is presented in 
Figure 13.4. As in all of the national-level regressions in this study, we control 
for region, time, and demographics in order to estimate how much of a difference 
in prices can be explained by the store format chosen. In this yogurt UPC exam-
ple, we find that prices are 12 percent lower in nontraditional stores as compared 
with traditional stores and over 30 percent higher in drug and convenience stores. 
Other statistically significant determinants of price are income 1+ 2, household size 1 - 2, Asian 1+ 2, and 4th quarter 1+ 2. 

EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

Basic Exercises
13.1 Write the model specification and define the vari-

ables for a multiple regression model to predict col-
lege GPA as a function of entering SAT scores and 
the year in college: freshman, sophomore, junior, 
and senior.

13.2 Write the model specification and define the vari-
ables for a multiple regression model to predict 
wages in U.S. dollars as a function of years of ex-
perience and country of employment, indicated as 
Germany, Great Britain, Japan, United States, and 
Turkey.

13.3 Write the model specification and define the vari-
ables for a multiple regression model to predict the 
cost per unit produced as a function of factory type 
(indicated as classic technology, computer-con-
trolled machines, and computer-controlled material 
handling), and as a function of country (indicated 
as Colombia, South Africa, and Japan).

13.4 An economist wants to estimate a regression equation 
relating demand for a product 1Y2 to its price 1X12 
and income 1X22. It is to be based on 12 years of quar-
terly data. However, it is known that demand for this 
product is seasonal; that is, it is higher at certain times 
of the year than others.

a. One possibility for accounting for seasonality is to 
estimate the model

 y = b0 + b1x1 + b2x2 + b3x3 + b4x4 + b5x5
 +  b6x6 + e

where x3, x4, x5, and x6 are dummy variable values, 
with

x3 = 1 in first quarter of each year, 
   0 otherwise

x4 = 1 in second quarter of each year,  
    0 otherwise

x5 = 1 in third quarter of each year,  
    0 otherwise

x6 = 1 in fourth quarter of each year,  
    0 otherwise

Explain why this model cannot be estimated by 
least squares.

b. For a model that can be estimated is as follows:

 y = b0 + b1x1 + b2x2 + b3x3 + b4x4
 + b5x5 + e

interpret the coefficients on the dummy variables 
in the model.

Application Exercises

13.5 Sharon Parsons, president of Gourmet Box 
Mini Pizza, has asked for your assistance in 

developing a model that predicts the demand for 
the new snack lunch pizza named Pizza1. This 
product competes in a market with three other 
brands that are named B2, B3, and B4 for identifi-
cation. At present the products are sold by three 
major distribution chains, identified as 1, 2, and 3. 
These three chains have different market sizes, 
and, thus, sales for each distributor are likely to be 
different. The data file Market contains weekly 
data collected over the past 52 weeks from the 
three distribution chains. The variables in the data 
file are defined next.

Use multiple regression to develop a model that 
predicts the quantity of Pizza1 sold per week by each 
distributor. The model should contain only important 
predictor variables.
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Distributor Numerical identifier of the distributor 
1, 2, or 3

Weeknum Sequential number of the week in which 
data were collected

Sales Pizza1 Number of units of Pizza1 sold by the 
distributor during the week

Price Pizza1 Retail price for Pizza1 charged by the 
distributor during that week

Promotion Level of promotion for the week, designated 
as 0, no promotion; 1, television ad; 2, store 
display; 3, both television and store display

Sales B2 Number of units of brand 2 sold by the 
distributor during the week

Price B2 Retail price for brand 2 charged by the 
distributor during that week

Sales B3 Number of units of brand 3 sold by the 
distributor during the week

Price B3 Retail price for brand 3 charged by the 
distributor during that week

Sales B4 Number of units of brand 4 sold by the 
distributor during the week

Price B4 Retail price of brand 4 charged by the 
distributor during that week

 13.6 John Ramapujan is the plant manager for 
Kitchen Products, Inc. He has asked you to 

help ident i fy  worker  factors  that  inf luence 
 productivity. In particular, he is interested in gender 
differences, the effect of working on different shifts, 
and employee attitudes toward the present benefits 
plan provided by the company. As a first step in your 
project you have collected the time required to 
 complete the assembly of a new coffee grinder for a 
number of workers in the plant. In addition you have 
identified the workers, by gender 11@male, 2@female2,
shift 11@day, 2@afternoon, 3@night2, and How satisfied 
are you with employee benefits?

1 - Very dissatisfied
2 - Somewhat dissatisfied
3 - No opinion
4 - Somewhat satisfied
5 - Very satisfied

The data collected are a file named Completion Times. 
Prepare an appropriate analysis and write a short re-
port on the conclusions from your analysis.

 13.7 You have been asked to develop a multiple regression 
model to predict per capita sales of cold cereal in cit-
ies with populations over 100,000. As a first step you 
hold a meeting with the key marketing managers that 
have experience with cereal sales. From this meeting 
you discover that per capita sales are expected to be 
influenced by the cereal price, price of competing ce-
reals, mean per capita income, percentage of college 
graduates, mean annual temperature, and mean an-
nual rainfall. You also learn that the linear relationship 
between price and per capita sales is expected to have 
a different slope for cities east of the Mississippi River. 
Per capita sales are expected to be higher in cities with 
high and low per capita income compared to cities 
with intermediate per capita income. Per capita sales 

are also expected to be different in the following four 
sectors of the country: Northwest, Southwest, North-
east, Southeast.

Prepare a model specification whose coefficients 
can be estimated using multiple regression. Define 
each variable completely and indicate the math-
ematical form of the model. Discuss your specifi-
cation, indicate which variables you expect to be 
statistically significant, and explain the rationale for 
your expectation.

 13.8 Maxine Makitright, president of Good Parts, Ltd., has 
asked you to develop a model that predicts the number 
of defective parts per 8-hour work shift in her factory. 
She believes that there are differences among the three 
daily shifts and among the four raw-material suppli-
ers. In addition, higher production and a higher num-
ber of workers are thought to be related to increased 
number of defectives. Maxine visits the factory at vari-
ous times, including all three shifts, to observe opera-
tions and to offer operating advice. She has provided 
you with a list of the shifts that she has visited and 
wants to know if the number of defectives increases or 
decreases when she visits the factory.

Prepare a written description of how you would 
develop a model to estimate and test for the various 
factors that might influence the number of defective 
parts produced per shift. Carefully define each coeffi-
cient in your model and define the test you would use. 
Indicate how you would collect the data and how you 
would define each variable used in the model. Discuss 
the interpretations that you would make from your 
model specification.

 13.9 Custom Woodworking, Inc., has been in business for 
40 years. The company produces high-quality custom-
made wooden furniture and very high quality interior 
cabinet and interior woodwork for expensive homes 
and offices. It has been very successful in large part 
because of the highly skilled craftworkers, who design 
and produce its products in consultation with custom-
ers. Many of the company’s products have won na-
tional awards for quality design and artisanship. Each 
custom-made product is produced by a team of two or 
more craftworkers who first meet with the customer, 
prepare an initial design, review the design with the 
customer, and then build the product. Customers may 
also meet with the craftworkers at various times dur-
ing the production.

The craftworkers are well educated and have devel-
oped excellent woodworking skills. Most have liberal 
arts degrees and have trained with skilled craftwork-
ers. Employees are classified at three levels: 1, appren-
tice; 2, professional; and 3, master. Levels 2 and 3 pay 
higher wages, and workers typically move through the 
levels as they gain experience and skill. The company 
now has a diverse workforce, which includes white, 
black, and Latino workers and both men and women. 
When the business started 40 years ago, all workers 
were white males. About 20 years ago the company 
began to hire black and Latino craftworkers, and about 
10 years ago they hired women craftworkers. The 
white male workers tend to be overrepresented in the  
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13.3  LAGGED VALUES OF THE DEPENDENT VARIABLE  
AS REGRESSORS

Lagged values of the dependent variable are an important topic when time-series data are 
analyzed—that is, when measurements are taken over time. For example, we might have 
monthly observations, quarterly observations, or annual observations. Economists regularly 
use time-series variables such as interest rates, inflation measures, aggregate investment, 
and aggregate consumption for various analysis and modeling projects. We specify time- 
series observations using the subscript t to denote time instead of the i used to denote 
cross-section data. Thus, a multiple regression model would be as follows:

yt = b0 + btx1t + b2x2t +  g + bKxKt + et

In many time-series applications the dependent variable in time period t is also often 
related to the value taken by this variable in the previous time period—that is, to yt-1. 
The value of the dependent variable in an earlier time period is called a lagged dependent 
variable.

higher job classifications because, in part, they have the 
most experience. At present, the workforce contains 
40% white males, 30% black and Latino males, 15% 
white females, and 15% black and Latino females.

Recently, serious concerns have been expressed 
concerning wage discrimination. Specifically, it is al-
leged that women and nonwhite workers are not re-
ceiving fair compensation based on their experience. 
The company management claims that every person is 
paid fairly based on years of experience, job classifica-
tion level, and individual ability. It claims that there 
are no differences in wages based on either race or 
gender in terms of either base wage or increment for 
each year of experience.

Explain how you would carry out an analysis to 
determine if management’s claim is true. Show the 
details of your analysis and provide a clear rationale. 
Indicate the data that should be collected and the 
names and descriptions of the variables you will use 
in the analysis. Clearly indicate the statistical tests that 
would be used to determine the true situation and in-
dicate the decision rules based on the hypothesis tests 
and results from the data.

 13.10 You have been asked to serve as a consultant and expert 
witness for a wage-discrimination lawsuit. A group 
of Latino and black women have filed the suit against 
their company, Amalgamated Distributors, Inc. The 
women, who have between 5 and 25 years of service 

with the company, allege that the average rate of their 
annual wage increase has been significantly less than 
that of a group of white males and a group of white fe-
males. The jobs for all three groups contain a variety of 
administrative, analytical, and managerial components. 
All the employees began with a bachelor’s degree, and 
years of experience is an important factor for predicting 
job performance and worker productivity. You have 
been provided with the present monthly wages and the 
years of experience for all workers in the three groups. 
In addition, the data indicate those in all three groups 
who have obtained an MBA degree. Note that you do 
not perform any data analysis for this problem.

a. Develop a statistical model and analysis that can 
be used to analyze the data. Indicate hypothesis 
tests that can be used to provide strong evidence of 
wage discrimination if wage discrimination exists. 
The company has also hired a statistician as a con-
sultant and expert witness. Describe your analysis 
completely and clearly.

b. Assume that your hypothesis tests result in strong 
evidence that supports your clients’ claim. Briefly 
summarize the key points that you will make in 
your expert witness testimony to the court. The com-
pany’s lawyer can be expected to cross-examine you 
with the help of a statistician who teaches statistics 
at a prestigious liberal arts college.

Regressions Involving A Lagged Dependent Variable
Consider the following regression model linking a dependent variable, Y, K in-
dependent variables and a lagged dependent variable:

 yt = b0 + btx1t + b2x2t +  g + bKxKt + gyt - 1 + et (13.1)
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Example 13.6 Advertising Expenditures 
as a Function of Retail Sales (Lagged Variable 
Regression Model)

A researcher was interested in forecasting advertising expenditures as a function of 
retail sales, while knowing that the previous year’s advertising also had an influence.

Solution It is believed that local advertising per household depends on retail sales 
per household. Also, since advertisers may be unwilling or unable to adjust their 
plans to sudden changes in the level of retail sales, the value of local advertising 
expenditures per household in the previous year was added to the model. Thus, 
advertising expenditures in the current year are related to retail sales 1xt2 in the 
current year and advertising expenditures 1yt-12 in the previous year. The model to 
be fitted is then

yt = b0 + b1xt + gyt-1 + et

where

yt = local advertising per household in year t
xt = retail sales per household in year t

where b0, b1, c , bK, g are fixed coefficients. By using data generated by this 
model,

1. The coefficients b0, b1, c , bK, g can be estimated by least squares in 
the usual manner.

2. Confidence intervals and hypothesis tests for the regression coefficients 
can be computed using the same procedure that is used for the ordinary 
multiple regression model. (Strictly speaking, when the regression equa-
tion contains a lagged dependent variable, these procedures are only 
approximately valid. The quality of the approximation improves, all other 
things being equal, as the number of sample observations increases.)

3. An increase of 1 unit in the independent variable Xj in time period t, with 
all other independent variables held fixed, leads to an expected increase 
in the dependent variable of bj in period t, bjg in period 1t + 12, bjg

2 in 
period 1t + 22, bjg

3 in period 1t + 32, and so on. The total expected in-
crease over all current and future time periods is as follows:

bj11 - g2.
4. Caution should be expressed when using confidence intervals and hy-

pothesis tests with time-series data. There is the possibility that the equa-
tion errors, ei, are no longer independent of one another. We consider 
this in Section 13.7 under autocorrelations. In particular, when the errors 
are correlated, the coefficient estimates are unbiased, but not efficient. 
Thus, confidence intervals and hypothesis tests are no longer valid. 
Econometricians have developed procedures for obtaining estimates un-
der these conditions, and these are introduced in Section 13.7.

Example 13.6 illustrates the calculation of regression estimates and inference based 
on the fitted regression equation when the model includes a lagged dependent variable. 
(Dhalla, 1979).
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The data for advertising and retail sales are stored in a data file labeled Advertising Re-
tail. The lagged value yt-1 can be generated using the lag function in your statistical package. 
Observation 1 for the lagged variable is omitted, and the data set has only 21 remaining ob-
servations. This is always the case when lagged variables are created. Of course, you might 
have access to data from the previous year—year 0 in this example—and that value could 
replace the missing value. The data are now ready for you to run multiple regression using 
the conventional procedures. The resulting regression output is shown in Figure 13.5.

Figure 13.5 Advertising Expenditure as a Function of Retail Sales and Lagged 
Advertising Expenditure (Minitab Output)

The regression equation is
Advertising Y(t) = -43.8 + 0.0188 Retail Sales X(t) + 0.479 lag advertising

Predictor
Constant
Retail S
lag adve

Coef
-43.766

0.018777
0.47906

SE Coef
9.843

0.002855
0.08732

T
-4.45
6.58
5.49

P
0.000
0.000
0.000

S = 3.451 R-Sq = 96.3% R-Sq(adj) = 95.9%

Analysis of Variance

Source
Regression
Residual Error
Total

DF
2

18
20

SS
5559.1
214.3
5773.4

Source
Retail S
lag adve

Unusual observations

R denotes an observation with a large standardized residual

DF
1
1

Seq SS
5200.7
358.4

MS
2779.5

11.9

F
233.43

P
0.000

obs
4

20

Retail S
5507
6394

Advertis
119.220
145.370

Fit
112.716
151.853

SE Fit
1.222
1.774

Residual
6.504
-6.483

St Resid
2.02R
-2.19R

21 cases used 1 cases contain missing values

The resulting regression for this problem (with the first observation eliminated) is as follows:

 yn = -43.8 + 0.0188xt10.00292 + 0.479yt-110.0872
The numbers below the regression coefficients are the coefficient standard deviations. 
The Student’s t statistic for each coefficient is quite large, and the resulting p-values are 
0.00, indicating that we can reject the null hypothesis that the coefficients are 0. With 18 
degrees of freedom for error, the critical value for a Student’s t statistic for a two-tailed 
hypothesis with a = 0.05 is t = 2.101.

In time-series models the coefficient of determination, R2, can be somewhat mis-
leading. For example, the high value of R2 = 96.3% in the present problem does not 
necessarily indicate a strong relationship between local advertising and retail sales. 
Rather, it is a well-known empirical fact that the time plots of many business and eco-
nomic time series exhibit a rather smooth evolutionary pattern over time. This fact 
alone is enough to ensure a high value for the coefficient of determination when a 
lagged dependent variable is included in the regression model. As a practical matter, 
you are advised to pay relatively little attention to the value of R2 for such models.

The estimated regression for this problem can be interpreted as follows. Suppose that 
retail sales per household increase by $1 in the current year. The expected impact on local 
advertising per household is an increase of 0.0188 in the current year, a further increase of10.479210.01882 = +0.0090
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in 1 year, a further increase of10.4792210.01882 = +0.0043
in 2 years, and so on. The total effect on all future advertising expenditures per house-
hold is an expected increase of

0.0188
1 - 0.479

= +0.0361

Thus, we see that the expected effect of an increase in sales is an immediate increase 
in advertising expenditures, a smaller increase in the following year, a yet smaller in-
crease 2 years ahead, and so on. Figure 13.6 illustrates this geometrically decreasing 
effect of an increase in sales in the current year on advertising in future years.

Figure 13.6 Expected Future Increases in Local Advertising per Household
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EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

Basic Exercises
 13.11 Consider the following models estimated using regres-

sion analysis applied to time-series data. What is the 
long-term effect of a 1-unit increase in x in period t?

a. yt = 10 + 2xt + 0.34yt - 1
b. yt = 10 + 2.5xt + 0.24yt - 1
c. yt = 10 + 2xt + 0.64yt - 1
d. yt = 10 + 4.3xt + 0.34yt - 1

 13.12 A market researcher is interested in the average amount 
of money spent per year by college students on cloth-
ing. From 25 years of annual data, the following esti-
mated regression was obtained through least squares:

 ynt = 50.72 + 0.142x1t10.0472 + 0.027x2t10.00212 + 0.432yt-110.1362
where

 y = expenditure per student,  in dollars, 
 on clothes

 x1 = disposable income per student,  in dollars, 
 after the payment of tuition,  fees, 
 and room and board

 x2 = index of advertising,  aimed at the student
  market,  on clothes

The numbers in parentheses below the coefficients are 
the coefficient standard errors.

a. Test, at the 5% level against the obvious one-sided 
alternative, the null hypothesis that, all else being 
equal, advertising does not affect expenditures on 
clothes in this market.

b. Find a 95% confidence interval for the coefficient 
on x1 in the population regression.

c. With advertising held fixed, what would be 
the expected impact over time of a $1 increase 
in disposable income per student on clothing 
expenditure?

Application Exercises
 13.13 Use the data from the Retail Sales file to esti-

mate the regression model

yt = b0 + b1xt + g yt - 1 + et

and test the null hypothesis that g = 0, where

yt = retail sales per household

xt = disposable income per household
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13.4 SPECIFICATION BIAS

The specification of a statistical model that adequately depicts real-world behavior is a deli-
cate and difficult task. We know that no simple model can describe perfectly the nature of 
a process and the determinants of process outcomes. Our objective in model building is to 
discover a straightforward formulation that adequately models the underlying process for the 
questions of interest. However, we should also note that there are certain cases where substan-
tial divergence of the model from reality can result in conclusions that are seriously in error.

We have seen previously some techniques for specifying a model that more appropri-
ately models the process. Our use of dummy variables in Sections 12.8 and 13.2 and trans-
formations of nonlinear models to linear forms in Section 12.7 are important examples. In 
this section we consider the implications of not including important predictor variables in 
our regression model.

In formulating a regression model, an investigator attempts to relate the dependent 
variable of interest to all of its important independent variables. Thus, if we adopt a linear 
model, we want to include as independent variables all variables that might markedly in-
fluence the dependent variable of interest. In formulating the regression model

y = b0 + b1x1 + b2x2 + g + bKxK + e

we implicitly assume that the set of independent variables, X1, X2, c, XK, contains all 
quantities that significantly affect the behavior of the dependent variable, Y. Realistically 
there are likely to be additional variables that in any real applied problem also affect the 
dependent variable. The joint influence of these factors is absorbed within the error term, 
ei. However, a serious problem can occur if an important variable is omitted from the list 
of independent variables.

Bias from Excluding Significant Predictor Variables
When significant predictor variables are omitted from the model, the least 
squares estimates of coefficients included in the model are usually biased, and 
the usual inferential statements from hypothesis tests or confidence intervals 
can be seriously misleading. In addition, the estimated model error includes 

 13.14 The data file Money UK contains observations 
from the United Kingdom on the quantity of 

money in millions of pounds 1Y2; income, in millions 
of pounds 1X12; and the local authority interest rate 1X22. Estimate the model (Mills 1978)

yt = b0 + b1x1t + b2x2t + gyt - 1 + et

and write a report on your findings.
 13.15 The data file Pension Funds contains data on the 

market return (X) of stocks and the percentage (Y) 
of portfolios in common stocks at market value at the end 
of the year for private pension funds. Estimate the model

yt = b0 + b1xt + gyt - 1 + et

and write a report on your findings.
 13.16 The data file Income Canada shows quarterly 

observations on income (Y) and money supply 
(X) in Canada. Estimate the model (Hsiao 1979)

yt = b0 + b1xt + gyt - 1 + et

and write a report on your findings.

 13.17 The data file Births Australia shows annual 
 observations on the first confinement resulting 

in a live birth of the current marriage (Y) and the num-
ber of first marriages (for females) in the previous year 
(X) in Australia. Estimate the model (McDonald 1981)

yt = b0 + b1xt + gyt - 1 + et

and write a report on your findings.
 13.18 The data file Thailand Consumption shows 

29 annual observations on private consumption 
(Y) and disposable income (X) in Thailand. Fit the 
 regression model

log yt = b0 + b1log x1t + glog yt - 1 + et

and write a report on your findings.
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A simple example involves the retail market for gasoline. Suppose that you are the 
owner of store A, which sells gasoline, and that store B, 50 yards down the street, also 
sells gasoline. You strongly believe that if you lowered your price, unit sales would in-
crease, and if you raised your price, unit sales would decrease. But if store B raised and 
lowered its price, the change in your unit sales would also be influenced by the price set 
at store B. Thus, if you ignored the prices set by store B and considered only your prices 
in attempting to predict unit sales, you would usually have large errors in your estimate 
of the relationship between your price and your unit sales. First, we will show this result 
mathematically and then present a numerical example.

We illustrate how the bias in estimating regression coefficients results by showing the 
effect of omitting a variable from a model with two independent variables:

y = b0 + b1x1 + b2x2 + e

Suppose that in this situation the analyst leaves out variable x2 and instead estimates the 
following regression model:

y = a0 + a1x1 + m

Note that we have used two different symbols to emphasize the fact that the coefficient es-
timators will be different. For the simple regression model the estimator for the coefficient 
of x1 is as follows:

an1 =
a
n

i=1
1x1i - x12yi

a
n

i=1
1x1i - x122

By substituting the correct model with two predictor variables and determining the ex-
pected value, we find that

E3an14 = E≥ ani=1
1x1i - x12yi

a
n

i=1
1x1i - x122 ¥ = E≥ ani=1

1x1i - x121b0 + b1x1i + b2x2i + ei2
a
n

i=1
1x1i - x122 ¥

When we compute the expected value, we find that

E3an14 = b1 + b2≥ a
n

i=1
1x1i -  x12x2i

a
n

i=1
1x1i -  x122 ¥

Thus, we see that the coefficient of the X1 variable is biased unless the correlation between 
X1 and X2 is 0.

The previous mathematical results show the bias in coefficient estimates that occurs 
when an important variable is omitted. In Chapter 12 we showed mathematically and 
intuitively that the coefficient estimates in a multiple regression model are influenced by 
all the independent variables included in the model. Thus, it follows that if we omit an 
important independent variable, then the estimated coefficients of the remaining vari-
ables will be different. Example 13.7 shows this result numerically and should be carefully 
studied.

the effect of the missing variables and, thus, is larger. In the rare case where 
omitted variables are uncorrelated with the other independent variables, this 
bias in the estimation of coefficients does not occur.
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This example nicely illustrates the point. If an important explanatory variable is not in-
cluded in the regression model, any conclusions drawn about the effects of other indepen-
dent variables can be seriously misleading. In this particular case we have seen that adding 
a relevant variable could well alter the conclusion of a significant negative association to 
that of a significant positive association. Further insight can be gained from inspection of the 
data in Table 12.1. Over the latter part of the period, at least, the profit margin fell and net 
revenue per dollar rose, suggesting a negative association between these variables. How-
ever, a further look at the data reveals an increase in the number of offices over this same 
period, suggesting the possibility that this factor could be the cause of the declining profit 
margin. The only legitimate way to disentangle the separate effects of the two independent 
variables on the dependent variable is to model them jointly in a regression equation. This 
example illustrates the importance of using the multiple regression model rather than sim-
ple linear regression equations when there is more than one relevant independent variable.

Example 13.7 Savings and Loan Regression Model 
with Omitted Variable (Model Specification Error)

Consider the savings and loan example used in Chapter 12. In that example the annual 
percentage profit margin 1Y2 of savings and loan associations was regressed on their 
net revenue per deposit dollar 1X12 and the number of offices 1X22. In  Example 12.3 we 
estimated the regression coefficients and found that the model was as follows:

 yn = 1.565 + 0.237x110.05552 - 0.000249x210.00003202  R2 = 0.865

One conclusion that follows from this analysis is that for a fixed number of offices, a 
1-unit increase in net revenue per deposit dollar leads to an expected increase of 
0.237 unit in profit margin. What would happen if we regressed profit margin on only 
the net revenue per deposit dollar using the data stored in the file Savings and Loan?

Solution Using the data, we ran the regression of profit margin (Y) on net revenue 
per deposit dollar 1X12 and found the model was as follows:

 yn = 1.326 - 0.169x110.0362  R2 = 0.50

Comparing the two fitted models, we notice that one consequence of ignoring X2 is that 
the percent explained variability, R2, is substantially reduced.

There is, however, a more serious effect on the coefficient of net revenue per dollar. 
In the multiple regression model a 1-unit increase in net revenue increased profit by 
0.237, whereas in the simple regression model the effect was a decrease of 0.169. This 
result is clearly counterintuitive—we should not expect an increase in net revenue to 
decrease profit margin. In both models we would reject the null hypothesis that there is 
not a relationship. Here, we see the result of the biased estimator for the coefficient that 
occurs when a significant variable, X2, is not included in the model. Without including 
the conditional effect of the number of offices, we obtain a biased estimator.

EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

Basic Exercises
 13.19 Suppose that the true linear model for a process was

Y = b0 + b1X1 + b2X2 + b3X3

and you incorrectly estimated the model

Y = a0 + a1X2

Interpret and contrast the coefficients for X2 in the two 
models. Show the bias that results from using the sec-
ond model.
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13.5 MULTICOLLINEARITY

If a regression model is correctly specified and the assumptions are satisfied, the least 
squares estimates are the best that can be achieved. Nevertheless, in some circumstances 
they may not be very useful.

To illustrate, suppose that we wish to develop a model to predict unit sales as a func-
tion of our price and the competitor’s price. Imagine, now, that you are in the fortunate 
position of the laboratory scientist and that you are able to design the experiment to study 
this problem. The best approach to selecting observations depends somewhat on the ob-
jectives of the analysis, but there are best strategies.

There are, however, choices that we would not make. For example, we would not 
choose the same values of the independent variables for all the observations. Another 
poor choice would be to select independent variables that are highly correlated. In Section 
12.2 we saw that it would be impossible to estimate the coefficients if the independent 
variables were perfectly correlated. And in Section 12.4 we saw that the variance of coef-
ficient estimators increases as the correlation moves away from 0. In Figure 13.7 we see 
examples of perfect correlation between the variables X1 and X2. From these plots we see 

 13.20 Suppose that a regression relationship is given by the 
following:

Y = b0 + b1X1 + b2X2 + e

If the simple linear regression of Y on X1 is estimated 
from a sample of n observations, the resulting slope 
estimate is generally biased for b1. However, in the 
special case where the sample correlation between X1 
and X2 is 0, this will not be so. In fact, in that case the 
same estimate results whether or not X2 is included in 
the regression equation.

a. Explain verbally why this statement is true.
b. Show algebraically that this statement is true.

Application Exercises
 13.21 Transportation Research, Inc., has asked you to pre-

pare some multiple regression equations to estimate 
the effect of variables on fuel economy. The data for this 
study are contained in the data file Motors, and the depen-
dent variable is miles per gallon—milpgal—as established 
by the Department of Transportation certification.

a. Prepare a regression equation that uses vehicle 
horsepower—horspwer—and vehicle weight—

weight—as independent variables. Interpret the 
coefficients.

b. Prepare a second biased regression with vehicle 
weight not included. What can you conclude about 
the coefficient of horsepower?

 13.22 Use the data in the file Citydatr to estimate a 
regression equation that can be used to deter-

mine the marginal effect of the percent commercial 
property on the market value per owner-occupied 
residence (Hseval). Include the percent of owner- 
occupied residences (Homper), percent of industrial 
property (Indper), the median rooms per residence 
(sizehse), and per capita income (Incom 72) as addi-
tional predictor variables in your multiple regres-
sion equation. The variables are described in the 
Chapter 12 appendix. Indicate which of the variables 
are conditionally significant. Your final equation 
should include only significant variables. Run a sec-
ond regression with median rooms per residence ex-
cluded. Interpret the new coefficient for percent 
commercial property that results from the second 
 regression. Compare the two coefficients.
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Figure 13.7 Two 
Designs with Perfect 
Multicollinearity
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that changes in one variable are directly related to changes in the other variable. Now 
suppose that we were attempting to use independent variable values such as these to esti-
mate the coefficients of the regression model:

y = b0 + b1x1 + b2x2 + e

The futility of such a task is apparent. If a change in X1 occurs simultaneously with a 
change in X2, then we cannot tell which of the independent variables actually is related 
to the change in Y. If we want to assess the separate effects of the independent variables, 
it is essential that they not move exactly in unison through the experiment. The standard 
assumptions for multiple regression analysis exclude cases of perfect correlation between 
independent variables.

The use of the independent variables in Figure 13.7 would be a poor design choice. A 
slightly less extreme case is illustrated in Figure 13.8. Here, the design points do not lie on 
single straight lines but are very close to doing so. In this situation the results provide some 
information about the separate influences of the independent variables, but not very much. 
It will be possible to calculate least squares estimates of the coefficients, but these coefficient 
estimates will have high variance. In addition, the point estimate of a coefficient can be quite 
different from the actual mean value of the coefficient—even resulting in a coefficient esti-
mate that has an incorrect sign. As a result, the estimated coefficients will not be statistically 
significant and could be misleading even when the actual effect of the independent variable 
on the dependent variable might be quite strong. This phenomenon is referred to as multi-
collinearity. A classic example of multicollinearity often occurs when data from a competi-
tive product market are used to estimate the relationship between quantity sold and price 
when the competitor’s price is also included. Because both competitors are operating in the 
same market, they will tend to adjust prices when the competitor makes a price adjustment. 
Driving past several gasoline stations on an urban street makes this behavior quite clear. We 
also discussed the effects of correlated independent variables extensively in Chapter 12.

Figure 13.8
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In the vast majority of practical cases involving business and economic applications, 
we are not able to control the choice of variable observations. Rather, we are constrained 
to work with the particular data set that fate has given us. In this context, then, multicol-
linearity is a problem arising not from a poor choice of data but from the data that are 
available for our analysis. The savings and loan example in Chapter 12 had a high correla-
tion between the independent variables—but that was the reality of the problem environ-
ment. More generally, in regression equations involving several independent variables, 
the multicollinearity problem arises from patterns of strong intercorrelations among the 
independent variables. Perhaps the most frustrating aspect of the problem, which can be 
summarized as having data that are not very informative about the parameters of interest, 
is that typically little can be done about it. It is, however, still important to be aware of the 
problem and watch for its occurrence.
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There are a number of indicators of multicollinearity. First, of course, you should always 
examine a simple correlation matrix of the independent variables to determine if any of the 
independent variables are individually correlated. We did this in the extended application 
example in Section 12.9. Another indication of the likely presence of multicollinearity occurs 
when, taken as a group, a set of independent variables appears to exert considerable influ-
ence on the dependent variable, but when looked at separately, through tests of hypotheses, 
all appear individually to be insignificant. In this case a linear function of the several vari-
ables might be used to compute a new variable to replace several correlated variables. An-
other strategy is to regress individual independent variables on all the other independent 
variables in the model. This can indicate complex examples of multicollinearity. Given mul-
ticollinearity, it would be unwise in these circumstances to jump to the conclusion that a par-
ticular independent variable did not affect the dependent variable. Rather, it is preferable to 
acknowledge that the group as a whole is clearly influential, but the data are not sufficiently 
informative to allow the disentangling, with any precision, of its members’ separate effects.

Another related problem occurs if redundant or irrelevant predictor variables are in-
cluded in a model. If these unnecessary variables are correlated with the other predic-
tor variables—and they often are—then the variance of the coefficient estimates for the 
important variables will be increased, as noted in Section 12.4. As a result, the overall 
efficiency of the coefficient estimates will be reduced. Care should be taken to avoid in-
cluding irrelevant predictor variables.

There are several approaches that can be used in situations where multicollinearity is 
a problem. But they all require careful thinking and judgment about the objectives of the 
model and the problem environment that it represents. First, you can remove an indepen-
dent variable that is highly correlated with one or more other independent variables. This 
will reduce the variance of the coefficient estimate, but, as shown in Section 12.4, you could 
introduce a bias in the coefficient estimate if the omitted variable is important in the model. 
You might be able to construct a new independent variable that is a function of several 
highly correlated independent variables. You might be able to substitute a new indepen-
dent variable that represents the same influence but is not correlated with other indepen-
dent variables. None of these is always the perfect solution. Multicollinearity and omitted 
variables from the previous section are both issues that require good model specification 
based on good judgment, experience, and understanding of the problem context.

Indicators of Multicollinearity
Multicollinearity is often indicated when one or more of the following occur in 
a regression analysis:

a. Regression coefficients differ considerably from values indicated by 
theory or experience including having incorrect signs.

b. Coefficients of variables believed to be a strong influence have small 
Student’s t statistics indicating that their values do not differ from 0.

c. All the coefficient student t statistics are small, indicating no individual 
effect, and yet the overall F statistic indicates a strong effect for the total 
regression model.

d. High correlations between individual independent variables or one or 
more of the independent variables have a strong linear regression rela-
tionship to the other independent variables or a combination of both.

Corrections for Multicollinearity

a. Remove one or more of the highly correlated independent variables. But, as 
shown in Section 13.4, this might lead to a bias in coefficient estimation.
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b. Change the model specification, including possibly a new independent 
variable that is a function of several correlated independent variables.

c. Obtain additional data that do not have the same strong correlations 
between the independent variables.

Note that you may not find that any of these corrections work and, thus, your 
regression model may not be suitable for its intended purpose. Consequently, 
a new analysis strategy may be needed.

EXERCISES

Application Exercises
 13.23 In the regression model

Y = b0 + b1X1 + b2X2 + e

the extent of any multicollinearity can be evaluated 
by finding the correlation between X1 and X2 in the 
sample. Explain why this is so.

 13.24 An economist estimates the following regression model:

y = b0 + b1x1 + b2x2 + e

The estimates of the parameters b1 and b2 are not very 
large compared with their respective standard errors. 
But the size of the coefficient of determination indi-
cates quite a strong relationship between the depen-
dent variable and the pair of independent variables. 
Having obtained these results, the economist strongly 
suspects the presence of multicollinearity. Since his 
chief interest is in the influence of X1 on the depen-
dent variable, he decides that he will avoid the prob-
lem of multicollinearity by regressing Y on X1 alone. 
Comment on this strategy.

 13.25 Based on data from 63 counties, the following model 
was estimated by least squares:

 yn = 0.58 - 0.052x110.0192 - 0.005x210.0422   R2 = 0.17

where

  yn = growth rate in real gross domestic product
x1 = real income per capita
x2 =  average tax rate, as a proportion of gross na-

tional product

The numbers below the coefficients are the coefficient 
standard errors. After the independent variable X1, 
real income per capita, was dropped from the model, 
the regression of growth rate in real gross domestic 
product on X2, average tax rate, was estimated. This 
yielded the following fitted model:

 yn = 0.060 - 0.074x210.0342   R2 = 0.072

Comment on this result.

13.6 HETEROSCEDASTICITY

The least squares estimation method and its inferential procedures are based on the stan-
dard regression assumptions. When these assumptions hold, least squares regression pro-
vides a powerful set of analysis tools. However, when one or more of these assumptions 
are violated, the estimated coefficients can be inefficient, and the inferences drawn can be 
misleading.

In this and the next section we consider the problems associated with the assumptions 
concerning the distribution of error terms ei in the following model:

yi = b0 + b1x1i + b2x2i +  g + bKxKi + ei

Specifically, we have assumed that these errors have uniform variance and are uncor-
related with each other. In the following section we examine the possibility of correlated 
errors. Here, we consider the assumption of uniform variance.

There are many examples that suggest the possibility of nonuniform variance. Con-
sider a situation in which we are interested in factors affecting output from a particular 
industry. We collect data from several different firms that include measures of output and 
likely predictor variables. If these firms have different sizes, then total output will vary. 
In addition, it is likely that the larger firms have greater variance in their output measure 
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compared to smaller firms. This results from the observation that there are more factors 
that affect the error terms in a large firm than there are in a small firm. Hence, the error 
terms will be larger in both positive and negative terms.

Models in which the error terms do not all have the same variance are said to exhibit 
heteroscedasticity. When this phenomenon is present, least squares is not the most ef-
ficient procedure for estimating the coefficients of the regression model. Moreover, the 
usual procedures for deriving confidence intervals and tests of hypotheses for these co-
efficients are no longer valid. Thus, we need procedures that test for heteroscedasticity. 
Most of the common procedures check the assumption of constant error variance against 
some plausible alternative. We may find that the size of the error variance is directly re-
lated to one of the independent predictor variables. Another possibility is that the vari-
ance increases with the expected value of the dependent variable.

In our estimated regression model we can obtain estimates of the expected values of 
the dependent variable by using the following:

yni = b0 + b1x1i + b2x2i +  g + bKxKi

And, in turn, we can estimate the error terms, ei, by the residuals:

ei = yi - yni

We often find that graphical techniques are useful for detecting heteroscedasticity. In 
practice, we prepare scatter plots of the residuals versus the independent variables and the 
predicted values yn, from the regression. For example, consider Figure 13.9, which shows pos-
sible plots of the residual, ei, against the independent variable X1. In part (a) of the figure, we 
see that the magnitude of the errors tends to increase with increasing values of X1, indicating 
that the error variances are not constant. This “fanning out” of the residuals will result in an 
inefficient estimate of the error term, but the effect can be removed by an appropriate transfor-
mation as we will show next. In contrast, part (b) of the figure shows no systematic relation-
ship between the errors and X1. Thus, in part (b) there is no evidence of nonuniform variance.

Figure 13.9
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In Chapter 12 we developed a least squares regression model to estimate the relation-
ship between the savings and loan profit margin 1Y2, the net revenue per deposit dollar 1X12, and the number of offices 1X22 through the following model:

yn = b0 + b1x1i + b2x2i

Consider the estimated regression model from Figure 12.3. We computed the residu-
als for all observations using the procedure in the extended example problem in Section 12.9. 
In Figures 13.10 and 13.11 we present scatter plots of the residuals versus the net revenue 
per deposit dollar and versus the number of offices. Examination of these plots indicates 
that there does not appear to be any relationship between the magnitude of the residuals 
and either of the independent variables. Figure 13.12 presents a scatter plot of the residu-
als versus the predicted value of the dependent variable. Again, there does not appear to 
be any relationship between the predicted value of Y and the magnitude of the residuals. 
Based on an examination of the residual plots, we find no evidence of heteroscedasticity.



 13.6 Heteroscedasticity 579

We now consider a more formal procedure for detecting heteroscedasticity and for 
estimating the coefficients of regression models when it is strongly suspected that the as-
sumption of constant error variance is violated. There are many possible forms for het-
eroscedasticity that can be detected with a variety of procedures. We will consider one 
such procedure that can be used to detect heteroscedasticity when the variance of the er-
ror term has a linear relationship with the predicted value of the dependent variable.

Test for Heteroscedasticity
Consider a regression model

yi = b0 + b1x1i + b2x2i +  g + bKxKi + ei
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linking a dependent variable to K independent variables and based on n sets 
of observations. Let b0, b1, c, bK be the least squares estimate of the model 
coefficients with the predicted values

yni = b0 + b1x1i + b2x2i +  g + bKxKi

and let the residuals from the fitted model be as follows:

ei = yi - yni

To test the null hypothesis that the error terms, ei, all have the same variance 
against the alternative that their variances depend on the expected values

yni = b0 + b1x1i + b2x2i +  g + bKxKi

we first estimate a simple regression. In this regression the dependent vari-
able is the square of the residuals—that is, e2

i —and the independent variable is 
the predicted value, yni,

 e i
2 = a0 + a1yin  (13.2)

Let R2 be the coefficient of determination for this auxiliary regression. Then, 
for a test of significance level a, the null hypothesis is rejected if nR2 is larger 
than x2

1,a, where x2
1,a is the critical value of the chi-square random variable with 

1 degree of freedom and probability of error a and n is the sample size.

We will provide an example of this test using the savings and loan example. A subset 
of the regression output from Minitab is shown in Figure 13.13. Minitab was used to com-
pute the residuals squared, which were then regressed on the predicted value.

Figure 13.13

Regression of 
Residual Squared 
on Predicted Value 
(Minitab Output)

The regression equation is
ResSquared = 0.00621 - 0.00550 FITS1

Predictor
Constant
FITS1

Coef
0.006211

-0.005503

SE Coef
0.002970
0.004327

T
2.09
-1.27

P
0.048
0.216

S = 0.002742 R-Sq = 6.6% R-Sq(adj) = 2.5%

Analysis of Variance

Source
Regression
Residual Error
Total

DF
1
23
24

SS
0.000012158
0.000172939
0.000185097

MS
0.000012158
0.000007519

F
1.62

P
0.216

From the regression of the squared residuals on the predicted values, we obtain the 
following estimated model:

e2 = 0.00621 - 0.0055010.004332 yn   R2 = 0.066

The regression includes n = 25 observations, and, thus, the test statistic is as follows:

nR2 = 125210.0662 = 1.65

From Appendix Table 7, we find, for a 10% significance level test,

x2
1,0.10 = 2.706

Therefore, we cannot reject the null hypothesis that the regression model has uniform 
variance over the predicted values. This confirms our initial conclusions based on examin-
ing the scatter plots of residuals in Figures 13.10, 13.11, and 13.12.
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Now suppose that we had rejected the null hypothesis that the variance was uniform. 
Then ordinary least squares would not be the appropriate estimation procedure for the ini-
tial model. There are a number of estimation strategies, depending on the nature of the non-
uniform error. Most procedures involve transforming the model variables so that the error
terms have a uniform magnitude over the range of the model. Consider the example where 
the variance of the error terms is directly proportional to the square of the expected value of 
the dependent variable. In this case we could approximate the model error term as

ei = ynidi

where di is a random variable with uniform variance over the range of the regression 
model. Using this error term, the regression model would be as follows:

yi = b0 + b1x1i + b2x2i +  g + bKxKi + ynidi

In this approximation the error term fans out, or increases linearly, with the expected 
value—implying that the variance increases with the square of the expected value. Here, 
we can obtain an error term whose magnitude is uniform over the model by dividing 
every term on both sides of the equation by yni. When this particular form is assumed, a 
simple two-stage procedure is used to estimate the parameters of the regression model. At 
the first stage the model is estimated by least squares in the usual way, and the predicted 
values, yni, of the dependent variable are recorded. At the second stage we estimate the 
regression equation

yi

yni
= b0 

1
yni

+ b1 
x1i

yni
+ b2 

x2i

yni
+  g + bK 

xKi

yni
+ di

with an error term that meets the standard regression assumptions. In this model we regress 
yi>yni on the independent variables 1>yni, x1i>yni, x2i>yni, c, xKi>yni. This model does not include 
a constant or Y-intercept term, and most statistical packages have an option that provides 
for coefficient estimates with the constant term excluded. The estimated coefficients are the 
estimates for the original model coefficients. Many additional similar procedures can be 
found in any good econometrics textbook under the heading of “weighted least squares.”

The appearance of heteroscedastic errors can also result if a linear regression model 
is estimated in circumstances where a log linear model is appropriate. When the process 
is such that a log linear model is appropriate, we should make the transformations and 
estimate a log linear model. Taking logarithms will dampen the influence of large obser-
vations, especially if the large observations result from percentage growth from previ-
ous states—an exponential growth pattern. The resulting model will often appear to be 
free from heteroscedasticity. Log linear models are often appropriate when the data under 
study are time series of economic variables, such as consumption, income, and money, 
that tend to grow exponentially over time.

EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

Application Exercises
 13.26 In Chapter 11, the regression of retail sales per 

household on disposable income per household 
was estimated by least squares. The data are given in 
Table 11.1, and Table 11.2 shows the residuals and the 
predicted values of the dependent variable. Use the data 
file Retail Sales. 

a. Graphically check for heteroscedasticity in the re-
gression errors.

b. Check for heteroscedasticity by using a formal 
test.

 13.27 Consider a regression model that uses 48 observations. 
Let ei denote the residuals from the fitted regression 
and yni be the in-sample predicted values of the depen-
dent variable. The least squares regression of e2

i  on yni 
has coefficient of determination 0.032. What can you 
conclude from this finding?

 13.28 The data file Economic Activity contains data 
for 50 states in the United States. Develop a 

multiple regression model to predict total retail sales 
for auto parts and dealers. Find two or three of the best 
predictor variables from those in the data file using the 
variable descriptions from the Chapter 11 appendix.

a. Compute the multiple regression model using the 
predictor variables selected. 
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13.7 AUTOCORRELATED ERRORS

In this section we examine the effects on the regression model if the error terms in a re-
gression model are correlated from one observation to the adjoining observations. Up to 
this point we have assumed that the random errors for our model are independent. How-
ever, in many business and economic problems we use time-series data. When time-series 
data are analyzed, the error term represents the effect of all factors, other than the inde-
pendent variables, that influence the dependent variable. In time-series data the behavior 
of many of these factors might be quite similar over several time periods, and the result 
would be a correlation between the error terms that are close together in time.

For example, suppose you were estimating consumption of durable goods as a function 
of disposable income, interest rate, and, possibly, some other variables. However, other fac-
tors such as future employment, world conflicts, global warming, and other similar influ-
ences would likely also affect consumption. Since these factors are not included as predictor 
variables in the model, their effect would be included in the error term. And it is likely that 
these effects would continue over several time periods and, thus, the error term would be 
correlated over several time periods. These correlations between error terms from adjacent 
time periods are common in many models constructed using time-series data.

To emphasize time-series observations, we will subscript the observations by t and 
write the regression model as follows:

yt = b0 + b1x1t + b2x2t +  g + bKxKt + et

The hypothesis tests and confidence intervals in multiple regression assume that the er-
rors are independent. If the errors are not independent, then the estimated standard er-
rors for the coefficients are biased. For example, it can be shown that if there is a positive 
correlation between the error terms from adjacent time-series observations, then the least 
squares estimate of the coefficient standard error is too small. As a result, the computed 
Student’s t statistic for the coefficient will be too large. This could lead us to conclude 
that certain coefficients are significantly different from 0—by rejecting the null hypothesis 
bj = 0—when, in fact, the null should not be rejected. In addition, estimated confidence 
intervals would be too narrow.

b. Graphically check for heteroscedasticity in the re-
gression errors.

c. Use a formal test to check for heteroscedasticity.

 13.29 You have been asked by East Anglica Realty, 
Ltd., to provide a linear model that will esti-

mate the selling price of homes as a function of family. 
There is particular concern for obtaining the most effi-
cient estimate of the relationship between income and 
house price. East Anglica has collected data on their 
sales experience over the past 5 years, and the data are 
contained in the file East Anglica Realty, Ltd.

a. Estimate the regression of house price on family 
income.

b. Graphically check for heteroscedasticity.
c. Use a formal test of hypothesis to check for 

heteroscedasticity.
d. If you establish that there is heteroscedasticity in (b) 

and (c), perform another regression that corrects for 
heteroscedasticity.

 13.30 Consider the following regression model:

yt = b0 + b1x1t + b2x2t +  g + bKxKt + et

Show that if

Var1e2 = Kx2
i  1K 7 02

then

Var c ei

xi
d = K

Discuss the possible relevance of this result in treating 
a form of heteroscedasticity.

 13.31 Refer to Exercise 13.14 and data file Money UK. 
Let ei denote the residuals from the fitted re-

gression and yni be the in-sample predicted values. The 
least squares regression of e2

i  on yni has coefficient of 
determination of 0.087. What can you conclude from 
this finding?

Let ei denote the residuals from the fitted regression 
and yni be the in-sample predicted values. Estimate the 
least squares regression of e2

i  on yni and compute the 
coefficient of determination. What can you conclude 
from this finding?
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It is, therefore, critically important in regressions with time-series data to test the hy-
pothesis that the error terms are not correlated with one another. Correlations between 
first-order errors through time are defined as autocorrelated errors. As we study this 
problem, it is useful to have in mind some autocorrelation structure. One appealing model 
is that the error in time t, et, is highly correlated with the error in the previous time period, 
et-1, but less correlated with errors two or more periods previous in the time series. We 
will define

Corr1et, et - 12 = r
where r is a correlation coefficient and, thus, exists over the range from –1 to +1, as dis-
cussed in Chapter 11. In most applications, we are most concerned about positive values 
of the correlation coefficient. For errors that are separated by l periods, the autocorrelation 
can be modeled as follows:

Corr1et, et - l2 = rl

As a result, the correlation decays rapidly as the number of periods of separation grows. 
Thus, the correlation between errors far apart in time is relatively weak, whereas that be-
tween errors closer to one another is possibly quite strong.

Now, if we assume that the errors et all have the same variance, it is possible to show 
that the autocorrelation structure corresponds to the model

et = ret - 1 + ut

where the random variable ut has a mean of 0 and a constant variance of s2 and is 
not autocorrelated. This is defined as the first-order autoregressive model of autocor-
related behavior. Looking at this equation, we see that the value taken by the error at 
time t, et, depends on its value in the previous time period (the strength of that depen-
dence being determined by the correlation coefficient r) and on a second random term 
mt. This model is illustrated in Figure 13.14, which shows time plots of errors gener-
ated by the model for values of r = 0, 0.3, 0.6, and 0.9. The case r = 0 corresponds to 
no autocorrelation in the errors. In part (a) of the figure, it can be seen that there is no 
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apparent pattern in the progression through time of the errors. The value taken by one 
does not influence the values of the others. As we move from relatively weak autocor-
relation 1r = 0.32 to quite strong autocorrelation 1r = 0.92, in parts (b), (c), and (d), 
the pattern that emerges through time of the errors becomes increasingly less jagged, 
so that in part (d) it is quite clear that an error is likely to be relatively close in value to 
its immediate neighbor.

Examination of Figure 13.14 suggests that graphical methods might be useful in de-
tecting the presence of autocorrelated errors. Ideally, we would like to plot the model 
errors, ei, but these are unknown, so we typically examine the plot of residuals from the 
regression model. In particular, we could examine a time plot of residuals, such as that 
shown in Figure 13.15, for the savings and loan regression. This time-series plot was pre-
pared using Minitab.

Examining the time series plot in Figure 13.15, we do not have strong evidence for 
autocorrelation in the residuals but instead the plot looks like jagged pattern shown in 
Figure 13.14(a). This evidence argues against autocorrelation. However, since the prob-
lem is so important, it is desirable to have a more formal test of the hypothesis of no au-
tocorrelation in the errors of a regression model.

The test that is most often used is the Durbin-Watson test, based on the model residu-
als, et. The test statistic, d, is calculated by

d =
a
n

t=2
1et - et - 122
a
n

t=1
e2

t

and the test procedure is described next.
We can show that the Durbin-Watson statistic can be written approximately as

d = 211 - r2
where r is the sample estimate of the population correlation, r, between adjacent errors. 
If the errors are not autocorrelated, then r is approximately 0 and d is approximately 2. 
In contrast, positive correlation leads to small values of d, with 0 being the lower limit, 
and negative correlation leads to large values of d, with 4 being the upper limit. There is 
a theoretical difficulty involved in basing tests for autocorrelated errors on the Durbin-
Watson statistic. The problem is that the actual sampling distribution of d, even when the 
hypothesis of no autocorrelation is true, depends on the particular values of the indepen-
dent variables. It is obviously infeasible to tabulate the distribution for every possible set 
of values of the independent variables. Fortunately, it is known that, whatever the inde-
pendent variables the distribution of d lies between the distributions of two other random 
variables whose percentage points can be tabulated. For tests of significance levels 1% and 
5%, cutoff points for these random variables are tabulated in Appendix Table 12. For vari-
ous combinations of n and K, the table gives values of dL and dU. The null hypothesis of 
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no autocorrelation is rejected against the alternative of positive autocorrelation if the cal-
culated d is less than dL. The null hypothesis is accepted if d is larger than dU and less than 
4 - dU, while the test is inconclusive if d lies between dL and dU. Finally, if the d statistic is 
greater than 4 - dL, we would conclude that there is negative autocorrelation. This com-
plex pattern is illustrated in Figure 13.16. 

Figure 13.16
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The Durbin-Watson Test
Consider the regression model

yt = b0 + b1x1t + b2x2t +  g + bKxKt + et

based on sets of n observations. We are interested in determining if the error 
terms are autocorrelated and follow a first-order autoregressive model

et = ret - 1 + ut

where ut is not autocorrelated.
The test of the null hypothesis of no autocorrelation,

H0  :  r = 0

is based on the Durbin-Watson statistic

 d =
a
n

t=2
1et - et - 122
a
n

t=1
e2

t

 (13.3)

where the et are the residuals when the regression equation is estimated by 
least squares. When the alternative hypothesis is of positive autocorrelation in 
errors—that is,

H1  :  r 7 0

the decision rule is as follows:

 Reject H0 if d 6 dL.

 Accept H0 if d 7 dU.

 Test inconclusive if dL 6 d 6 dU.

Here, dL and dU are tabulated for values of n and K and for significance levels 
of 1% and 5% in Appendix Table 12.

Occasionally, we want to test against the alternative of negative autocor-
relation—that is,

H1  :  r 6 0

Then the decision rule is as follows:

 Reject H0 if d 7 4 - dL.

 Accept H0 if d 6 4 - dU.

 Test inconclusive if 4 - dL 7 d 7 4 - dU.
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The Durbin-Watson d statistic can be computed by most computer programs in the 
regression procedure by request. Figure 13.17 shows the Minitab output for the savings 
and loan example with the Durbin-Watson d statistic computed. The computed Durbin-
Watson d statistic is 1.95, and from the appendix with a = 0.01, k = 2, and n = 25 the 
critical values are dL = 0.98 and dU = 1.30. Thus, H0  :  r = 0 cannot be rejected, and we 
conclude that the error terms are not autocorrelated.

Figure 13.17

Durbin-Watson d 
Statistic Calculation

The regression equation is
Y profit = 1.56 + 0.237 X1 revenue -0.000249 X2 offices

Predictor
Constant
X1 reven
X2 offic

Coef
1.56450
0.23720

-0.00024908

StDev
0.07940
0.05556

0.00003205

T
19.70
4.27
-7.77

P
0.000
0.000
0.000

S = 0.05330 R-Sq = 86.5% R-Sq(adj) = 85.3%

Analysis of Variance

Source
Regression
Residual Error
Total

DF
2
22
24

SS
0.40151
0.06250
0.46402

Durbin-Watson statistic = 1.95

MS
0.20076
0.00284

F
70.66

P
0.000

Estimation of Regressions with Autocorrelated Errors

When we conclude, based on the Durbin-Watson test, that we do have autocorrelated er-
rors, we need to modify the regression procedure to remove the effect of these autocorre-
lated errors. Typically, this is done by an appropriate transformation of the variables used 
in the regression estimation procedure. We develop the basic method in the steps that fol-
low. First, consider a multiple regression model with autocorrelated errors:

yt = b0 + b1x1t + b2x2t +  g + bKxKt + et

The same regression model at time t - 1 follows:

yt - 1 = b0 + b1x1t - 1 + b2x2t - 1 +  g + bKxKt - 1 + et - 1

Multiplying both sides of this equation by r, the correlation between adjacent errors gives 
the following:

ryt - 1 = b0r + b1rx1t - 1 + b2rx2t - 1 +  g + bKrxKt - 1 + ret - 1

Then we subtract this equation from the first equation to obtain

 yt - ryt - 1 = b011 - r2 + b11x1t - rx1t - 12 + b21x2t - rx2t - 12
 +  g + bK1xKt - rxKt - 12 + mt

where

ut = et - ret - 1

and the random variable ut has uniform variance and is not autocorrelated. We see that 
now we have a regression model linking the dependent variable 1yt - ryt-12 and the in-
dependent variables 1x1t - rx1,t-12, 1x2t - rx2,t-12, c, 1xKt - rxK,t-12. The parameters 
of this model are precisely the same as those of the original model except that the constant 
term is b011 - r2 instead of b0. More important is the fact that in this model the errors are 
not autocorrelated, and, thus, least squares multiple regression can be used to estimate the 
model coefficients. The least squares inferential procedures for confidence intervals and 
hypothesis tests are appropriate for this transformed model.
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Based on this analysis, we see that the problem of autocorrelated errors can be avoided 
by estimating the least squares regression using the dependent variable 1yt - ryt-12 and 
the independent variables 1x1t - rx1, t-12, 1x2t - rx2, t-12, c, 1xKt - rxK, t-12. Unfortu-
nately, this approach faces a problem in practice because we do not know the value of r. Var-
ious procedures for obtaining an estimate for r are used in different computer programs. 
Here, we demonstrate a simple procedure where we use

r = 1 -
d
2

to estimate r.

Estimation of Regression Models with  
Autocorrelated Errors
Suppose that we want to estimate the coefficients of the regression model

yt = b0 + b1x1t + b2x2t +  g + bKxKt + et

when the error term et is autocorrelated.
This can be accomplished in two stages, as follows:

1. Estimate the model by least squares, obtaining the Durbin-Watson d sta-
tistic and hence the estimate

 r = 1 -
d
2

 (13.4)

 of the autocorrelation parameter.
2. Estimate by least squares a second regression in which the dependent 

variable is 1yt - ryt-12 and the independent variables are 1x1t - rx1, t-12, 1x2t - rx2, t-12, c, 1xKt - rxK, t-12.
The parameters b1, b2, c , bK are estimated regression coefficients from this 
second model. An estimate of b0 is obtained by dividing the estimated inter-
cept for the second model by 11 - r2. Hypothesis tests and confidence inter-
vals for the regression coefficients can be carried out using the output from 
the second regression.

Example 13.8 Time-Series Regression Model 
(Regression Analysis with Correlated Errors)

In this extended example we demonstrate how to carry out a regression analysis, us-
ing Minitab, when the errors are autocorrelated. In this example we wish to develop a 
model that predicts the aggregate consumption of durable goods as a function of dis-
posable income and the federal funds interest rate.

Solution The data for this project are contained in a file named Macro2010. The 
variables for this data file are described in the chapter appendix. We will use the 
following variables:

CD Personal consumption expenditures: durable goods (2000 real dollars)
YPDI Disposable personal income (2000 real dollars)
FFED Federal funds effective rate

The data file contains quarterly data from 1947.1 (1st quarter) through 2008.2 (1st quar-
ter), but we wish to estimate the model using data from 1980.1 through 2008.1. Therefore, 
our first task is to obtain a subset of the larger data by using Minitab. We then run the  
multiple regression and obtain the output in Figure 13.18.
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Figure 13.18 Multiple Regression to Predict Consumption of Durables: Original 
Data (Minitab Output)

The regression equation is
Durable goods = - 755 + 0.223 Disposable Personal Income
                + 10.4 Federal Funds Rate

Predictor                       Coef   SE Coef       T      P
Constant                     -755.03     40.29  -18.74  0.000
Disposable Personal Income  0.223353  0.004958   45.05  0.000
Federal Funds Rate            10.439     1.998    5.22  0.000

S = 50.3072   R-Sq = 97.4%   R-Sq(adj) = 97.3%

Analysis of Variance

Source           DF        SS       MS        F      P
Regression        2  10241668  5120834  2023.39  0.000
Residual Error  110    278390     2531
Total           112  10520058

Source                      DF    Seq SS
Disposable Personal Income   1  10172578
Federal Funds Rate           1     69089

Unusual Observations

     Disposable
       Personal  Durable
Obs      Income    goods     Fit  SE Fit  Residual  St Resid
  6        3760   258.40  257.79   14.72      0.61      0.01 X
  7        3838   266.76  287.73   16.92    -20.96     -0.44 X
  8        3838   246.97  285.78   16.56    -38.81     -0.82 X

X denotes an observation whose X value gives it large leverage.

Durbin-Watson statistic = 0.201535

Regression Analysis: Durable good versus Disposable P, Federal Fund

The Durbin-Watson statistic for this model is 0.2015, indicating positive autocor-
relation. Thus, it is necessary to use transformations to obtain appropriate variables for 
running the regression. An estimated value for serial correlation, r, is computed using 
the relationship in Equation 13.4:

r = 1 -
d
2
= 1 -

0.20
2

= 0.90 

Transformed variables are then computed in Minitab using the estimated value 
r = 0.90. Since the transformation uses a lagged value of each variable, we lose the first 
observation in the data set. Figure 13.19 presents the regression model prepared using 
the modified variables.

Comparing the regression outputs in Figures 13.18 and 13.19 clearly indicates the 
problems associated with regression models that have autocorrelated errors. The first 
regression analysis is as follows:

 durable goods = -755 + 0.2231disposable personal income2
  + 10.41federal funds rate2

  R2 = 97.4%
  D.W. = 0.2015
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Figure 13.19 Regression Analysis Using Transformed Variables Without 
Autocorrelation (Minitab Output)

The regression equation is
Durable cons adj = - 51.8 + 0.195 Disposable Income adj - 0.93 Fed Funds Adj

112 cases used, 1 cases contain missing values

Predictor                 Coef  SE Coef      T      P
Constant               -51.820    7.599  -6.82  0.000
Disposable Income adj  0.19540  0.01124  17.38  0.000
Fed Funds Adj           -0.933    1.817  -0.51  0.609

S = 18.8067   R-Sq = 74.5%   R-Sq(adj) = 74.0%

Analysis of Variance

Source           DF      SS     MS       F      P
Regression        2  112686  56343  159.30  0.000
Residual Error  109   38552    354
Total           111  151238

Source                 DF  Seq SS
Disposable Income adj   1  112593
Fed Funds Adj           1      93

Unusual Observations

     Disposable   Durable
Obs  Income adj  cons adj     Fit  SE Fit  Residual  St Resid
  5         362     33.99   12.37   11.62     21.62      1.46 X
  9         378     33.19   24.20    6.56      8.99      0.51 X
 12         396     38.14   27.43    6.16     10.71      0.60 X
 88         616    161.72   68.95    2.53     92.77      4.98R
 89         918     85.43  128.55    4.24    -43.12     -2.35R
104         919     76.62  126.99    3.78    -50.37     -2.73R
105         878    156.42  118.95    3.41     37.47      2.03R

R denotes an observation with a large standardized residual.
X denotes an observation whose X value gives it large leverage.

Durbin-Watson statistic = 2.52246

Regression Analysis: Durable cons versus Disposable I, Fed Funds Ad

The first regression has a Durbin-Watson d statistic of 0.2015, indicating strong positive 
autocorrelation. Based on the regression statistics for the estimated coefficients, we conclude 
that both disposable income 1b1 = 0.2232 and federal funds interest rate 1b2 = 10.4392 
are statistically significant predictors of consumption expenditures for durable goods.

However, the second regression analysis—using data for the model without auto-
correlated errors—provides a different conclusion:

durable cons adj = -51.8 + 0.195 disposable income adj - 0.93 fed funds adj
 R2 = 74.55 

 D.W. = 2.52

Notice that the variable names have been modified to reflect the fact that they have 
been transformed to variables that will produce a model that does not have autocorre-
lation. In addition, note that the Durbin-Watson d statistic is 2.52, indicating that auto-
correlation does not exist. We see that the estimated coefficient for disposable income, 
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A number of statistical packages such as Eviews3 and SAS, which are designed for 
working with time-series data, have built-in routines that automatically estimate the au-
tocorrelation coefficient and adjust for autocorrelation. Many of these routines have it-
erative computational routines and, as a result, generate improved estimates of model 
coefficients and variances compared to the routine demonstrated here. Thus, if you have 
access to such a package, you will find the estimation easier than using Minitab or Excel 
in a parallel procedure. In general, those other computer packages provide more efficient 
estimates of the coefficients.

Autocorrelated Errors in Models with Lagged Dependent Variables

When we have a regression model with lagged dependent variables on the right-hand 
side and also have autocorrelated errors, the usual least squares procedures can result in 
even more severe problems. In addition to the usual problems concerning the estimation 
of coefficient errors, we also know that the coefficient estimators are biased and not con-
sistent. This occurs because there is a correlation between the model error and a predictor 
variable, and that introduces a bias in the coefficient estimate. Unfortunately, in this situ-
ation of lagged dependent variables, the previously discussed procedures for testing for 
autocorrelated errors are not valid. So we will briefly introduce an appropriate procedure.

Consider the model

yt = b0 + b1x1t + b2x2t +  g + bKxKt + gyt - 1 + et

Suppose that this model, which includes a lagged value of the dependent variable as a 
predictor variable, is fitted to n sets of sample observations by least squares. Let d be the 
usual Durbin-Watson statistic with

r = 1 -
d
2

and let sc denote the estimated standard deviation of the estimated coefficient g for the 
lagged dependent variable. Our null hypothesis is that the autoregressive parameter r is 0. 
A test of this hypothesis, approximately valid in large samples, is based on Durbin’s h 
statistic:

h = r2n>11 - ns2
c 2

Under the null hypothesis, this statistic has a distribution that is well approximated in 
large samples by the standard normal. Durbin’s h statistic cannot be computed if s2

c 7 1/T. 
Thus, for example, the null hypothesis of no autocorrelation is rejected against the alterna-
tive that r is positive at the 5% significance level if the h statistic exceeds 1.645.

b1 = 0.195, is similar to that from the first regression and that the coefficient standard 
error is 0.01124. The resulting Student’s t statistic, 17.38, leads us to conclude that dis-
posable income is a significant predictor of durable goods consumption. In contrast, 
the coefficient of federal funds interest rate is b2 = -0.93 with a Student’s t statistic of 
-0.51. Thus, we cannot reject the null hypothesis that the coefficient for federal funds 
interest rate is 0 and that we should eliminate that variable as a predictor in the regres-
sion model.

In this example we saw that autocorrelation led to an incorrect conclusion concern-
ing the importance of the federal funds interest rate. Without adjusting the data to re-
move the correlation, we would have used the Student’s t statistic from the model with 
the original data and that Student’s t statistic from the unadjusted regression overesti-
mates the Student’s t statistic from the adjusted regression. The Student’s t for the dis-
posable income coefficient in the first regression is also overestimated. However, after 
adjustment to the correct estimator, we find that the coefficient is still substantially dif-
ferent from 0.
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If the autoregressive error is

ut = et - ret - 1

then, using a modification of the procedure previously developed for autocorrelation ad-
justment, we can develop the following model:

 yt - ryt - 1 = b011 - r2 + b11x1t - rx1t - 12 + b21x2 - rx2t - 12 + g
 + bK1xKt - rxKt - 12 + g1yt - 1 - ryt - 22 + dt

One possible approach to parameter estimation, which requires only an ordinary least squares 
estimation program, is to substitute, in turn, possible values of r—say, 0.1, 0.3, 0.5, 0.7, and 0.9—
in the preceding equation. Then the regression of the dependent variable 1yt - ryt-12 and the 
independent variables 1x1t - rx1,t-12, 1x2t - rx2,t-12, c, 1xKt - rxK,t-12, 1yt-1 - ryt-22 
is fitted by least squares for each possible r value. The value of r chosen is that for which the 
resulting sum of squared errors is smallest. Inference about the bj is then based on the cor-
responding fitted regression.

The discussion of models that have both autocorrelation and lagged independent 
variables involves some important questions that are typically part of higher-level econo-
metrics. Thus, when encountering the preceding situations, the reader might be advised 
to consult with a person who has knowledge of econometric methods or to study a higher-
level econometrics textbook.

EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

Basic Exercises
 13.32 Suppose that a regression was run with three inde-

pendent variables and 30 observations. The Durbin-
Watson statistic was 0.50. Test the hypothesis that 
there was no autocorrelation. Compute an estimate of 
the autocorrelation coefficient if the evidence indicates 
that there was autocorrelation.

a. Repeat with the Durbin-Watson statistic equal 
to 0.80.

b. Repeat with the Durbin-Watson statistic equal 
to 1.10.

c. Repeat with the Durbin-Watson statistic equal 
to 1.25.

d. Repeat with the Durbin-Watson statistic equal 
to 1.70.

 13.33 Suppose that a regression was run with two indepen-
dent variables and 28 observations. The Durbin-Watson 
statistic was 0.50. Test the hypothesis that there was no 
autocorrelation. Compute an estimate of the autocorre-
lation coefficient if the evidence indicates that there was 
autocorrelation.

a. Repeat with the Durbin-Watson statistic equal to 0.80.
b. Repeat with the Durbin-Watson statistic equal to 1.10.
c. Repeat with the Durbin-Watson statistic equal to 1.25.
d. Repeat with the Durbin-Watson statistic equal to 1.70.

Application Exercises
 13.34 In a regression based on 30 annual observations, 

U.S. farm income was related to four independent 
 variables—grain exports, federal government subsidies, 
population, and a dummy variable for bad weather 

years. The model was fitted by least squares,  resulting 
in a Durbin-Watson statistic of 1.29. The  regression of e2

i  
on yni yielded a coefficient of determination of 0.043.

a. Test for heteroscedasticity.
b. Test for autocorrelated errors.

 13.35 The data file Money UK contains observations 
from the United Kingdom on the quantity of 

money in millions of pounds (Y); income, in millions 
of pounds 1X12; and the local authority interest rate 1X22. Estimate the model (Mills 1978)

yt = b0 + b1x1t + b2x2t + gyt - 1 + et

and write a report on your findings.
What can be concluded from the Durbin-Watson 

statistic for the fitted regression?
 13.36 The data file Thailand Consumption shows 

29 annual observations on private consumption 
(Y) and disposable income (X) in Thailand. Fit the 
 regression model

log yt = b0 + b1log x1t + glog yt - 1 + et

and write a report on your findings.
Test the null hypothesis of no autocorrelated errors 

against the alternative of positive autocorrelation.
 13.37 A factory operator hypothesized that his unit output 

costs (y) depend on wage rate 1x12, other input costs 1x22, overhead costs 1x32, and advertising expendi-
tures 1x42. A series of 24 monthly observations was 
obtained, and a least squares estimate of the model 
yielded the following results:

yin = 0.75 + 0.24x1t10.072 + 0.56x2t10.122 - 0.32x3t10.232 + 0.23x4t10.52
R2 = 0.79  d = 0.85
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The figures in parentheses below the estimated coef-
ficients are their estimated standard errors. What can 
you conclude from these results?

 13.38 The data file Advertising Retail shows, for a 
consumer goods corporation, 22 consecutive 

years of data on sales (y) and advertising (x).

a. Estimate the regression:

yt = b0 + b1xt + et

b. Check for autocorrelated errors in this model.
c. If necessary, re-estimate the model, allowing for  

autocorrelated errors.

 13.39 The omission of an important independent variable 
from a time-series regression model can result in the 
appearance of autocorrelated errors. In Example 13.7 
we estimated the model

yt = b0 + b1x1t + et

relating profit margin to net revenue per dollar for our 
savings and loan data. Carry out a Durbin-Watson test 
on the residuals from this model. What can you infer 
from the results?
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 13.40 Write brief reports, including examples, explaining 
the use of each of the following in specifying regres-
sion models:
a. Dummy variables
b. Lagged dependent variables
c. The logarithmic transformation

 13.41 Consider the fitting of the following model:

Y = b0 + b1X1 + b2X2 + b3X3 + e

where

 Y =  tax revenues as a percentage of gross 
national product in a country

 X1 =  exports as a percentage of gross national 
product in the country

X2 = income per capita in the country 
X3 =  dummy variable taking the value 1 if 

the country participates in some form of  
economic integration, 0 otherwise

This provides a means of allowing for the effects on 
tax revenue of participation in some form of economic 
integration. Another possibility would be to estimate 
the regression

Y = b0 + b1X1 + b2X2 + e

separately for countries that did and did not partici-
pate in some form of economic integration. Explain 
how these approaches to the problem differ.

 13.42 Discuss the following statement: In many practical re-
gression problems, multicollinearity is so severe that it 
would be best to run separate simple linear regressions 
of the dependent variable on each independent variable. 
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 13.43 Explain the nature of and the difficulties caused by 
each of the following:

a. Heteroscedasticity
b. Autocorrelated errors

 13.44 The following model was fitted to data on 90 German 
chemical companies:

 yn = 0.819 + 2.11x111.792 + 0.96x211.942 - 0.059x310.1442 + 5.87x414.082
 + 0.00226x510.001152   R 2 = .410

where the numbers in parentheses are estimated coef-
ficient standard errors and

 y = share price
 x1 = earnings per share
 x2 = funds flow per share
 x3 = dividends per share
 x4 = book value per share
 x5 = a measure of growth

a. Test at the 10% level the null hypothesis that the 
coefficient on x1 is 0 in the population regression 
against the alternative that the true coefficient is 
positive.

b. Test at the 10% level the null hypothesis that the 
coefficient on x2 is 0 in the population regression 
against the alternative that the true coefficient is 
positive.

c. The variable X2 was dropped from the original 
model, and the regression of Y on 1X1, X3, X4, X52 
was estimated. The estimated coefficient on X1 was 
2.95 with standard error 0.63. How can this result 
be reconciled with the conclusion of part a?

 13.45 The following model was fitted to data from 28 coun-
tries in 1989 in order to explain the market value of 
their debt at that time:

yn = 77.2 - 9.6x118.02 - 17.2x212.732 - 0.15x310.0562 + 2.2x411.02
R2 = 0.84

where

 y =  secondary market price, in dollars, in 1989 
of $100 of the country’s debt

 x1 =  1 if U.S. bank regulators have mandated 
write-down for the country’s assets on books 
of U.S. banks, 0 otherwise

 x2 =  1 if the country suspended interest payments 
in 1989, 2 if the country suspended interest  
payments before 1989 and was still in suspension, 
and 0 otherwise

 x3 = debt-to-gross-national-product ratio
 x4 =  rate of real gross national product growth, 

1980–1985

The numbers below the coefficients are the coefficient 
standard errors.

a. Interpret the estimated coefficient on x1.
b. Test the null hypothesis that, all else being equal, 

debt-to-gross-national-product ratio does not 
linearly influence the market value of a country’s 

debt against the alternative that the higher this ra-
tio, the lower the value of the debt.

c. Interpret the coefficient of determination.
d. The specification of the dummy variable x2 is 

unorthodox. An alternative would be to replace 
x2 by the pair of variables 1x5, x62, defined as 
follows:

x5 =  1 if the country suspended interest payments 
in 1989, 0 otherwise

x6 =  1 if the country suspended interest payments 
before 1989 and was still in suspension, 0 
otherwise

Compare the implications of these two alternative 
specifications.

 13.46 An attempt was made to construct a regression model 
explaining student scores in intermediate economics 
courses (Waldauer, Duggal, and Williams 1992). The 
population regression model assumed that

 Y =  total student score in intermediate economics 
courses

 X1 = mathematics score on Scholastic Aptitude Test
 X2 = verbal score on Scholastic Aptitude Test
 X3 =  grade in college algebra 1A = 4, B = 3, C = 2, 

D = 12
 X4 =  grade in college principles of economics course
 X5 =  dummy variable taking the value 1 if the student 

is female and 0 if male
 X6 =  dummy variable taking the value 1 if the instruc-

tor is male and 0 if female
 X7 =  dummy variable taking the value 1 if the stu-

dent and instructor are the same gender and  
0 otherwise

This model was fitted to data on 262 students. Next 
we report t-ratios, so that tj is the ratio of the estimate 
of bj to its associated estimated standard error. These 
ratios are as follows:

t1 = 4.69, t2 = 2.89, t3 = 0.46, t4 = 4.90, 
t5 = 0.13, t6 = -1.08, t7 = 0.88

The objective of this study was to assess the impact of 
the gender of student and instructor on performance. 
Write a brief report outlining what has been learned 
about this issue.

 13.47 The following regression was fitted by least squares to 
32 annual observations on time-series data:

 log yt = 4.52 - 0.6210.282 log x1t + 0.9210.382 log x2t + 0.6110.212 log x3t

 + 0.1610.122 log x4t + et  R 2 = 0.683  d = 0.61

where

 yt = quantity of U.S. wheat exported
 x1t = price of U.S. wheat on world market
 x2t = quantity of U.S. wheat harvested
 x3t =  measure of income in countries importing 

U.S. wheat
 x4t = price of barley on world market
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The numbers below the coefficients are the coefficient 
standard errors.

a. Interpret the estimated coefficient on log x1t in the 
context of the assumed model.

b. Test at the 5% level the null hypothesis that, all else 
being equal, income in importing countries has no 
effect on U.S. wheat exports against the alternative 
that higher income leads to higher expected exports. 
(Ignore, for now, the Durbin-Watson d statistic.)

c. What null hypothesis can be tested by the d statistic? 
Carry out this test for the present problem, using a 
1% significance level.

d. In view of your finding in part c, comment on your 
conclusion in part b. How might you proceed to 
test the null hypothesis of part b?

 13.48 The following regression was fitted by least squares to 
30 annual observations on time-series data:

 log yt = 4.31 - 0.2710.172 log x1t + 0.5310.212 log x2t

 - 0.8210.302 log x3t + et  R 2 = 0.615  d = .49

where

 yt = number of business failures
 x1t = rate of unemployment
 x2t = short-term interest rate
 x3t = value of new business orders placed

The numbers below the coefficients are the coefficient 
standard errors.

a. Interpret the estimated coefficient on log x3t in the 
context of the assumed model.

b. What null hypothesis can be tested by the d statis-
tic? Carry out this test for the present problem us-
ing a 1% significance level.

c. Given your results in part b, is it possible to test, 
with the information given, the null hypothesis 
that, all else being equal, short-term interest rates 
do not influence business failures?

d. Estimate the correlation between adjacent error 
terms in the regression model.

 13.49 A stockbroker is interested in the factors influencing 
the rate of return on the common stock of banks. For a 
sample of 30 banks, the following regression was esti-
mated by least squares:

 yn = 2.37 + 0.84x110.392 + 0.15x210.122 - 0.13x310.092
 + 1.67x411.972   R2 = 0.317

where

 y =  percentage rate of return on common stock 
of bank

 x1 = percentage rate of growth of bank’s earnings
 x2 = percentage rate of growth of bank’s assets
 x3 = loan losses as percentage of bank’s assets
 x4 =  1 if bank head office is in New York City and 

0 otherwise

The numbers below the coefficients are the coefficient 
standard errors.

a. Interpret the estimated coefficient on x4.
b. Interpret the coefficient of determination, and use 

it to test the null hypothesis that, taken as a group, 
the four independent variables do not linearly in-
fluence the dependent variable.

c. Let ei denote the residuals from the fitted regres-
sion and yni the in-sample predicted values of the 
dependent variable. The least squares regression of 
e2

 i on yni yielded coefficient of determination 0.082. 
What can be concluded from this finding?

 13.50 A market researcher is interested in the average 
amount of money per year spent by students on enter-
tainment. From 30 years of annual data, the following 
regression was estimated by least squares:

ynt = 40.93 + 0.253xt10.1062 + 0.546yt - 110.1342     d = 1.86

where

 yt =  expenditure per student, in dollars, on 
entertainment

 xt =  disposable income per student, in dollars, after 
payment of tuition, fees, and room and board

The numbers below the coefficients are the coefficient 
standard errors.

a. Find a 95% confidence interval for the coefficient 
on xt in the population regression.

b. What would be the expected impact over time of 
a $1 increase in disposable income per student on 
entertainment expenditure?

c. Test the null hypothesis of no autocorrelation 
in the errors against the alternative of positive 
autocorrelation.

 13.51 A local public utility would like to be able to predict 
a dwelling unit’s average monthly electricity bill. The 
company statistician estimated by least squares the 
following regression model:

yt = b0 + b1x1t + b2x2t + et

where

 yt = average monthly electricity bill, in dollars
 x1t =  average bimonthly automobile gasoline bill, 

in dollars
 x2t = number of rooms in dwelling unit

From a sample of 25 dwelling units, the statistician 
obtained the following output from the SAS program:

 
Parameter

 
Estimate

Student’s t for H0: 
parameter = 0

Std. error  
of estimate

Intercept -10.8030

x1 -0.0247 -0.956 0.0259

x2 10.9409 18.517 0.5909

a. Interpret, in the context of the problem, the least 
squares estimate of b2.

b. Test, against a two-sided alternative, the null 
hypothesis

H0  :  b1 = 0
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c. The statistician is concerned about the possibility 
of multicollinearity. What information is needed to 
assess the potential severity of this problem?

d. It is suggested that household income is an impor-
tant determinant of size of electricity bill. If this 
is so, what can you say about the regression esti-
mated by the statistician?

e. Given the fitted model, the statistician obtains the 
predicted electricity bills, ynt, and the residuals, et. 
He then regresses e2

 t on ynt, finding that the regres-
sion has a coefficient of determination of 0.0470. 
Interpret this finding.

 13.52  The data file Indonesia Revenue show 15 an-
nual observations from Indonesia on total gov-

ernment tax revenues other than from oil (y), national 
income 1x12, and the value added by oil as a percent-
age of gross domestic product 1x22. Estimate by least 
squares the following regression:

log yt = b0 + b1 log x1t + b2 log x2t + et

Write a report summarizing your findings, including a 
test for autocorrelated errors.

 13.53  The data file German Income shows 22 annual 
observations from the Federal Republic of Ger-

many on percentage change in wages and salaries (y), 
productivity growth 1x12, and the rate of inflation 1x22, 
as measured by the gross national product price defla-
tor. Estimate by least squares the following regression:

yt = b0 + b1x1t + b2x2t + et

Write a report summarizing your findings, including a 
test for heteroscedasticity and a test for autocorrelated 
errors.

 13.54 The data file Japan Imports shows 35 quarterly 
observations from Japan on quantity of imports 

(y), ratio of import prices to domestic prices 1x12, and 
real gross national product 1x22. Estimate by least 
squares the following regression:

log yt = b0 + b1 log x1t + b2 log x2t + g log yt - 1 + et

Write a report summarizing your findings, including a 
test for autocorrelated errors.

 13.55 A study was conducted on the labor-hour costs of 
Federal Deposit Insurance Corporation (FDIC) audits 
of banks. Data were obtained on 91 such audits. Some 
of these were conducted by the FDIC alone and some 
jointly with state auditors. Auditors rated banks’ man-
agement as good, satisfactory, fair, or unsatisfactory. 
The model estimated was

 log y = 2.41 + 0.3674
0.0477

 log x1 + 0.221710.06282 log x2 

 + 0.080310.02872  log x3 - 0.1755x410.29052 + 0.2799x510.10442  

 + 0.5634x610.16572 - 0.2572x710.07872 + e  R2 = 0.766

where

 y = FDIC auditor labor-hours
 x1 = total assets of bank
 x2 = total number of offices in bank
 x3 = ratio of classified loans to total loans for bank

 x4 =  1 if management rating was “good,” 0 otherwise
 x5 =  1 if management rating was “fair,” 0 otherwise
 x6 =  1 if management rating was “unsatisfactory,” 0 

otherwise
 x7 =  1 if audit was conducted jointly with the state, 

0 otherwise

The numbers in parentheses beneath coefficient es-
timates are the associated standard errors. Write a 
report on these results. 

 13.56 The data file Britain Sick Leave shows data 
from Great Britain on the days of sick leave per 

person (Y), unemployment rate 1X12, ratio of benefits 
to earnings 1X22, and the real wage rate 1X32. Esti-
mate the model

log yt = b0 + b1 log x1t + b2 log x2t + b3log x3t + et

and write a report on your findings. Include in your 
analysis a check on the possibility of autocorrelated 
errors and, if necessary, a correction for this problem.

 13.57 The U.S. Department of Commerce has asked 
you to develop a regression model to predict 

quarterly investment in production and durable 
equipment. The suggested predictor variables include 
GDP, prime interest rate, per capita income lagged, 
federal government spending, and state and local gov-
ernment spending. The data for your analysis are 
found in the data file Macro2010, which is described 
in the data dictionary in the chapter appendix. Use 
data from the time period 1980.1 through 2010.4.

a. Estimate a regression model using only interest 
rate to predict the investment. Use the Durbin-
Watson statistic to test for autocorrelation.

b. Find the best multiple regression equation to pre-
dict investment using the predictor variables pre-
viously indicated. Use the Durbin-Watson statistic 
to test for autocorrelation.

c. What are the differences between the regression 
models in parts a and b in terms of goodness of fit, 
prediction capability, autocorrelation, and contri-
butions to understanding the investment problem?

 13.58 An economist has asked you to develop a 
 regression model to predict consumption of 

 service goods as a function of disposable personal in-
come and other important variables. The data for your 
analysis are found in the data file Macro2010, which is 
described in the data dictionary in the chapter appendix. 
Use data from the period 1980.1 through 2010.4.

a. Estimate a regression model using only disposable 
personal income to predict consumption of service 
goods. Test for autocorrelation using the Durbin-
Watson statistic.

b. Estimate a multiple regression model using disposable 
personal income, total consumption lagged 1 period, 
and prime interest rate as additional predictors. Test 
for autocorrelation. Does this multiple regression 
model reduce the problem of autocorrelation?

 13.59 Jack Wong, a Tokyo investor, is considering 
plans to develop a primary steel plant in Japan. 

After  reviewing the initial design proposal, he is 
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 concerned about the proposed mix of capital and labor. 
He has asked you to prepare several production func-
tions using some historical data from the United States. 
The data file Metals contains 27 observations of the 
value-added output, labor input, and gross value of 
plant and equipment per factory.

a. Use multiple regression to estimate a linear pro-
duction function with value-added output re-
gressed on labor and capital.

b. Plot the residuals versus labor and equipment. 
Note any unusual patterns.

c. Use multiple regression with transformed vari-
ables to estimate a Cobb-Douglas production func-
tion of the form

Y = b0L
b1Kb2

where y is the value added, L is the labor input, 
and K is the capital input.

d. Use multiple regression transformed variables to 
estimate a Cobb-Douglas production function with 
constant returns to scale. Note that this production 
function has the same form as the function esti-
mated in part c, but it has the additional restriction 
that b1 + b2 = 1. To develop the transformed 
regression model, substitute b2 as a function of b1 
and convert to a regression format.

e. Compare the three production functions using 
residual plots and a standard error of the estimate 
that is expressed in the same scale. You will need 
to convert the predicted values from parts c and d, 
which are in logarithms, back to the original units. 
Then you can subtract the predicted values from 
the original values of Y to obtain the residuals. Use 
the residuals to compute comparable standard  
errors of the estimate.

 13.60 The administrator of a small city has asked you to 
identify variables that influence the mean market 

value of houses in small midwestern cities. You have 
obtained data from a number of small cities, which are 
stored in the data file Citydatr, with variables described 
in the Chapter 12 appendix. The candidate predictor 
variables are the median size of the house (sizehse), the 
property tax rate (taxrate; tax levy divided by total as-
sessment), the total expenditures for city services (tot-
exp), and the percent commercial property (comper).

a. Estimate the multiple regression model using all 
the indicated predictor variables. Select only statis-
tically significant variables for your final equation.

b. An economist stated that since the data came from 
cities of different populations, your model is likely 
to contain heteroscedasticity. He argued that mean 
housing prices from larger cities would have a 
smaller variance because the number of houses 
used to compute the mean housing prices would 
be larger. Test for heteroscedasticity.

c. Estimate the multiple regression equation using 
weighted least squares with population as the 
weighting variable. Compare the coefficients for 
the weighted and unweighted multiple regression 
models.

 13.61 The chief financial officer of a major service 
company has asked you to develop a regression 

model to predict consumption of service goods as a 
function of GDP and other important variables. The 
data for your analysis are found in the data file 
Macro2010, which is stored on your data disk and de-
scribed in the data dictionary in the chapter appendix. 
Use data from the period 1980.1 through 2010.4.

a. Estimate a regression model using only GDP to 
predict consumption of service goods. Test for au-
tocorrelation using the Durbin-Watson statistic.

b. Estimate a multiple regression model using GDP, 
total consumption lagged 1 period, imports or 
services, and prime interest rate as additional 
predictors. Test for autocorrelation. Does this 
multiple regression model reduce the problem of 
autocorrelation?

 13.62 The marketing vice president of Consolidated 
Appliances has asked you to develop a regres-

sion model to predict consumption of durable goods 
as a function of disposable personal income and other 
important variables. The data for your analysis are 
found in the data file Macro2010, which is described 
in the data dictionary in the chapter appendix. Use 
data from the period 1976.1 through 2010.4.

a. Estimate a regression model using only dispos-
able personal income to predict consumption of 
durable goods. Test for autocorrelation using the 
Durbin-Watson statistic.

b. Estimate a multiple regression model using dispos-
able personal income, total consumption lagged 1 
period, imports of goods, population, and prime 
interest rate as additional predictors. Test for au-
tocorrelation. Does this multiple regression model 
reduce the problem of autocorrelation?

 13.63 You have been asked to develop a model using 
multiple regression that predicts the retail sale 

of beef using time-series data. The data file Beef Veal 
Consumption contains a number of variables related 
to the beef retail markets beginning in 1935 and ex-
tending through the present. The variables are described 
in the Chapter 13 appendix.

a. Prepare a model that includes a test and adjust-
ment for serial correlation. Discuss your model 
and indicate important factors that predict beef 
sales.

b. Prepare a second analysis, but this time include 
only data beginning in the year 1980.

c. Compare the two models estimates in a and b. 

 13.64 You have been asked to develop a model using 
multiple regression that predicts the retail sale 

of veal using time series data. The data file Beef Veal 
Consumption contains a number of variables related 
to the veal retail markets beginning in 1935 and ex-
tending through the present. 

a. Prepare a model that includes a test and adjust-
ment for serial correlation. Discuss your model 
and indicate important factors that predict beef 
sales.
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b. Prepare a second analysis, but this time include 
only data beginning in the year 1980.

c. Compare the two models estimates in a and b. 

 13.65 You have been asked to develop a model using 
multiple regression that predicts the retail sale 

of beef and veal combined using time series data. The 
data file Beef Veal Consumption contains a number 
of variables related to the beef and veal retail markets 
beginning in 1935 and extending through the present. 

a. Prepare a model that includes a test and adjust-
ment for serial correlation. Discuss your model 
and indicate important factors that predict beef 
sales.

b. Prepare a second analysis, but this time include 
only data beginning in the year 1980.

c. Compare the two models estimates in a and b. 

13.8 CASE STUDIES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

Mini–Health Care Case Studies
The following can each be treated as mini–case studies or can be 
combined into an extended case study of health care costs.

 13.66 Health care cost is an increasingly important 
part of the United States economy. In this exer-

cise you are to identify variables that are predictors for 
the cost of physician and clinical services, either indi-
vidually or in combination. Use the data file Health 
Care Cost Analysis, which contains annual health 
care costs for the period 1960–2008. As a first step you 
are to explore the simple relationships between physi-
cian and clinical services cost and individual variables 
using a combination of simple correlations and graph-
ical scatter plots. You should also examine the changes 
in cost of physicians and clinical services and other 
variables over time. Medical care costs are, of course, 
affected by various national policies and changes in 
health care providers and health insurance practice. 
Based on these analyses, develop a multiple regres-
sion model that predicts costs of physicians and clini-
cal services. You will probably find that the model has 
errors that are serially correlated and this possibility 
should be tested for by using the Durbin-Watson test.

If serial correlation exists in your initial model then 
to adjust for serial correlation, you are to use the dif-
ference variables to estimate a model that predicts the 
change in physician and clinical services as a function 
of change in the predictor variables. Again, explore 
the simple relationship between the change in physi-
cian and clinical services and the change in the other 
predictor variables using correlations and scatter 
plots. Using these results, develop a multiple regres-
sion model using the changes in variables to predict 
the change in physician and clinical services costs.

Prepare a report that identifies variables that are 
related to cost of physicians and clinical services indi-
vidually and in combination. 

 13.67 Health care cost is an increasingly important part 
of the U.S. economy. In this exercise you are to 

 identify variables that are predictors for hospital cost, 
either individually or in combination. Use the data file 
Health Care Cost Analysis, which contains annual 
health care costs for the period 1960–2008. As a first step 
you are to explore the simple relationships between hos-
pital cost and individual variables using a combination 

of simple correlations and graphical scatter plots. You 
should also examine the changes in hospital cost and 
other variables over time. Medical care costs are, of 
course, affected by various national policies and changes 
in health care providers and health insurance practice. 
Based on these analyses, develop a multiple regression 
model that predicts hospital cost. You will probably find 
that the model has errors that are serially correlated and 
this possibility should be tested for by using the Durbin-
Watson test.

If serial correlation exists in your initial model then 
use the difference variables to estimate a model that 
predicts the change as a function of change in the 
predictor variables. Again, explore the simple rela-
tionship between the change in hospital cost and the 
change in the other predictor variables using correla-
tions and scatter plots. Using these results develop a 
multiple regression model using the changes in vari-
ables to predict the change in hospital care costs.

Prepare a report that identifies variables that are re-
lated to hospital cost individually and in combination. 

 13.68 Health care cost is an increasingly important 
part of the U.S. economy. In this exercise you 

are to identify variables that are predictors for drug 
cost, either individually or in combination. Use the 
data file Health Care Cost Analysis, which contains 
annual health care costs for the period 1960–2008. As 
a first step you are to explore the simple relationships 
between drug cost and individual variables using a 
combination of simple correlations and graphical 
scatter plots. You should also examine the changes in 
drug cost and other variables over time. Medical care 
costs are, of course, affected by various national poli-
cies and changes in health care providers and health 
insurance practice. Based on these analyses, develop a 
multiple regression model that predicts drug costs. 
You will probably find that the model has errors that 
are serially correlated and this possibility should be 
tested for by using the Durbin-Watson test.

If serial correlation exists in your initial model 
then use the difference variables to estimate a model 
that predicts the change in drug costs as a function of 
change in the predictor variables. Again, explore the 
simple relationship between the change in drug cost 
and the change in the other predictor variables using 
correlations and scatter plots. Using these results, de-
velop a multiple regression model using the changes 
in variables to predict the change in drug cost.
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Prepare a report that identifies variables that are re-
lated to drug cost individually and in combination. 

Health Care Cost Analysis Data File 

Description

(Source: National Health Expenditures by Type Of Service and 
Source of Funds: Calendar Years 2008 to 1960, NHE08-60.

United States Dept. of Health and Human Services, Centers 
for Medicare and Medicaid Services)

C1 Year
C2 National Health Expenditures

C3 Medicare
C4 Hospital Care

C5 Physician and Clinical Services

C6 Prescription Drugs
C7 Admin. & Net Cost of Priv. Hlth
C8 Income Low 5th
C9 Income Median
C10 Income High 5th
C11 Income High 5%
C12 Population

C13 Unemployment
C14 Percent 65 plus

C15 Per age 65
C16 Lag Hosp care
C17 Difference Hosp Care
C18 Difference Physician
C19 Difference Drugs
C20 Difference Population
C21 Difference % 765
C22 Difference % 65
C23 Difference Medicare Cost
C24 Difference Income 75%
C25 Difference Income Median
C26 Lag Diff % Age 765

Nutrition Model Analysis Case Study

Emily Carlsperger, Program Director for Nutrition Studies, 
has asked you to conduct a statistical analysis study to iden-
tify variables that are related to a healthy diet. In addition, she 
has asked you to develop a model that shows the combined 
effect of a set of variables on the prediction of the quality of 
various diet combinations. The results of your analysis and 
report will be used as part of the knowledge base to identify 
the characteristics that are related to a healthy diet. In addi-
tion the results will be used as part of an education program 
to promote healthy diets. Your research will use the Healthy 
Eating Index as a measure of a healthy diet and a data file 
that was developed from extensive interviews of randomly  
selected individuals.

The U.S. Department of Agriculture (USDA) developed the 
Healthy Eating Index (HEI) to monitor the diet quality of the 
U.S. population, particularly how well it conforms to dietary 
guidance. The HEI–2005 measures how well the population 
follows the recommendations of the 2005 Dietary Guidelines for 
Americans. In particular, it measures, on a 100-point scale, the 
adequacy of consumption of vegetables, fruits, grains, milk, 

meat and beans, and liquid oils. Full credit for these groups is 
given only when the individual consumes some whole fruit; 
vegetables from the dark green, orange, and legume sub-
group; and whole grains. In addition the HEI–2005 measures 
how well the U.S. population limits consumption of saturated 
fat, sodium, and extra calories from solid fats, added sugars, 
and alcoholic beverages. You will use the total HEI–2005 score 
as the measure of the quality of a diet. Further background 
on the HEI and important research on nutrition can be found 
at the government Web sites indicated at the end of this case 
study. 

To begin this study you should explore the important re-
search literature and prepare a one-page summary of your 
findings. You should also prepare a one-page summary of the 
Healthy Eating Index that will be included as an important 
appendix in the study report. This summary can then be used 
to guide your analysis and the variables that you will consider 
in the statistical analysis. 

The data file HEI Cost Data Variable Subset contains 
a subset of the variables from a large national sample of 
randomly selected individuals who participated in an ex-
tended interview and medical examination. Included is the 
HEI–2005 total score for each person and an extensive list 
of variables obtained from the medical examination and in-
terviews. Your task is to determine which of these variables 
have significant and important relationships with a healthy 
diet. The analysis should explore both the simple relation-
ships and the combined relationships of many variables 
with HEI–2005.

Note that all participants in the study had two interviews; 
an initial 4-hour interview in person and a second interview 
by telephone 2 to 10 days later. You might want to consider 
analyzing the first and second interview responses separately 
(identified by variable daycode equal to 1 or 2). Also you will 
find that there are missing responses for variables that re-
sulted for some subjects. 

Your analysis is to consider a number of variables that in-
fluence diet both individually and in combination. There is an 
increasing emphasis on healthy diets. However, a number of 
commentators claim that one can obtain a healthier diet only 
by purchasing more-expensive foods. For example, references 
are often made to organic food markets that charge a higher 
price for food items compared to the large supermarkets. Diet 
cost is an important question, but your analysis needs to have 
much greater depth by considering many possible variables. 

Requirements
You are to prepare a report to the director that indicates  
important factors that contribute to an improved diet. Some of 
these factors will be part of personal behavior, and your rec-
ommendations could become part of an education program to 
help individuals improve their diet. Other results might con-
tribute to policies and guidelines that enable federal and state 
agencies to improve overall health and quality of life. There 
may be specific recommendations that apply to subsets of the 
population. Your professor may also provide additional spe-
cific guidelines for your case study analysis.

Your work on this case provides considerable flexibility 
regarding direction and focus. However, it is fundamen-
tally important that your conclusions and recommendations 
are supported by rigorous statistical analysis of the data 
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provided for this case. You are to avoid results based upon 
your personal opinions, newspaper reports, political com-
mentary, or opinions from so-called experts in this field un-
less these results are supported by your statistical analysis. 
Careful analysis includes both correct use of appropriate sta-
tistical procedures and a clear explanation and interpretation 
of the statistical results that support your recommendations 
and conclusions. You are providing your report to people 
who do not have your level of statistical expertise. Your 

project will be graded on both the depth and quality of the 
statistical analysis and the quality of the communication in 
your report.

Use the Internet to find the following government sites to 
begin your search of appropriate sources:

National Health and Nutrition Examination Survey
Center for Nutrition Policy and Promotion
Dietary Guidelines for Americans

Appendix
Variable list for Data File BEEF VEAL CONSUMPTION  

Variable Label
Year Year represented by the data

Beef Veal CPI Price index for beef and veal

Beef Retail Total retail sales of beef in tons

U.S. Population Population of United States 

Beef Production Total production of beef in tons

Veal Retail Total retail sales of veal in tons

Veal Production Total production of veal in tons

Beef Veal Slaughter PPI Producer price index for beef and veal slaughter operations

Red Meat Retail Total retail sales of red meat in tons

Beef Veal Retail Total combined retail sales of beef and veal in tons

Beef Veal Production Total production of beef and veal in tons

Variable list for Data File HEI COST DATA VARIABLE SUBSET

Variable Label
1 Suppl take supplements

2 doc_bp 1 - Doctor-diagnosed high blood pressure

3 daycode 1 - First interview day, 2 - Second interview day

4 sr_overweight 1 - Subject reported was overweight

5 try_wl 1 - Tried to lose weight

6 try_mw 1 - Trying to maintain weight, active

7 sr_did_lm_wt 1 - Subject reported did limit weight

8 daily_cost One day_adjusted_food_cost

9 HEI2005 TOTAL HEI-2005 SCORE

10 daily_cost2 Daily food cost squared

11 Friday 1 - Dietary_recall_occurred_on_Friday

12 weekend_ss 1 - Dietary_recall_occurred_on_Sat_or

13 week_mth 1 - Dietary recall occurred Mon through Thur

14 keeper 1 - Data are complete for 2 days

15 WIC 1 - Someone_in_the_HH_particpates_in

16 fsp 1 - Someone_in_the_HH_approved_for_food stamps (SNAP program)

17 fsec 1 - Family_has_high_food_security

18 PIR_p Poverty_income_ratio_as_percent (family income / poverty-level income)

19 PIR_grp Poverty_income_ratio_group

20 nhw 1 - Non_Hispanic_White, 0 - Else

21 hisp 1 - Hispanic

22 nhb 1 - Non_Hispanic_Black

23 single 1 - Single__no_partner_in_the_home

24 female 1 - Subject is female

(continued)
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Variable list for Data File HEI COST DATA VARIABLE SUBSET

Variable Label
25 waist_cir Waist circumference (cm) separate by male and female)

26 waistper Ratio of subject waist measure to waist cutoff for obese

27 age Age at screening adjudicated - recode

28 hh_size Total number of people in the household

29 WTINT2YR Full sample 2-year interview weight

30 WTMEC2YR Full sample 2-year MEC exam weight

31 immigrant 1 - immigrant

32 citizen 1 - U.S citizen

33 native_born 1 - Native born

34 hh_income_est Household income estimated by subject

35 English 1 - Primary language spoken in home is English

36 Spanish 1 - Primary language spoken in home is Spanish

37 Smoker 1- Currently smokes 

38 doc_chol 1 - Doctor diagnosis of high cholesterol that was made before interview

39 BMI Body mass index (kg/m**2) 20–25 Healthy, 26–30 Overweight, >30 Obese

40 doc_dib 1 - Doctor diagnosis diabeties

41 no_days_ph_ng No. of days physical health was not good

42 no_days_mh_ng No. of days mental health was not good

43 doc_ow 1 - Doctor diagnosis overweight was made before interview

44 screen_hours Number of hours in front of computer or TV screen

45 activity_level 1 = Sedentary, 2 = Active, 3 = Very Active

46 total_active_min Active minutes per day

47 waist_large Waist circumferance > cut_off

48 Pff Percent of calories from fast food, deli, pizza restaurant

49 Prest Percent of calories from table service restaurant

50 P_Ate_At_Home Percent of calories eaten at home

51 Hs 1 = High school graduate

52 Col_grad 1 = College graduate or higher

53 Pstore Percent of calories purchased at store for consumption at home

Data File Macro2010

Economic Series in Real Dollars

Quarterly data are available from the first quarter of 1947 through the fourth quarter of 2010 
except where indicated. The data are in 2005 dollars (index numbers [2005 = 100]), seasonally 
adjusted. Bureau of Economic Analysis.

Downloaded on 4/10/2011 Last revised 3/25/2011

FBPr Bank Prime Loan Rate 1949 01

FFED Effective Federal Funds Rate 1954 03

FM1 Money Stock M1 1959 01

FM2 M2 Money Stock 1959 01

GDP Gross Domestic Product 1947 01

C Personal Consumption Expenditures 1947 01

CD Durable Goods 1947 01

CN Nondurable Goods 1947 01

CS Services 1947 01

I Gross Private Domestic Investment 1947 01

IF Fixed Investment 1947 01

IN Nonresidential 1947 01

IS Structures 1947 01

IES Equipment and Software 1947 01

IR Residential 1947 01
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X Exports 1947 01

XG Goods 1947 01

XS Services 1947 01

M Imports 1947 01

MG Goods 1947 01

MS Services 1947 01

G Government Spending 1947 01

GF Federal 1947 01

GD National Defense 1947 01

GN Nondefense 1947 01

GSL State and Local 1947 01

YPI Personal Income 1947 01

YTAX Less: Personal Current Taxes 1947 01

YDPI Equals: Disposable Personal Income 1947 01

YPO Less: Personal Outlays 1947 01

YPCE Personal Consumption Expenditures 1947 01

YPS Equals: Personal Saving 1947 01

POP Population (Midperiod, Thousands) 1947 01
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Runs Test: Small Sample Size
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Introduction

Do customers have a preference for any of several soft drinks, flavors of ice 
cream, toppings for pizza, or even Internet browsers or social networks? Are 
people’s preferences for a particular political candidate based on some charac-
teristic such as age, gender, or location of residence? Do students at a particu-
lar university prefer any of three faculty members who all teach an introductory 
accounting course? Based on a survey of recent university graduates, is the 
median starting salary significantly different from (or greater than or less than) 
some specified value? Is there an overall tendency of a panel of judges to pre-
fer a new pizza sauce over the original pizza sauce? These are only a few of 
the types of questions that we address in this chapter.

We introduce nonparametric tests, which are often the appropriate pro-
cedure needed to make statistical conclusions about qualitative data (nomi-
nal or ordinal data) or numerical data when the normality assumption cannot 
be made about the probability distribution of the population. Such data are 
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frequently obtained in many settings, including marketing research studies, 
business surveys, and questionnaires.

First we discuss certain tests that are based on the chi-square distri-
bution, such as a test of the hypothesis that data are generated by a fully 
specified probability distribution. This technique is often used by market re-
searchers to determine if products are equally preferred by potential cus-
tomers or to check if the market shares for several brands of a product have 
changed over a given period of time.

Next, we test the hypothesis that data are generated by some distribu-
tion, such as the binomial, the Poisson, or the normal, without assuming 
the parameters of that distribution to be known. In these circumstances the 
available data can be used to estimate the unknown population parameters. 
A goodness-of-fit test is used when population parameters are estimated. 
The chi-square test can be extended to deal with a problem in which a sam-
ple is taken from a population, each of whose members can be uniquely 
cross-classified according to a pair of characteristics. The hypothesis to be 
tested is of no association in the population between possessions of these 
characteristics. Marketing professionals frequently use this procedure. For 
larger contingency tables it is convenient to use a software package to de-
termine the test statistic and p-value.

We consider next nonparametric alternatives to various procedures intro-
duced earlier in the book. It is not our intention here to attempt to describe 
the entire wide array of such nonparametric procedures that are available. 
Rather, our objective is the more modest one of providing a flavor of selected 
nonparametric procedures, including the sign test, the Wilcoxon signed rank 
test, the Mann-Whitney U test, the Wilcoxon rank sum test, and the Spear-
man rank correlation test.

We conclude this introduction to nonparametric statistics with a discus-
sion of the runs test for randomness applied to time-series data with a small 
sample size and time-series data with a large sample size.

14.1 GOODNESS-OF-FIT TESTS: SPECIFIED PROBABILITIES

The most straightforward test of this type is illustrated with a study that observed a ran-
dom sample of 300 subjects purchasing a soft drink. Of these subjects, 75 selected brand A, 
110 selected brand B, and the remainder selected brand C. This information is displayed 
in Table 14.1.

Table 14.1
Brand Selection

Category (Brand) A B C Total

Number of subjects 75 110 115 300

Table 14.2 Classification of n Observations into K Categories

Category 1 2 c K Total

Number of observations O1 O2 c OK n

More generally, consider a random sample of n observations that can be classified 
according to K categories. If the numbers of observations falling into each category are 
O1, O2, c, OK, the setup is as shown in Table 14.2.
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The sample data are to be used to test a null hypothesis specifying the probabili-
ties that an observation falls in each of the categories. In the example of 300 subjects 
purchasing a soft drink, the null hypothesis 1H02 might be that a randomly chosen 
subject is equally likely to select any of the three different varieties. This null hypoth-
esis, then, specifies that the probability is 1/3 that a sample observation falls into each 
of the three categories. To test this hypothesis, it is natural to compare the sample 
numbers observed with what would be expected if the null hypothesis were true. Given 
a total of 300 sample observations, the expected number of subjects in each category 
under the null hypothesis would be 1300211>32 = 100. This information is summa-
rized in Table 14.3.

Table 14.3 Observed and Expected Number of Purchases for Three Brands 
of Soft Drink

Category (Brand) A B C Total

Observed number of subjects  75 110 115 300

Probability (under H0) 1/3 1/3 1/3  1

Expected number of subjects (under H0) 100 100 100 300

In the general case of K categories, suppose that the null hypothesis specifies 
P1, P2, c , PK  for the probabilities that an observation falls into the categories. 
 Assume that these possibilities are mutually exclusive and collectively exhaustive—
that is, each sample observation must belong to one of the categories and cannot 
belong to more than one. In this case, the hypothesized probabilities must sum to 
1—that is,

P1 + P2 + g + PK = 1

Then, if there are n sample observations, the expected numbers in each category, un-
der the null hypothesis, will be as follows:

Ei = nPi for i = 1, 2, c , K

This is shown in Table 14.4.

The null hypothesis about the population specifies the probabilities that a sample ob-
servation will fall into each possible category. The sample observations are to be used to 
check this hypothesis. If the null hypothesis were true, we would think that the observed 
data in each category would be close in value to the expected numbers in each category. 
In such circumstances the data provide a close fit to the assumed population distribution 
of probabilities. A test of the null hypothesis is based on an assessment of the closeness of 
this fit and is generally referred to as a goodness-of-fit test.

 Now, in order to test the null hypothesis, it is natural to look at the magnitudes of the 
discrepancies between what is observed and what is expected. The larger these discrepan-
cies are in absolute value, the more suspicious we are of the null hypothesis. The random 
variable in Equation 14.2 is known as the chi-square random variable.

Table 14.4 Observed and Expected Numbers for n Observations and K Categories

Category 1 2 c K Total

Observed number O1 O2 c OK n

Probability (under H0) P1 P2 c PK 1

Expected number (under H0) E1 = nP1 E2 = nP2 c EK = nPK n
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Intuitively, the number of degrees of freedom follows from the fact that the Oi must 
sum to n. Hence, if the number of sample members, n, and the numbers of observations 
falling in any K - 1 of the categories are known, then the number in the Kth category is 
also known. The null hypothesis will be rejected when the observed numbers differ sub-
stantially from the expected numbers—that is, for unusually large values of the statistic in 
Equation 14.2. The appropriate goodness-of-fit test follows.

Chi-Square Random Variable
A random sample of n observations, each of which can be classified into 
exactly one of K categories, is selected. Suppose the observed numbers in 
each category are O1, O2, c, OK. If a null hypothesis 1H02 specifies proba-
bilities P1, P2, c, PK for an observation falling into each of these categories, 
the expected numbers in the categories, under H0, would be as follows:

 Ei = nPi for i = 1, 2, c, K   (14.1)

If the null hypothesis is true and the sample size is large enough that the 
 expected values are at least 5, then the random variable associated with

 x2 = a
K

i=1
 
1Oi - Ei22

Ei
 (14.2)

is known as a chi-square random variable, and has, to a good approximation, 
a chi-square distribution with (K - 1) degrees of freedom.

A Goodness-of-Fit Test: Specified Probabilities
A goodness-of-fit test with specified probabilites, of significance level a, of H0 
against the alternative that the specified probabilities are not correct is based 
on the decision rule

reject H0 if a
K

i=1

1Oi - Ei22
Ei

7 x2
K- 1,a

where x2
K -1,a is the number for which

P1x2
K- 1 7 x2

K- 1,a2 = a
and the random variable x2

K -1 follows a chi-square distribution with K - 1 
degrees of freedom.

To illustrate this test, consider again the data of Table 14.3 on brand selection. The null 
hypothesis is that the probabilities are the same for the three categories. The test of this 
hypothesis is based on the following:

x2 = a
3

i=1

1Oi - Ei22
Ei

=
175 - 10022

100
+
1110 - 10022

100
+
1115 - 10022

100
= 9.50

There are three 1K = 32 categories, so K - 1 = 2 degrees of freedom are associated with 
the chi-square distribution. From Appendix Table 7,

x2
2,0.01 = 9.210

Therefore, according to our decision rule, the null hypothesis is rejected at the 1% signifi-
cance level. These data contain strong evidence against the hypothesis that a randomly 
chosen subject is equally likely to select any of the three soft drink brands.
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Another marketing question that Hershey might address concerns whether the cur-
rent customer preferences differ from historically known preferences.

Example 14.1 Do Customers Have a Preference for 
Any of Four Hershey Chocolate Bars? (Chi-Square)

Suppose that the Hershey Company wants to determine if customers have a preference 
for any of the following four candy bars: A, Mr. Goodbar; B, Hershey’s Milk Chocolate; 
C, Hershey’s Special Dark Mildly Sweet Chocolate; or D, Krackel. From a random sam-
ple of 200 people, it was found that 43 preferred Mr. Goodbar; 53 preferred Hershey’s 
Milk Chocolate; 60 preferred Hershey’s Special Dark Mildly Sweet Chocolate, and the 
remainder preferred Krackel. Test the null hypothesis that customers have no prefer-
ence for any of the four candy bars against the alternative hypothesis that customers 
have a preference for at least one of the candy bars.

Solution The null hypothesis states that customers have no preference for any of the 
four candy bars (A, B, C, and D). That is, all four candy bars are equally preferred:

H0 : PA = PB = PC = PD = 0.25

Since the null hypothesis states that each candy bar is preferred by 25% of the custom-
ers, it follows that each of the expected values will be 50:

Ei = nPi = 20010.252 = 50

The chi-square test statistic is calculated in Table 14.5.

Table 14.5 Do Customers Have a Preference for Any of Four Hershey Chocolate Bars?

TYPE OF CANDY BAR Oi Ei 1Oi - Ei2 1Oi - Ei22 1Oi - Ei22>Ei

A. Mr. Goodbar 43 50 -7  49 49/50 = 0.98

B. Hershey’s Milk Chocolate 53 50 3   9 9/50 = 0.18

C. Hershey’s Special Dark 60 50 10 100 100/50 = 2.00

D. Krackel 44 50 -6  36 36/50 = 0.72

x2 = 3.88

Example 14.2 Is There a Change in Customer 
Preferences? (Chi-Square)

From historical data, such as sales records, the Hershey Company knows that 30% of its 
customers prefer Mr. Goodbar, 50% prefer Hershey’s Milk Chocolate, 15% prefer Her-
shey’s Special Dark Mildly Sweet Chocolate, and the remainder prefer Krackel. Sup-
pose that marketing analysts sample 200 people and find that 50 prefer Mr. Goodbar, 
93 prefer Hershey’s Milk Chocolate, 45 prefer Hershey’s Special Dark Mildly Sweet 
Chocolate, and the remainder prefers Krackel. Have current preferences for these prod-
ucts changed from the known preferences?

The chi-square test statistic is x2 = S 31Oi - Ei22>Ei4 = 3.88. From Appendix Ta-
ble 7 with df = K - 1 = 3,  we find that the test statistic falls between 0.584 and 6.251; 
it follows that 0.10 6 p@value 6 0.90. We fail to reject the null hypothesis and conclude 
that the data are not statistically significant to conclude that customers have a prefer-
ence for at least one of these candy bars. We must be careful not to conclude that all four 
candy bars are equally preferred; we can state only that the evidence does not support a 
preference. 
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Solution The null hypothesis is that current customer preferences follow the same 
pattern. That is, the customer preferences do not differ from that known to the Hershey 
Company:

H0 : PA = 0.30; PB = 0.50; PC = 0.15; PD = 0.05

The expected number of customers who prefer Mr. Goodbar is as follows:

EA = nPA = 20010.302 = 60

The expected number of customers who prefer each of the other candy bars is com-
puted similarly and the test statistic (Table 14.6) is found to be as follows:

x2 = a
K

i=1

1Oi - Ei22

Ei
= 10.06

Table 14.6 Have Customer Preferences Changed?

TYPE OF CANDY BAR Oi Ei 1Oi - Ei2 1Oi - Ei22 1O - Ei22>Ei

A. Mr. Goodbar 50  60 -10 100 100/60 = 1.67

B. Hershey’s Milk Chocolate 93 100 -7  49 49/100 = 0.49

C. Hershey’s Special Dark 45  30 15 225 225/30 = 7.50

D. Krackel 12  10 2   4 4/10 = 0.40

x2 = 10.06

From Appendix Table 7 with df = K - 1 = 3,  we find that the test statistic falls 
between 9.348 and 11.345; it follows that 0.01 6 p@value 6 0.025.

We reject the null hypothesis and conclude that the data provide considerable 
 evidence to suggest that current customer preferences differ from the given pattern of 
preferences. Market researchers could now look into the specific differences and rec-
ommend appropriate marketing strategies.

Example 14.3 Gas Company (Chi-Square)

A gas company has determined from past experience that at the end of winter 80% of 
its accounts are fully paid, 10% are 1 month in arrears, 6% are 2 months in arrears, and 
4% are more than 2 months in arrears. At the end of this winter the company checked 
a random sample of 400 of its accounts, finding 287 to be fully paid, 49 to be 1 month 
in arrears, 30 to be 2 months in arrears, and 34 to be more than 2 months in arrears. Do 
these data suggest that the pattern of previous years is not being followed this winter?

Solution Under the null hypothesis that the proportions in the present winter 
conform to the historical record, the respective probabilities for the four categories are 
0.80, 0.10, 0.06, and 0.04. Under that hypothesis the expected numbers of accounts in 
each category, for a random sample of 400 accounts, would be as follows:

40010.802 = 320; 40010.102 = 40; 40010.062 = 24; 40010.042 = 16

The observed and expected numbers are as follows:

NUMBER OF MONTHS IN ARREARS 0 1 2 MORE THAN 2 TOTAL

Observed number 287 49 30 34 400

Probability (under H0) 0.80 0.10 0.06 0.04 1

Expected number (under H0) 320 40 24 16 400
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 A word of caution is in order. The values used in calculating the test statistic in Equa-
tion 14.2 must be the observed and expected numbers in each category. It is not correct, 
for example, to use the percentages of sample members in each category instead.

The test of the null hypothesis 1H02  is based on the following:

 x2 = a
4

i=1

1Oi - Ei22
Ei

=
1287 - 32022

320
+
149 - 4022

40
+
130 - 2422

24
+
134 - 1622

16

 = 27.178

Here there are K = 4 categories, so there are K - 1 = 3 degrees of freedom. From 
 Appendix Table 7 we have the following:

x2
3, 0.001 = 16.266

Since 27.178 is much larger than 16.266, the null hypothesis is very clearly rejected, 
even at the 0.1% significance level. Certainly, these data provide considerable evidence 
to suspect that the pattern of payments of gas bills this year differs from the historical 
norm. Inspection of the numbers in the table shows that more accounts are in arrears 
over a longer time period than is usually the case.

EXERCISES

Application Exercises
 14.1 A random sample of 150 residents in one community 

was asked to indicate their first preference for one of 
three television stations that air the 5 p.m. news. The 
results obtained are shown in the following table. 
Test the null hypothesis that for this population their 
first preferences are evenly distributed over the three 
stations.

Station A B C
Number of first preferences 47 42 61

 14.2 A 2008 survey investigated favorite water sports in 
Australia, and it found out that 45% of the interview-
ees voted for surfing, 40% voted for scuba diving, and 
the rest voted for other water sports. In 2011, a similar 
survey was conducted; out of a sample of 200 respon-
dents, 102 declared they prefer surfing, 82 chose scuba 
diving, and the remaining 16 selected other water 
sports. Is it possible to conclude at the 5% level that in 
2011 these preferences remained the same?

 14.3 In an online poll run by a Hong Kong newspaper, 45% 
of people declared they go to the gym once a week, 
25% go two times, 10% go three times, and the rest do 
not go. The data were collected through telephone in-
terviews with 650 people; 230 answered they do not 
go to a gym at all, 150 go once a week, 200 go twice a 
week, and the rest go three times each week.

a. Can this be considered to be a multinomial ex-
periment? Which characteristics must it have to 
be classified as such?

b. Would you use a goodness of fit test? Why?

c. What conclusions would you gather from it? Do 
the online results match the phone interviews?

d. If not, could you suggest any reasons why they are 
different?

 14.4 Production records indicate that in normal operation 
for a certain electronic component, 93% have no faults, 
5% have one fault, and 2% have more than one fault. 
For a random sample of 500 of these components from 
a week’s output, 458 were found to have no faults; 30, 
to have one fault; and 12, to have more than one fault. 
Test, at the 5% level, the null hypothesis that the qual-
ity of the output from this week conforms to the usual 
pattern.

 14.5 A charity solicits donations by telephone. It has been 
found that 60% of all calls result in a refusal to donate; 
30% result in a request for more information through 
the mail, with a promise to at least consider donating; 
and 10% generate an immediate credit-card donation. 
For a random sample of 100 calls made in the cur-
rent week, 65 result in a refusal to donate, 31 result in 
a request for more information through the mail, and 
4 generate an immediate credit-card donation. Test at 
the 10% level the null hypothesis that the usual pattern 
of outcomes is being followed in the current week.

 14.6 A campus administrator has found that 60% of all stu-
dents view courses as very useful, 20%, as somewhat 
useful, and 20%, as worthless. Of a random sample 
of 100 students taking business courses, 68 found the 
course in question very useful, 18, somewhat useful, 
and 14, worthless. Test the null hypothesis that the 
population distribution for business courses is the 
same as that for all courses.
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14.2  GOODNESS-OF-FIT TESTS: POPULATION  
PARAMETERS UNKNOWN

In Section 14.1 the hypothesis concerned data that are generated by a fully specified prob-
ability distribution. The null hypothesis in this test specifies the probability that a sample 
observation will fall in any category. However, it is often required to test the hypothesis 
that data are generated by some distribution, such as the binomial, the Poisson, or the 
normal, without assuming the parameters of that distribution to be known. In these cir-
cumstances Section 14.1 is not applicable, but the available data can be used to estimate 
the unknown population parameters. The goodness-of-fit test used when population pa-
rameters are estimated is stated next.

 14.7 Several types of yogurt are sold in a small general 
store in New England. From a past study of customer 
selections, the owner knows that 20% of the custom-
ers ordered flavor A, 35%, flavor B, 18%, flavor C, 
12%, flavor D, and the remainder, flavor E. Now the 
owner, who thinks that the customer preferences have 
changed, randomly samples 80 customers and finds 
that 12 prefer A, 16 prefer B, 30 prefer C, 7 prefer E, 
and the remainder prefer D. Determine if the custom-
ers’ preferences have changed from the last study.

 14.8 In a recent market survey, five different soft drinks were 
tested to determine if consumers have a preference for 
any of the soft drinks. Each person was asked to indicate 
her favorite drink. The results were as follows: drink A, 
20; drink B, 25; drink C, 28; drink D, 15; and drink E, 27. 
Is there a preference for any of these soft drinks?

 14.9 A team of marketing research students was asked to 
 determine the pizza best liked by students enrolled in 
the team’s college. Two years ago a similar study was 

conducted, and it was found that 40% of all students at 
this college preferred Bellini’s pizza, 25% chose Antho-
ny’s pizza as the best, 20% selected Ferrara’s pizza, and 
the rest selected Marie’s pizza. To see if preferences have 
changed, 180 students were randomly  selected and asked 
to indicate their pizza preferences. The results were as fol-
lows: 40 selected Ferrara’s as their favorite, 32 students 
chose Marie’s, 80 students preferred Bellini’s, and the re-
mainder selected Anthony’s. Do the data indicate that the 
preferences today differ from those from the last study?

 14.10 A random sample of statistics professors was asked to 
complete a survey including questions on curriculum 
content, computer integration, and software preferences. 
Of the 250 responses, 100 professors indicated that they 
preferred software package M and 80 preferred software 
package E, whereas the remainder were evenly split be-
tween preference for software package S and software 
package P. Do the data indicate that professors have a 
preference for any of these software packages?

Goodness-of-Fit Tests When Population Parameters 
Are Estimated
Suppose that a null hypothesis specifies category probabilities that depend 
on the estimation (from the data) of m unknown population parameters. The 
appropriate goodness-of-fit test with estimated population parameters is pre-
cisely as in Section 14.1, except that the number of degrees of freedom for the 
chi-square random variable is

 degrees of freedom = 1K - m - 12 (14.3)

where K is the number of categories and m is the number of unknown popula-
tion parameters.

A Test for the Poisson Distribution

Consider a test to determine if data are generated by the Poisson distribution. One proce-
dure for attempting to resolve questions of disputed authorship is to count the number of 
occurrences of particular words in blocks of text. These can be compared with results from 
passages whose authorship is known; often this comparison can be achieved through the 
assumption that the number of occurrences follows a Poisson distribution. An example of 
this type of research involves the study of The Federalist Papers  (Mosteller and Wallace 1964).
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Example 14.4 Federalist Papers (Chi-Square)

For a sample of 262 blocks of text (each approximately 200 words in length) from The Fed-
eralist Papers (Mosteller and Wallace 1964), the mean number of occurrences of the word 
may was 0.66. Table 14.7 shows the observed frequencies of occurrence of this word in the 
262 sampled blocks of text. Test the null hypothesis that the population distribution of oc-
currences is Poisson, without assuming prior knowledge of the mean of this distribution.

Table 14.7 Occurrences of the Word may in 262 Blocks of Text in The Federalist Papers

NUMBER OF OCCURRENCES 0 1 2 3 OR MORE

Observed frequency 156 63 29 14

Solution Recall that, if the Poisson distribution is appropriate, the probability of x 
occurrences is

P1x2 = e-llx

x!

where l is the mean number of occurrences. Although this population mean is unknown, it 
can be estimated by the sample mean 0.66. It is then possible, by substituting 0.66 for l,  to es-
timate the probability for any number of occurrences under the null hypothesis that the pop-
ulation distribution is Poisson. For example, the probability of two occurrences is as follows:

 P122 = e-0.6610.6622
2!

 =
10.5169210.6622

2
= 0.1126

Similarly, the probabilities for zero and one occurrence can be found, so the probability 
of three or more occurrences is as follows:

P1X Ú 32 = 1 - P102 - P112 - P122
These probabilities are shown in the second row of Table 14.8.

Table 14.8 Observed and Expected Frequencies for The Federalist Papers

NUMBER OF OCCURENCES 0 1 2 3 OR MORE TOTAL

Observed frequencies 156 63 29 14 262

Probabilities 0.5169 0.3411 0.1126 0.0294 1

Expected frequencies under H0 135.4 89.4 29.5 7.7 262

Then, exactly as before, the expected frequencies under the null hypothesis are ob-
tained from the following:

Ei = nPi for i = 1, 2, c, K

Thus, for example, the expected frequency of two occurrences of the word may in 262 
blocks of text is 1262210.11262 = 29.5. Even though the variable itself is an integer, it is 
best not to round these expected values to integer values. The bottom row of Table 14.8 
shows these expected frequencies. The test statistic is then as follows:

 x2 = a
4

i=1

1Oi - Ei22
Ei

=
1156 - 135.422

135.4
+
163 - 89.422

89.4
+
129 - 29.522

29.5
+
114 - 7.722

7.7
 = 16.08
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A Test for the Normal Distribution

The normal distribution plays an important role in statistics, and many practical proce-
dures rely for their validity, or for particular optimality properties, on an assumption that 
sample data are from a normal distribution. In Chapter 5 we looked at the normal prob-
ability plot to check for evidence of nonnormality. Also, in Chapter 7 (Figures 7.2 and 7.9) 
we visually tested for evidence of nonnormality by determining if the dots in the normal 
probability plots were “close” to the straight line. Next, we consider a test of the normality 
assumption through an adaptation of the chi-square procedure. This test is both easy to 
carry out and likely to be more powerful.

The Jarque-Bera test for normality, which is an adaptation of the chi-square procedure, 
relies on two descriptive measures, skewness (Equation 14.5) and kurtosis (Equation 14.6). 
We discussed skewness in both Chapter 1 and in the Chapter 2 appendix. Skewness, a mea-
sure of symmetry, is known to be 0 for the normal distribution. Kurtosis provides a measure 
of the weight in the tails of a probability density function. It is known that for the normal 
distribution, the population kurtosis is 3. Therefore, the Jarque-Bera test for a normal dis-
tribution is based on the closeness to 0 of the sample skewness and the closeness to 3 of the 
sample kurtosis. The Jarque-Bera test statistic is given in Equation 14.4.

Since there are four categories and one parameter has been estimated, the approximate num-
ber of degrees of freedom for the test is 2. From Appendix Table 7, we have the following:

x2
2, 0.001 = 13.816

Thus, the null hypothesis that the population distribution is Poisson can be rejected at 
the 0.1% significance level. The evidence in the data against that hypothesis is, then, 
very strong indeed.

Jarque-Bera Test for Normality
Suppose that we have a random sample x1, x2, c , xn of n observations from 
a population. The test statistic for the Jarque-Bera test for normality is

 JB = n c 1skewness22
6

+
1kurtosis - 322

24
d  (14.4)

where using sample information, skewness of a population is estimated by

 skewness =
a
n

i=1
1xi - x23

ns3  (14.5)

and kurtosis is estimated by

 kurtosis =
a
n

i=1
1xi - x24

ns4  (14.6)

It is known that as the number of sample observations becomes very large, this 
statistic has, under the null hypothesis that the population distribution is normal, 
a chi-square distribution with 2 degrees of freedom. The null hypothesis is, of 
course, rejected for large values of the test-statistic.

Unfortunately, the chi-square approximation to the distribution of the Jarque-Bera 
test statistic, JB, is close only for very large sample sizes. Table 14.9 (Bera and Jarque 1981) 
shows significance points appropriate for a range of sample sizes for tests at the 5% and 
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10% levels. The recommended procedure, then, is to calculate the statistic, JB, in Equation 
14.4 and reject the null hypothesis of normality if the test statistic exceeds the appropriate 
value tabulated in Table 14.9.

Example 14.5 Daily Stock Market Rates of Return 
(Test of the Normal Distribution)

Daily closing prices of shares of a particular stock for the past year are contained in 
the data file Closing Stock Prices. The sample has n = 251 trading days. Compute the 
daily rates of return and test the null hypothesis that the true distribution for these 
rates of return is normal.

Solution From the data file Closing Stock Prices, we first calculate the daily rates of 
return, ri,  for each of the n = 251 trading days as follows:

 ri =
pi - pi- 1 + di

pi- 1
 for i = 1, c , n (14.7)

where pi is the closing price on day i and di is any dividend paid on day i. No dividends 
were paid in the past year. Once the daily rates of return are calculated, the following 
intermediate calculations are found:

 a
251

i=1
1ri - r22 = 0.0835496

 a
251

i=1
1ri - r23 = -0.002158324

 a
251

i=1
1ri - r24 = 0.000329593

From Equation 14.5, skewness is calculated as follows:

skewness =
a
n

i=1
1ri - r23

ns3 =
-0.002158324

25110.000006109512 > -1.41

and by Equation 14.6, kurtosis is as follows:

kurtosis =
a
n

i=1
1ri - r24

ns4 =
0.000329593

25110.0000001116882 > 11.76

Table 14.9 Significance Points of the Jarque–Bera Statistic (Bera and Jarque 1981)

Sample Size n 10% Point 5% Point Sample Size n 10% Point 5% point

20 2.13 3.26 200 3.48 4.43

30 2.49 3.71 250 3.54 4.51

40 2.70 3.99 300 3.68 4.60

50 2.90 4.26 400 3.76 4.74

75 3.09 4.27 500 3.91 4.82

100 3.14 4.29 800 4.32 5.46

125 3.31 4.34 ` 4.61 5.99

150 3.43 4.39
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Next, we find the Jarque-Bera test statistic, JB:

JB > 251 c 1 -1.4122
6

+
18.7622

24
d > 886

Comparison of this result with the significance points in Table 14.9 certainly pro-
vides ground to think that the population distribution is not normal.

It is often the case with real data that questions arise concerning unusual data 
points, such as the outlier seen in the normal probability plot in Figure 14.1. So what 
can we say about that point? Did it really happen or was there a recording error? Ex-
cept for this outlier, the other rates of return fluctuate between -0.05 and +0.05. If no 
recording error occurred, analysts would look for extenuating circumstances or very 
unusual conditions that might lead to this unusually low rate of return. 

Figure 14.1 Daily Rates of Return (Probability Plot)

Skewness and kurtosis are included in the standard output of most statistical software 
packages; however, it is possible that an alternative formula may be used to compute these 
descriptive measures. Other nonparametric tests of normality such as the Kolmogorov-
Smirnov test, Anderson-Darling test, Ryan-Joiner test, Shapiro-Wilk test, and the Lilliefors 
test are beyond the scope of this book. 

EXERCISES

Basic Exercises
 14.11 The number of times a machine broke down each 

week was observed over a period of 100 weeks and 
recorded in the accompanying table. It was found that 
the average number of breakdowns per week over this 
period was 2.1. Test the null hypothesis that the popu-
lation distribution of breakdown is Poisson.

Number of breakdowns 0 1 2 3 4 5 or more
Number of weeks 10 24 32 23 6 5

 14.12 In a period of 100 minutes there were a total of 
190  arrivals at a highway toll booth. The accompany-
ing table shows the frequency of arrivals per minute 
over this period. Test the null hypothesis that the pop-
ulation distribution is Poisson.

Number of arrivals  
in minutes

 
0

 
1

 
2

 
3

 
4 or more

Observed frequency 10 26 35 24 5
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 14.13 A random sample of 50 students was asked to estimate 
how much money they spent on textbooks in a year. 
The sample skewness of these amounts was found to 
be 0.83 and the sample kurtosis was 3.98. Test at the 
10% level the null hypothesis that the population dis-
tribution of amounts spent is normal.

 14.14 A random sample of 100 measurements of the resis-
tance of electronic components produced in a pe-
riod of 1 week was taken. The sample skewness was 
0.63 and the sample kurtosis was 3.85. Test the null 
 hypothesis that the population distribution is normal.

 14.15 Select a stock such as Apple, Dell, or Microsoft and 
use the Jarque-Bera test to determine if the annual 
daily rates of return for a particular year follow a nor-
mal distribution.

 14.16 A random sample of 125 monthly balances for hold-
ers of a particular credit card indicated that the sample 
skewness was 0.55 and the sample kurtosis was 2.77. 
Test the null hypothesis that the population distribu-
tion is normal.

14.3 CONTINGENCY TABLES

Suppose that a sample is taken from a population and the members can be uniquely cross-
classified according to a pair of characteristics, A and B. The hypothesis to be tested is 
of no association or dependence in the population between possession of characteristic 
A and possession of characteristic B. For example, a travel agency may want to know if 
there is any relationship between a client’s gender and the method used to make an airline 
reservation. An accounting firm may want to examine the relationship between the age 
of people and the type of income tax return filed by these individuals. Or, perhaps, in a 
medical study, a pharmaceutical company may want to know if the success of a drug used 
to control cholesterol depends on a person’s weight. A marketing research company may 
test if a customer’s choice of cereal is in some way dependent on the color of the cereal 
box. Perhaps there is an association between political affiliation and support for a particu-
lar amendment that is to appear on the next election’s ballot.

Assume that there are r categories for A and c categories for B, so a total of rc 
cross-classifications is possible. The number of sample observations belonging to 
both the ith category of A and the jth category of B will be denoted as Oij, where 
i = 1, 2, c, r and j = 1, 2, c, c. Table 14.10 is called an r * c contingency table. For 
convenience, row and column totals were added to Table 14.10, denoted respectively as 
R1, R2, c, Rr and C1, C2, c, Cc. 

Table 14.10 Cross-Classification of n Observations in an r : c Contingency Table

Characteristic B

Characteristic A 1 2 c c Total

1 O11 O12 c O1c R1

2 O21 O22 c O2c R2

f f f c f f

r Or1 Or2 c Orc Rr

Total C1 C2 c Cc n

To test the null hypothesis of no association between characteristics A and B, we ask 
how many observations we would expect to find in each cross-classification if that hy-
pothesis were true. This question becomes meaningful when the row and column totals 
are fixed. Consider, then, the joint classification corresponding to the ith row and jth col-
umn of the table. There is a total of Cj observations in the jth column, and, given no as-
sociation, we would expect each of these column totals to be distributed among the rows 
in proportion to the total number of observations in each ith row. Thus, we would expect 



 14.3 Contingency Tables 615

a proportion Ri>n of these Cj observations to be in the ith row. Hence, the estimated ex-
pected number of observations in the cross-classifications is

Eij =
RiCj

n
 for i = 1, 2, c, r; j = 1, 2, c, c

where Ri and Cj are the corresponding row and column totals.
Our test of the null hypothesis of no association is based on the magnitudes of the 

discrepancies between the observed numbers and those that would be expected if that 
hypothesis was true. The random variable given in Equation 14.8 is a generalized version 
of that introduced in Section 14.1.

Example 14.6 Market Differentiation 
(Test of Association)

When marketers position products or establish new brands, they aim to differentiate 
their product from its competition. To investigate the consumer’s perception, spontane-
ous associations are frequently used. That means consumers are exposed to different 
products and asked what comes to their mind when they see or hear of this  product. 

A Test of Association in Contingency Tables
Suppose that a sample of n observations is cross-classified according to two 
characteristics in an r * c contingency table. Denote by Oij the number of obser-
vations in the cell that is in the ith row and jth column. If the null hypothesis is 
H0: No association exists between the two characteristics in the population, then 
the estimated expected number of observations in each cell under H0 is

 Eij =
RiCj

n
 (14.9)

where Ri and Cj are the corresponding row and column totals. A test of asso-
ciation at a significance level a is based on the following decision rule:

reject H0 if = a
r

i=1
a

c

j=1

1Oij - Eij22
Eij

7 x21r-121c-12,a

Chi-Square Random Variable for Contingency Tables
It can be shown that under the null hypothesis, the random variable associ-
ated with

 x2 = a
r

i=1
a

c

j=1

1Oij - Eij22
Eij

 (14.8)

has, to a good approximation, a chi-square distribution with (r - 1)(c - 1) 
degrees of freedom. The approximation works well if no more than 20% 
of the estimated expected numbers Eij is less than 5. Sometimes  adjacent 
classes can be combined in order to meet this assumption.

The double summation in Equation 14.8 implies that the summation extends over all 
rc cells of the table. Clearly, the null hypothesis of no association will be rejected for large 
absolute discrepancies between observed and expected numbers—that is, for high values 
of the statistic in Equation 14.8. The test procedure is summarized as follows.
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For example, suppose a study was conducted to determine whether “safety” or 
“sporty” comes to a person’s mind when they see or hear of a particular type of auto-
mobile: BMW, Mercedes, or Lexus. Associations and products can be organized in a 
cross table, such as Table 14.11. The number in a cell thereby equals the frequency of 
a certain combination occurring (e.g., 256 people named BMW as sporty). Use a chi-
square test to evaluate whether the products mentioned differ in their associations and 
are, thus, perceived as dissimilar (which is most likely desired by the marketer).

Table 14.11 Automobile by Consumer Perception

AUTOMOBILE SPORTY SAFETY TOTAL

BMW 256   74 330

Mercedes   41   42   83

Lexus   66   34 100

Total 363 150 513

Solution The null hypothesis to be tested implies that, in the population, the three 
types of automobiles are perceived as similar; that is, there is no association between 
the automobile type and customers’ perception of the car as being known for being 
sporty or being known for its safety. To test the null hypothesis of no association, we 
again ask how many observations we would expect to find in each cross-classification 
if that hypothesis were true.

For example, if there were no association between these characteristics, the ex-
pected number of customers who perceived a BMW as sporty would be as follows:

E11 =
1330213632

513
= 233.5

The other expected numbers are calculated in the same way and are shown in Table 14.12, 
alongside the corresponding observed numbers.

Table 14.12 Observed (and Expected) Number of Customers in Each 
Cross-Classification

AUTOMOBILE SPORTY SAFETY TOTAL

BMW 256 (233.5) 74 (96.5) 330

Mercedes 41 (58.7) 42 (24.3) 83

Lexus 66 (70.8) 34 (29.2) 100

The test of the null hypothesis of no association is based on the magnitudes of the 
discrepancies between the observed numbers and those that would be expected if that 
hypothesis was true. Extending Equation 14.2 to include each of the six cross-classifica-
tions gives the following value of the chi-square test statistic:

 x2 =
1256 - 233.522

233.5
+
174 - 96.522

96.5
+
141 - 58.722

58.7
+
142 - 24.322

24.3

 +
166 - 70.822

70.8
+
134 - 29.222

29.2
= 26.8

The degrees of freedom are 1r - 121c - 12. Here, there are r = 3 rows and c = 2 col-
umns in the table, so the appropriate number of degrees of freedom is as follows:1r - 121c - 12 = 13 - 1212 - 12 = 2
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It should be noted, as was the case for the goodness-of-fit tests in earlier sections, that 
the figures used in calculating the statistic must be the actual numbers observed and not, 
for example, percentages of the total.

Example 14.7 Sarbanes-Oxley Act of 2002 
(Test of Association)

Regulatory agencies and the U.S. Congress are recognizing both the values and 
emerging issues for small firms as the Sarbanes-Oxley Act of 2002 (SOX) is imple-
mented. On April 23, 2006, the Advisory Committee on Smaller Public Companies 
issued a final report to the Security and Exchange Commission assessing the im-
pact of the Sarbanes-Oxley Act of 2002 on smaller public companies (Final Report 
of the Advisory Committee on Smaller Public Companies to the U.S. Securities and 
Exchange Commission, April 23, 2006). In Exercise 1.54 we introduced a study that 
was conducted among a random sample of CEOs, CFOs, and board members of cor-
porations since the implementation of the Sarbanes-Oxley Act of 2002 (Michelson, 
Stryker and Thorne 2009). Based on the data contained in Table 14.13, is there an 
association between the firm’s opinion as to the overall impact of Sarbanes-Oxley 
implementation and the firm’s size?

Table 14.13 Overall Impact of Sarbanes-Oxley Implementation and Size 
of the Firm

IMPACT OF SOX SMALL FIRMS MEDIUM SIZE FIRMS LARGE FIRMS

Little or no impact 17 13 6

Moderate to very  
 major impact

 
13

 
41

 
22

Solution In this study the size of the firm was measured by annual revenue, not 
number of employees or some other factor. Small firms are corporations with annual 
revenue not exceeding $250 million; large firms had annual revenue above $750 million. 
We calculate each of the expected number of firms for each cell as

E11 =
13621302

112
= 9.64

and then use Equation 14.8 to obtain a test statistic of 11.358. With 2 degrees of free-
dom and x2

2, 0.01 = 9.210 (Appendix Table 7), we conclude that the p-value 6 0.01 
and that the data are statistically significant to believe that there is an association be-
tween opinion on the overall impact of the Sarbanes-Oxley Act of 2002 and the size 
of the firm. From Figure 14.2 (obtained using SPSS), we see the same conclusion with 
p-value = 0.003.

From Appendix Table 7, we find the following:

x2
2, 0.001 = 13.816

Therefore, the null hypothesis of no association is very clearly rejected, even at the 0.1% 
level. The evidence against this hypothesis is overwhelming.
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Figure 14.2 Overall Impact of Sarbanes-Oxley Act of 2002 by Size of Firm (SPSS)

Overall Impact of SOX

Size Total

Small Medium Large

Little or no impact Count 17 13  6  36
Expected count  9.6 17.4  9.0  36.0

Major impact Count 13 41 22  76
Expected count 20.4 36.6 19.0  76.0

Total Count 30 28 54 112

chi-Square Tests

 

Value

 

df

Asymp. Sig.  

(2-sided)

Pearson Chi-Square  11.358(a) 2 .003
Likelihood Ratio  10.900 2 .004
Linear-by-Linear 

Association

  7.907 1 .005

N of Valid Cases 112

a 0 cells (.0%) have expected count less than 5. The minimum expected count is 9.00.

EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

Application Exercises
14.17  The U.S. Department of Agriculture (USDA) 

Center for Nutrition Policy and Promotion 
(CNPP) uses the Healthy Eating Index to monitor the 
diet quality of the U.S. population, particularly how 
well it conforms to dietary guidance. The HEI–2005 
measures how well the population follows the recom-
mendations of the 2005 Dietary Guidelines for Americans 
(Guenther et al. 2007). Data collected on a random 
sample of individuals who participated in two ex-
tended interviews and medical examinations are con-
tained in the data file HEI Cost Data Variable Subset, 
where the first interview is identified by daycode = 1
and data for the second interview are identified by 
daycode = 2. One variable in the HEI–2005 study is a 
participant’s activity level, coded as 1 = sedentary,
2 = active, and 3 = very active. In Chapter 1, we con-
structed bar charts of participants’ activity level by 
gender for data collected on the first interview. Deter-
mine if there is an association between activity level 
and gender. 

Activity Level Male Female
Sedentary 957 1226

Active 340  417

Very active 842  678

 14.18 University administrators have collected the following 
information concerning student grade point average 
and the school of the student’s major.

Determine if there is any association between GPA 
and major.

School GPA 6 3.0 GPA 3.0 or Higher
Arts and Sciences 50 35

Business 45 30

Music 15 25

 14.19 An increasing number of public school districts are 
utilizing the iPad as a teaching tool. For example, one 
high school in Long Island recently distributed 47 
iPads to the students and teachers in two humanities 
classes, with expectations that in time all 1,100 students 
will be provided with iPads (Hu 2011). Educators are 
divided on their opinion as to the academic benefit of 
iPads. Much research is needed to determine if iPads 
are an enhancement to learning or just another tech-
nological fad. Suppose that a random sample of high 
school teachers (math, history, science, and language 
teachers) were surveyed and asked, Do you think the 
iPad will enhance learning? Determine if there is an as-
sociation between the subject taught and the response 
to this question.

Although the use of the chi-square test for association may indicate that there is a rela-
tionship between two variables, this procedure does not indicate the direction or strength
of the relationship.
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14.4  NONPARAMETRIC TESTS FOR PAIRED  
OR MATCHED SAMPLES

The simplest nonparametric test to carry out is the sign test. It is most frequently em-
ployed in testing hypotheses about analyzing data from paired or matched samples. The 
sign test is used in market research studies to determine if consumer preference exists for 
one of two products. Since respondents simply name their preference, the data are nomi-
nal and lend themselves to nonparametric procedures. The sign test is also useful to test 
the median of a population.

Sign Test for Paired or Matched Samples

Suppose that paired or matched samples are taken from a population and the differences 
equal to 0 are discarded, leaving n observations. The sign test can be used to test the null hy-
pothesis that the population median of the differences is 0 (which would be true, for  example, 
if the differences came from a population whose distribution was symmetric about a mean 
of 0). Let +  indicate a positive difference and -  indicate a negative difference. If the null 
hypothesis were true, our sequence of +  and -  differences could be regarded as a random 
sample from a population in which the probabilities for +  and -  were each 0.5. In that case, 
the observations would constitute a random sample from a binomial population in which the 
probability of +  was 0.5. Thus, if P denotes the true proportion of +  signs in the population 
(that is, the true proportion of positive differences), the null hypothesis is simply

H0 : P = 0.5

The sign test is then based on the fact that the number of positive observations, S, in the 
sample has a binomial distribution (with P = 0.5 under the null hypothesis).

Sign Test
Suppose that paired or matched random samples are taken from a population 
and the differences equal to 0 are discarded, leaving n observations. Calculate 
the difference for each pair of observations and record the sign of this differ-
ence. The sign test is used to test

H0 : P = 0.5

iPad Enhances Learning?
Subject Yes No

Math 68 32

History 70 30

Science 60 50

Language 50 40

 14.20 How do customers first hear about a new product? A 
random sample of 200 users of a new product was sur-
veyed to determine the answer to this question. Other 
demographic data such as age were also collected. The 
respondents included 50 people under the age of 21 
and 90 people between the ages of 21 and 35; the re-
mainder was over 35 years of age. Of those under 21, 
60% heard about the product from a friend, and the 
remainder saw an advertisement in the local paper. 
One-third of the people in the age category from 21 

to 35 saw the advertisement in the local paper. The 
other two-thirds heard about it from a friend. Of those 
over 35, only 30% heard about it from a friend, while 
the remainder saw the local newspaper advertisement. 
Set up the contingency table for the variables age and 
method of learning about the product. Is there an as-
sociation between the consumer’s age and the method 
by which the customer heard about the new product?

 14.21 Following a presidential debate, people were asked 
how they might vote in the forthcoming election. Is 
there any association between one’s gender and choice 
of presidential candidate?

Gender

Candidate Preference Male Female
Candidate A 150 130

Candidate B 100 120
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After determining the null and alternative hypotheses and finding a test statis-
tic, the next step is to determine the p-value and draw conclusions based on a deci-
sion rule.

Determining p-Value for a Sign Test
The p-value for a sign test is found using the binomial distribution with 
n = number of nonzero differences, S = number of positive differences, 
and P = 0.5.

a. For an upper-tail test

 H1 : P 7 0.5 p@value = P1x Ú S2 (14.10)

b. For a lower-tail test

 H1 : P 6 0.5 p@value = P1x … S2 (14.11)

c. For a two-tail test, let S = max1S+ , S-2, where S+  is the number of posi-
tive differences and S- is the number of negative differences. Then,

 H1 : P ? 0.5 p@value = 2P1x Ú S2 (14.12)

Example 14.8 Product Preference (Sign Test)

An Italian restaurant close to a college campus contemplated a new recipe for the sauce 
used on its pizza. A random sample of eight students was chosen, and each was asked 
to rate the tastes of the original sauce and the proposed new one on a scale of 1 to 10. 
The scores of the taste comparison are shown in Table 14.14, with higher numbers indi-
cating a greater liking of the product.

Do the data indicate an overall tendency to prefer the new pizza sauce over the 
original pizza sauce?

Solution Also shown in Table 14.14 are the differences in the scores for every 
taster and the signs of these differences. Thus, +  is assigned if the original product 
is preferred, -  if the new product is preferred, and 0 if the two products are rated 
equally. In this particular experiment, two tasters preferred the original pizza sauce, 
five preferred the new recipe, and one rated them equal.

 The null hypothesis of interest is that in the population at large, there is no overall 
tendency to prefer one product to the other. In assessing this hypothesis, we compare 
the numbers expressing a preference for each product, discarding those who rated the 
products equally. In the present example, the values for taster G are omitted in further 
analysis, and the effective sample size is reduced to n = 7. The only sample informa-
tion on which our test is based is that two of the seven tasters preferred the original 
product. Hence, the test statistic is S = 2. 

where P is the proportion of nonzero observations in the population that are 
positive. The test statistic S for the sign test for paired samples is simply

S = the number of pairs with a positive difference

where S has a binomial distribution with P = 0.5 and n = the number of 
nonzero differences.
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Table 14.14 Student Ratings for Pizza Sauce

RATING

 
STUDENT

ORIGINAL 
PIZZA SAUCE

NEW PIZZA  
SAUCE

DIFFERENCE  
(ORIGINAL - NEW)

SIGN OF 
DIFFERENCE

A 6 8 -2 -
B 4 9 -5 -
C 5 4 1 +
D 8 7 1 +
E 3 9 -6 -
F 6 9 -3 -
G 7 7 0 0

H 5 9 -4 -

The null hypothesis can be viewed as the hypothesis that the population median 
of the differences is 0. If the null hypothesis were true, our sequence of +  and -  dif-
ferences could be regarded as a random sample from a population in which the prob-
abilities for +  and -  were each 0.5. In that case, the observations would constitute a 
random sample from a binomial population in which the probability of +  was 0.5. 
Thus, if P denotes the true proportion of +  signs in the population (that is, the true 
proportion of the population that prefers the original pizza sauce), the null hypothesis 
is simply as follows:

H0 : P = 0.5 There is no overall tendency to prefer one sauce to the other.

A one-tailed test is used to determine if there is an overall tendency to prefer the new 
pizza sauce to the original pizza sauce. The alternative of interest is that in the popula-
tion the majority of preferences are for the new product. This alternative is expressed 
as follows:

H1 : P 6 0.5  Fewer than 50% prefer the old pizza sauce.

Next, we find the probability of observing a sample result as extreme as or more 
extreme than that found if the null hypothesis were, in fact, true. This value is the  
p-value of the test. If we denote by P1x2 the probability of observing x “successes” 1+ 2 
in n = 7 binomial trials, each with probability of success 0.5, then the cumulative bino-
mial probability of observing two or fewer +  signs can be obtained by Appendix Table 
3. Thus, the p-value is as follows:

p@value = P1x … 22 = 0.227

With a p-value this large, we are unable to reject the null hypothesis, and we conclude 
that the data are not sufficient to suggest that the students have a preference for the 
new sauce. Similarly, we could have said that if we adopt the decision rule reject H0 
if two or fewer +  signs occur in the sample, then the probability is 0.227 that the null 
hypothesis will be rejected when it is, in fact, true. Hence, such a test has a p-value of 
22.7%. Since the p-value is the smallest significance level at which the null hypothesis 
can be rejected, for the present example the null hypothesis can be rejected at 22.7% 
or higher. It is unlikely that we would be willing to accept such a high significance 
level. Again, we conclude that the data are not statistically significant to recommend a 
change in the pizza sauce. Perhaps our decision is a consequence of our having such a 
small number of sample observations.
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Wilcoxon Signed Rank Test for Paired or Matched Samples

One disadvantage of the sign test is that it takes into account only a very limited amount 
of information—namely, the signs of the differences. For example, in Table 14.14 the sign 
test simply records which product is preferred, ignoring the strengths of the preferences. 
When the sample size is small, it might be suspected that the test would not be very pow-
erful. The Wilcoxon signed rank test provides a method for incorporating information 
about the magnitude of the differences between matched pairs. It is still a distribution-free 
test. Like many nonparametric tests, it is based on ranks.

Example 14.9 Product Preference 
(Wilcoxon Signed Rank Test)

Consider again Example 14.8, the student ratings for pizza sauce. Use the Wilcoxon 
signed rank test to determine if the data indicate an overall tendency to prefer the new 
pizza sauce to the original pizza sauce.

Solution As with the sign test, we ignore any difference of 0, so taster G is removed 
from the study and the sample size is reduced to n = 7. The nonzero absolute 
differences are then ranked in ascending order of magnitude. That is, the smallest 
absolute value is given a rank of 1. If two or more values are equal, they are assigned 
the average of the next available ranks. In our example the two smallest absolute 
differences are equal. The rank assigned to them is, therefore, the average of ranks 1 
and 2—that is, 1.5. The next absolute value is assigned rank 3, and so on. We rank all 
differences and obtain Table 14.15.

The ranks for positive and negative differences are summed separately. The smaller 
of these sums is the Wilcoxon signed rank statistic T. Here, T = 3. 

We now suppose that the population distribution of the paired differences is sym-
metric. The null hypothesis to be tested is that the center of this distribution is 0. In our 
example, then, we are assuming that differences in the ratings of the two products have 
a symmetric distribution, and we want to test whether that distribution is centered on 
0—that is, no difference between ratings. We would be suspicious of the null hypothesis 

The Wilcoxon Signed Rank Test for Paired Samples
The Wilcoxon signed rank test can be employed when a random sample of 
matched pairs of observations is available. Assume that the population dis-
tribution of the differences in these paired samples is symmetric and that we 
want to test the null hypothesis that this distribution is centered at 0. Discard-
ing pairs for which the difference is 0, we rank the remaining n absolute dif-
ferences in ascending order, with ties assigned the average of the ranks they 
occupy. The sums of the ranks corresponding to positive and negative differ-
ences are calculated, and the smaller of these sums is the Wilcoxon signed 
rank statistic T—that is,

 T = min1T+ , T-2 (14.13)

where

 T+ = sum of the positive ranks
 T- = sum of the negative ranks

 n = number of nonzero differences

The null hypothesis is rejected if T is less than or equal to the value in Appen-
dix Table 10.
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Table 14.15 Calculation of Wilcoxon Test Statistic for Taste Preference Data

TASTER DIFFERENCE RANK 1+ 2 RANK 1 - 2
A -2  3

B -5  6

C 1 1.5

D 1 1.5

E -6  7

F -3  4

G 0

H -4  5

Rank sum 3 25

Wilcoxon signed rank statistic T 5 minimum (3, 25) 5 3

Normal Approximation to the Sign Test

As a consequence of the central limit theorem, the normal distribution can be used to 
 approximate the binomial distribution if the sample size is large. Experts differ on the exact 
definition of “large.” We suggest that the normal approximation is acceptable if the sample size 
exceeds 20. A continuity correction factor in the test statistic compensates for estimating dis-
crete data with a continuous distribution and provides a closer approximation to the p-value.

if the sum of the ranks for positive differences were very different from that for negative 
differences. Hence, the null hypothesis will be rejected for low values of the statistic T.

Cutoff points for the distribution of this random variable are given in Appendix Table 
10 for tests against a one-sided alternative that the population distribution of the paired 
differences is specified either to be centered on some number greater than 0 or to be cen-
tered on some number less than 0. For sample size n, Table 10 shows, for selected prob-
abilities a, the number Ta such that P1T … Ta2 = a. For example, if we let a = 0.05,  we 
read in the table for n = 7 that P1T … 42 = 0.05. Since the Wilcoxon signed rank test 
statistic is T = 3,  the null hypothesis is rejected against the one-sided alternative at the 
5% level. It appears likely that, overall, ratings are higher for the new product.

The Sign Test: Normal Approximation (Large Samples)
If the number n of nonzero sample observations is large, then the sign test is 
based on the normal approximation to the binomial with the following mean 
and standard deviation:

 mean: m = np = 0.5n;

 standard deviation: s = 2np 11 - p2 = 20.25n = 0.52n

The test statistic is

 Z =
S* - m
s

=
S* - 0.5n

0.52n
 (14.14)

where S* is the test statistic corrected for continuity, defined as follows:

a. For a two-tail test:

 S* = S + 0.5 if S 6 m or S* = S - 0.5 if S 7 m (14.15)
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Normal Approximation to the Wilcoxon Signed Rank Test

When the number n of nonzero differences in the sample is large (n 7 20), the normal 
distribution provides a good approximation to the distribution of the Wilcoxon statistic 
T under the null hypothesis that the population differences are centered on 0. When this 
hypothesis is true, the mean and variance of this distribution are given in Equations 14.18 
and 14.19.

b. For an upper-tail test:

 S* = S - 0.5 (14.16)

c. For a lower-tail test:

 S* = S + 0.5 (14.17)

Example 14.10 Ice Cream (Sign Test: Normal 
Approximation)

A random sample of 100 children was asked to compare two new ice cream flavors—
peanut butter ripple and bubblegum surprise. Fifty-six sample members preferred pea-
nut butter ripple, 40 preferred bubblegum surprise, and 4 expressed no preference. Use 
the normal approximation to determine if there is an overall preference for either flavor. 

Solution To test if there is an overall preference in this population for one flavor 
over the other, the hypotheses are as follows:

 H0 :  P = 0.5   Children have no preference for either flavor.

 H1 :  P ? 0.5   Children have a preference for one flavor.

Let P be the population proportion that prefers bubblegum surprise, giving S = 40 (we 
could just as well have chosen P to be the population proportion that prefers peanut 
butter ripple, with S = 56). Using Equations 14.14 and 14.15,

 m = np = 0.5n = 0.51962 = 48

 s = 0.5296 = 4.899

 z =
S* - m
s

=
40.5 - 48

4.899
= -1.53 since 40 6 48, S* = 40.5

From the standard normal distribution, it follows that the approximate p@value =  
210.06302 = 0.126. Hence, the null hypothesis can be rejected at all significance lev-
els greater than 12.6%. If no continuity correction factor is used, the value Z becomes 
Z = -1.633, giving a slightly smaller p-value of 0.1024.

The Wilcoxon Signed Rank Test: Normal Approximation 
(Large Samples)
Under the null hypothesis that the population differences are centered on 0, 
the Wilcoxon signed rank test has mean and variance given by

 E1T2 = mT =
n1n + 12

4
 (14.18)
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Example 14.11 Postaudit Procedures (Wilcoxon 
Signed Rank Test)

Suppose that a study compared firms with and without sophisticated postaudit pro-
cedures. A random sample of 31 matched pairs of firms was examined. For each firm 
the ratio of market valuation to replacement cost of assets was computed as a measure 
of firm performance. In each of the 31 pairs, one firm employed sophisticated postau-
dit procedures and the other did not. The 31 differences in ratios were calculated, and 
the absolute differences were ranked. The smaller of the rank sums, 189, was for those 
pairs where the ratio was higher for the firm without sophisticated postaudit proce-
dures. Test the null hypothesis that the distribution of differences in ratios is centered 
on 0 against the alternative that the ratio of market valuation to replacement cost of as-
sets tends to be lower for firms without sophisticated postaudit procedures 

Solution Given a random sample of n = 31 matched pairs, the Wilcoxon statistic 
has, under the null hypothesis, the mean

mT =
n1n + 12

4
=
13121322

4
= 248

and variance

Var1T2 = s2
T =

n1n + 1212n + 12
24

=
131213221632

24
= 2,604

so that the standard deviation is as follows:

sT = 51.03

The observed value of the statistic is T = 189. It follows from Equations 14.18–14.20 
that the null hypothesis is rejected against the one-sided alternative if

Z =
T - mT

sT
=

189 - 248
51.03

=
-59

51.03
= -1.16 6 za

and

 Var1T2 = s2
T =

n1n + 1212n + 12
24

 (14.19)

Then, for large n, the distribution of the random variable, Z, is approximately 
standard normal where

 Z =
T - mT

sT
 (14.20)

If the number, n, of nonzero differences is large and T is the observed value of 
the Wilcoxon statistic, then the following tests have significance level a.

1. If the alternative hypothesis is one-sided, reject the null hypothesis if

T - mT

sT
6 -za

2. If the alternative hypothesis is two-sided, reject the null hypothesis if

T - mT

sT
6 -za>2
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Sign Test for a Single Population Median

The sign test can also be used to test hypotheses about the central location (median) of a 
population distribution.

Example 14.12 Starting Incomes of Recent College 
Graduates (Sign Test)

The starting incomes of a random sample of 23 recent graduates are given in Table 14.16.

Table 14.16 Starting Salaries

29,250 29,900 28,070 31,400 31,100 29,000 33,000 50,000 28,500 31,000

34,800 42,100 33,200 36,000 65,800 34,000 29,900 32,000 31,500 29,900

32,890 36,000 35,000

Do the data indicate that the median starting income differs from $35,000? The data for 
this problem can be found in the data file Income.

Solution Since the distribution of incomes is often skewed, the sign test will be used. 
The null and alternative hypotheses are as follows:

 H0 : median = $35,000

 H1 : median ? $35,000

Here, we test the null hypothesis using a binomial distribution with P = 0.50. 
First, we approximate the answer using Equations 14.14 and 14.15. Notice that there 
are 17 students who indicated income less than $35,000 and 5 who indicated income 
greater than $35,000, with 1 student having a starting income of $35,000. The sample 
size is reduced to n = 22 and S = 5. The mean and the standard deviation are found 
to be as follows:

m = np = 0.5n = 0.51222 = 11

s = 0.5222 = 2.345

Since S = 5 6 m = 11,  the test statistic for the normal approximation is as follows:

Z =
5.5 - 11

2.345
= -2.35

Using the table for the standard normal distribution, the approximate p-value is 
210.00942 = 0.0188. Therefore, the null hypothesis is rejected at 1.88% or higher.

For a = 0.05,

za = -1.645

The test result is not sufficient to reject the null hypothesis. Using the standard nor-
mal distribution, the null hypothesis could be rejected only at all significance levels of 
12.3% or higher. Such a large p-value indicates that the data are not statistically signifi-
cant to indicate that the ratio of market valuation to replacement cost of assets tends to 
be lower for firms without sophisticated postaudit procedures.
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EXERCISES

Application Exercises
 14.22 A random sample of 12 financial analysts was asked 

to predict the percentage increases in the prices of two 
common stocks over the next year. The results ob-
tained are shown in the table. Use the sign test to test 
the null hypothesis that for the population of analysts 
there is no overall preference for increases in one stock 
over the other.

Analyst Stock 1 Stock 2
A    6.8   7.2

B    9.8 12.3

C    2.1   5.3

D    6.2   6.8

E    7.1   7.2

F    6.5   6.2

G    9.3 10.1

H    1.0   2.7

I -0.2   1.3

J    9.6   9.8

K  12.0 12.0

L    6.3   8.9

 14.23 An organization offers a program designed to increase 
the level of comprehension achieved by students 
when reading technical material quickly. Each mem-
ber of a random sample of 10 students was given 30 
minutes to read an article. A test of the level of com-
prehension achieved was then administered. This pro-
cess was repeated after these students had completed 
the program. The accompanying table shows compre-
hension scores before and after completion of the pro-
gram. Use the sign test to test the null hypothesis that 
for this population there is no overall improvement 
in comprehension levels following completion of the 
program.

Student Before After
A 62 69

B 63 72

C 84 80

D 70 70

E 60 69

F 53 61

G 49 63

H 58 59

I 83 87

J 92 98

 14.24 A sample of 11 managers in retail stores having self-
checkout was asked if customers have a positive at-
titude about the scanning process. Seven managers 
answered yes, and four answered no. Test against 
a two-sided alternative the null hypothesis that, for 

the population of managers, responses would be 
equally divided between yes and no.

 14.25 A sample of 75 corporations buying back franchises 
was examined. Of these cases, returns on common 
stock around the buyback announcement date were 
positive 52 times, negative 15 times, and zero 8 times. 
Test the null hypothesis that positive and negative 
returns are equally likely against the alternative that 
positive returns are more likely.

 14.26 Of a random sample of 130 voters, 44 favored a state 
tax increase to raise funding for education, 68 opposed 
the tax increase, and 18 expressed no opinion. Test, 
against a two-sided alternative, the null hypothesis 
that voters in the state are evenly divided on the issue 
of this tax increase.

 14.27 A random sample of 60 professional economists was 
asked to predict whether next year’s inflation rate 
would be higher than, lower than, or about the same 
as that in the current year. The results are shown in 
the following table. Test the null hypothesis that the 
profession is evenly divided on the question.

Prediction Number
Higher 20

Lower 29

About the same 11

 14.28 A random sample of 120 shoppers was asked to com-
pare two new energy drinks. Sixty-five sample mem-
bers preferred energy drink A, 53 preferred energy 
drink B, and 2 expressed no preference. Use the normal 
approximation to determine if there is an overall prefer-
ence for either energy drink. 

 14.29 A random sample of 10 students was asked to rate, 
in a blind taste test, the quality of two brands of 
ice cream, one reduced-sugar and one regular ice 
cream. Ratings were based on a scale of 1 (poor) to 
10  (excellent). The accompanying table gives the re-
sults. Use the Wilcoxon test to test the null hypoth-
esis that the distribution of the paired differences is 
centered on 0 against the alternative that the popu-
lation of all student ice cream consumers prefer the 
regular brand.

Student Reduced Sugar Regular

A 2 6

B 3 5

C 7 6

D 8 8

E 7 5

F 4 8

G 3 9

H 4 6

I 5 4

J 6 9
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14.5  NONPARAMETRIC TESTS FOR INDEPENDENT  
RANDOM SAMPLES

In this section we introduce two tests that compare the central locations of two population 
distributions when independent random samples are taken from the two populations. The 
two tests are the Mann-Whitney U test and the Wilcoxon rank sum test.

Mann-Whitney U Test

The distribution of the Mann-Whitney statistic, U, approaches the normal distribution 
quite rapidly as the number of sample observations increases. The approximation is ad-
equate if each sample contains at least 10 observations. Thus, we consider here only sam-
ples with n1 Ú 10 and n2 Ú 10. To test the null hypothesis that the central locations of the 
two population distributions are the same, we assume that, apart from any possible differ-
ences in central location, the two population distributions are identical.

The Mann-Whitney U Statistic
Assume that, apart from any possible differences in central location, the two 
population distributions are identical. Suppose that n1 observations are avail-
able from the first population and n2 observations from the second. The two 
samples are pooled, and the observations are ranked in ascending order with 
ties assigned the average of the next available ranks. Let R1 denote the sum 

 14.30 Sixteen freshmen on a college campus were grouped 
into eight pairs in such a way that the two members of 
any pair were as similar as possible in academic back-
grounds—as measured by high school class rank and 
achievement test scores—and also in social backgrounds. 
The major difference within pairs was that one student 
was an in-state student and the other was from out of 
state. At the end of the first year of college, grade point 
averages of these students were recorded, yielding the 
results shown in the table. Use the Wilcoxon test to ana-
lyze the data. Discuss the implications of the test results.

Pair In State Out of State

A 3.4 2.8

B 3.0 3.1

C 2.4 2.7

D 3.8 3.3

E 3.9 3.7

F 2.3 2.8

G 2.6 2.6

H 3.7 3.3

 14.31 A random sample of 40 business majors who had 
just completed introductory courses in both statistics 
and accounting was asked to rate each class in terms 
of level of interest on a scale of 1 (very uninterest-
ing) to 10 (very  interesting). The 40 differences in the 

pairs of ratings were calculated and the absolute dif-
ferences ranked. The smaller of the rank sums, which 
was for those finding accounting the more interesting, 
was 281. Test the null hypothesis that the population 
of business majors would rate these courses equally 
against the alternative that the statistics course is 
viewed as the more interesting.

 14.32 A consultant is interested in the impact of the intro-
duction of a total-quality management program on 
job satisfaction of employees. A random sample of 30 
employees was asked to assess level of satisfaction on 
a scale from 1 (very dissatisfied) to 10 (very satisfied) 
three months before the introduction of the program. 
These same sample members were asked to make this 
assessment again 3 months after the introduction of 
the program. The 30 differences in the pairs of ratings 
were calculated and the absolute differences ranked. 
The smaller of the rank sums, which was for those 
more satisfied before the introduction of the program, 
was 169. What can be concluded from this finding?

 14.33 A random sample of 80 owners of videocassette record-
ers was taken. Each sample member was asked to assess 
the amounts of time in a month spent watching material 
he or she had recorded from television broadcasts and 
watching purchased or rented commercially recorded 
tapes. The 80 differences in times spent were then cal-
culated and their absolute values ranked. The smaller 
of the rank sums, for material recorded from television, 
was 1,502. Discuss the implications of this sample result.



 14.5 Nonparametric Tests for Independent Random Samples  629

It can be shown then that if the null hypothesis is true, the random variable U has 
mean and variance as defined in Equations 14.22 and 14.23.

Example 14.13 Hours of Study (Mann-Whitney 
U Test)

Table 14.17 shows the numbers of hours per week students claim to spend studying for 
introductory finance and accounting courses. The data are from independent random 
samples of 10 finance students and 12 accounting students.

Do the data indicate a difference in the median number of hours per week that 
students spend studying for introductory finance and accounting courses? The name of 
the data file is Hours.

Solution Our null hypothesis is that the central locations (medians) of the two 
population distributions are identical.

H0 : median 112 =  median (2); Students spend the same median number of hours 
studying for introductory finance and accounting courses.

The two samples are pooled, and the observations are ranked in ascending order with 
ties being treated in the same way as previously. These ranks are shown in Table 14.18.

Now, if the null hypothesis were true, we would expect the average ranks for the 
two samples to be quite close. In the particular example the average rank for the finance 
students is 9.35, whereas that for the accounting students is 13.29. As usual, when test-
ing hypotheses, we want to know how likely a discrepancy of this magnitude would be 
if the null hypothesis were true.

Table 14.17 Number of Hours per Week Spent Studying for Introductory Finance 
and Accounting Courses

Finance 10 6 8 10 12 13 11 9 5 11

Accounting 13 17 14 12 10 9 15 16 11 8 9 7

Mann-Whitney U Test: Normal Approximation
Assuming as the null hypothesis that the central locations of the two popula-
tion distributions are the same, the Mann-Whitney U has the following mean 
and variance:

 E1U2 = mU =
n1n2

2
 (14.22)

 Var1U2 = s2
U =

n1n21n1 + n2 + 12
12

 (14.23)

Then, for large sample sizes (both at least 10), the distribution of the random 
variable

 Z =
U - mU
sU

 (14.24)

is approximated by the normal distribution.

of the ranks of the observations from the first population. The Mann-Whitney 
U test is based on the Mann-Whitney U statistic defined as follows:

 U = n1n2 +
n11n1 + 12

2
- R1 (14.21)
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Table 14.18  Mann-Whitney U Test Ranks for Hours of Study per Week

FINANCE (RANK) ACCOUNTING (RANK)

10 (10) 13 (17.5)

6 (2) 17 (22)

8 (4.5) 14 (19)

10 (10) 12 (15.5)

12 (15.5) 10 (10)

13 (17.5) 9 (7)

11 (13) 15 (20)

9 (7) 16 (21)

5 (1) 11 (13)

11 (13) 8 (4.5)

9 (7)

7 (3)

  Rank Sum = 93.5         Rank Sum = 159.5

It is not necessary to calculate both rank sums, because if we know one, we can 
deduce the other. In this example, for instance, the ranks must sum to the sum of the 
integers 1 through 22—that is, to 253. Thus, any test of the hypothesis can be based on 
just one of the rank sums. If finance is the first sample, then

n1 = 10 n2 = 12 R1 = 93.5

so the value observed for the Mann-Whitney statistic is, by Equation 14.21,

U = n1n2 +
n11n1 + 12

2
- R1 = 11021122 +

11021112
2

- 93.5 = 81.5

Using the null hypothesis that the central locations of the two population distributions 
are the same and Equation 14.22, the distribution of the statistic has mean

E1U2 = mU =
n1n2

2
=
11021122

2
= 60

and variance

Var1U2 = s2
U =

n1n21n1 + n2 + 12
12

=
110211221232

12
= 230

It follows that

Z =
U - mU
sU

=
81.5 - 602230

= 1.42  and  p@value = 0.1556.

With the usual 0.05 significance level, the test result is not sufficient to conclude that 
students spend more time studying for one of these subjects than the other. We could 
have used a continuity correction factor in the normal approximation. The p-value will 
be slightly higher than 0.1556.

If accounting is population 1 with n1 = 12 and R1 = 159.5,  the outcome will be the 
same, since Z = -1.42. The p-value will still be 0.1556.
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For the data in Table 14.18, T = R1 = 93.5 with

E1T2 = mT =
n11n1 + n2 + 12

2
=

101232
2

= 115

and

Var1T2 = s2
T =

n1n21n1 + n2 + 12
12

= 230

Notice that the variance of the sampling distribution of the Wilcoxon rank sum statistic, T, 
is the same as the variance of the sampling distribution of the Mann-Whitney statistic, U. 
It follows that

Z =
T - mT

sT
=

93.5 - 1152230
= -1.42 1  p@value = 0.1556.

Wilcoxon Rank Sum Statistic T
Suppose that n1 observations are available from the first population and n2 
observations from the second. The two samples are pooled, and the obser-
vations are ranked in ascending order with ties assigned the average of the 
next available ranks. Let T denote the sum of the ranks of the observations 
from the first population (T in the Wilcoxon rank sum test is the same as R1 
in the Mann-Whitney U test). Assuming that the null hypothesis to be true, 
the Wilcoxon rank sum statistic, T, has mean

 E1T2 = mT =
n11n1 + n2 + 12

2
 (14.25)

 Var1T2 = s2
T =

n1n21n1 + n2 + 12
12

 (14.26)

Then, for large samples (n1 Ú 10 and n2 Ú 10), the distribution of the random 
variable

 Z =
T - mT

sT
 (14.27)

is approximated by the normal distribution. For a large number of ties, 
Equation 14.26 may not be correct. 

Example 14.14 Earnings for Two Firms 
(Wilcoxon Rank Sum Test)

In a study designed to compare the performance of firms that give management 
forecasts of earnings with the performances of those that do not, independent ran-
dom samples of 80 firms from each of the populations were taken. The variability 
of the growth rate of earnings over the previous 10 periods was measured for each 

Wilcoxon Rank Sum Test

The Wilcoxon rank sum test is similar to the Mann-Whitney U test. The results will be 
the same for both tests. We include it here for completeness, since this test may be pre-
ferred for its ease. Similar to the Mann-Whitney U test, the distribution of the Wilcoxon 
rank sum test approaches the normal distribution quite rapidly as the number of sample 
observations increases. The approximation is adequate if each sample contains at least 
10 observations.
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of the 160 firms, and these variabilities were ranked. The sum of the ranks for firms 
not disclosing management earnings forecasts was 7,287 (Jaggi and Grier 1980). Test, 
against a two-sided alternative, the null hypothesis that the central locations of the 
population distributions of earnings variabilities are the same for these two types of 
firms. Show that the results are the same with both the Mann-Whitney U test and the 
Wilcoxon rank sum test.

Solution Since we have n1 = 80, n2 = 80, and R1 = 7,287,  the calculated value of 
the Mann-Whitney statistic is as follows:

U = n1n2 +
n11n1 + 12

2
- R1 = 18021802 +

18021812
2

- 7,287 = 2,353

Under the null hypothesis the Mann-Whitney statistic has mean

mU =
n1n2

2
=
18021802

2
= 3,200

and variance

s2
U =

n1n21n1 + n2 + 12
12

=
1802180211612

12
= 85,867

Here, we have the following:

Z =
2,353 - 3,200285,867

= -2.89

From the standard normal distribution, Appendix Table 1, we see that the value of a>2 
corresponding to a Z-value of 2.89 is 0.0019, so the p-value is 0.0038. Hence, the null 
hypothesis can be rejected at all levels higher than 0.38%.

The Wilcoxon rank sum test uses Equations 14.25–14.27. The mean of T is as 
follows:

E1T2 = n11n1 + n2 + 12
2

=
8011612

2
= 6,440

The variance of T is the same as the variance of U (Equation 14.23 is the same as Equa-
tion 14.26). Thus, by Equation 14.27,

Z =
T - mT

sT
=

7,287 - 6,440285,867
= 2.89 

and, again, the null hypothesis can be rejected at all levels higher than 0.38%. The 
results are the same whether using either the Mann-Whitney U test or the Wilcoxon 
rank sum test. These data, then, present very strong evidence against the hypothesis 
that the central locations of the distributions of population variability in earnings 
growth rates are the same for firms that give management earnings forecasts as for 
those that do not.

 Now, if we had been given the actual data rather than just the ranks, we could have 
carried out a test of the null hypothesis using the methods of Chapter 10.  However, 
using the Mann-Whitney test, we have found that the null hypothesis can be  rejected 
without the assumption of population normality.
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EXERCISES

Application Exercises
 14.34 A study compared firms with and without an au-

dit committee. For samples of firms of each type, the 
extent of directors’ ownership was measured using 
the number of shares owned by the board as a pro-
portion of the total number of shares issued. In the 
sample, directors’ ownership was, overall, higher for 
firms without an audit committee. To test for statisti-
cal significance, the Mann-Whitney U statistic was cal-
culated. It follows that 1U - mU2>sU  was found to be 
2.12. What can we conclude from this result?

 14.35 At the beginning of the year, a stock market analyst pro-
duced a list of stocks to buy and another list of stocks to 
sell. For a random sample of 10 stocks from the buy list, 
percentage returns over the year were as follows:

9.6 5.8 13.8 17.2 11.6

4.2 3.1 11.7 13.9 12.3

For an independent random sample of 10 stocks from the 
sell list, percentage returns over the year were as follows:

22.7 6.2 8.9 11.3 2.1

3.9 22.4 1.3 7.9 10.2

Use the Mann-Whitney test to interpret these data.
 14.36 For a random sample of 12 business graduates from 

a technical college, the starting salaries accepted for 
employment on graduation (in thousands of dollars) 
were the following:

26.2 29.3 31.3 28.7 27.4 25.1

26.0 27.2 27.5 29.8 32.6 34.6

For an independent random sample of 10 graduates 
from a state university, the corresponding figures 
were as follows:

25.3 28.2 29.2 27.1 26.8

26.5 30.7 31.3 26.3 24.9

Analyze the data using the Mann-Whitney test, and 
comment on the results.

 14.37 A corporation interviews both marketing and finance 
majors for general management positions. A random 
sample of 10 marketing majors and an independent 
random sample of 14 finance majors were subjected to 
intensive interviewing and testing by a team of the cor-
poration’s senior managers. The candidates were then 
ranked from 1 (most suitable for employment) to 24, as 
shown in the accompanying table. Test the null hypoth-
esis that, overall, the corporation’s senior management 
has no preference between marketing and finance majors 
against the alternative that finance majors are preferred.

1. finance 9. marketing 17. marketing

2. finance 10. marketing 18. marketing

3. marketing 11. finance 19. finance

4. finance 12. finance 20. finance

5. finance 13. marketing 21. finance

6. marketing 14. finance 22. marketing

7. finance 15. finance 23. marketing

8. marketing 16. finance 24. finance

 14.38 A random sample of 15 male students and an indepen-
dent random sample of 15 female students were asked 
to write essays at the conclusion of a writing course. 
These essays were then ranked from 1 (best) to 30 
(worst) by a professor. The following rankings resulted:

Male 26 24 15 16 8 29 12 6 18
11 13 19 10 28 7

Female 22 2 17 25 14 21 5 30 3 9
4 1 27 23 20

Test the null hypothesis that in the aggregate the two gen-
ders are equally ranked against a two-sided alternative.

 14.39 A newsletter rates mutual funds. Independent ran-
dom samples of 10 funds with the highest rating and 
10 funds with the lowest rating were chosen. The fol-
lowing figures are percentage rates of return achieved 
by these 20 funds in the next year.

Highest rated 8.1 12.7 13.9 2.3 16.1 5.4 7.3
9.8 14.3 4.1

Lowest rated 3.5 14.0 11.1 4.7 6.2 13.3 7.0
7.3 4.6 10.0

Test the null hypothesis of no difference between 
the central locations of the population distributions of 
rates of return against the alternative that the highest-
rated funds tended to achieve higher rates of return 
than the lowest-rated funds.

 14.40 A random sample of 50 students was asked what salary 
the college should be prepared to pay to attract the right 
individual to coach the football team. An independent 
random sample of 50 faculty members was asked the 
same question. The 100 salary figures were then pooled 
and ranked in order (with rank 1 assigned to the lowest 
salary). The sum of the ranks for faculty members was 
2,024. Test the null hypothesis that there is no difference 
between the central locations of the distributions of sal-
ary proposals of students and faculty members against 
the alternative that in the aggregate students would 
propose a higher salary to attract a football coach.

 14.41 Starting salaries of MBA graduates from two leading 
business schools were compared. Independent random 
samples of 30 students from each school were taken, 
and the 60 starting salaries were pooled and ranked. The 
sum of the ranks for students from one of these schools 
was 1,243. Test the null hypothesis that the central loca-
tions of the population distributions are identical.
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14.6 SPEARMAN RANK CORRELATION

The sample correlation coefficient can be seriously affected by odd extreme observa-
tions. Moreover, tests based on it rely for their validity on an assumption of normality. A 
measure of correlation that is not susceptible to serious influence by extreme values and 
on which valid tests can be based for very general population distributions is obtained 
through the use of ranks. The resulting test is then nonparametric.

Spearman Rank Correlation
Suppose that a random sample (x1, y1), c, (xn, yn) of n pairs of observations 
is taken. If the xi and yi are each ranked in ascending order and the sample 
correlation of these ranks is calculated, the resulting coefficient is called the 
Spearman rank correlation coefficient. If there are no tied X or Y ranks, an 
equivalent formula for computing this coefficient is

 rs = 1 -
6a

n

i=1
d2

 i

n1n2 - 12 (14.28)

where the di are the differences of the ranked pairs.
The following tests of the null hypothesis H0 of no association in the popu-

lation have a significance level a.

1. To test against the alternative of positive association, the decision rule is 
as follows:

 reject H0 if rs 7 rs,a (14.29)

2. To test against the alternative of negative association, the decision rule is 
as follows:

 reject H0 if rs 6 -rs,a (14.30)

3. To test against the two-sided alternative of some association, the decision 
rule is as follows:

 reject H0 if rs 6 -rs,a>2 or rs 7 rs,a>2 (14.31)

Example 14.15 Cruise Industry Promotion 
(Spearman Rank Correlation)

To promote the cruise industry in Florida, suppose that James Thorne of the Cruise 
Emporium of Ormond Beach ran an advertisement in 17 tourism magazines. Readers 
were invited to write for additional brochures and literature. The two variables to be 
related are

X: cost of advertising and circulation, in thousands of dollars
Y: return-on-inquiry cost

where the latter is defined as

Y =  (estimated revenue from inquiries - cost of advertisement) , cost of 
advertisement
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Table 14.19 lists the ranks of these two variables for the 17 magazine advertise-
ments. Calculate the Spearman rank correlation coefficient and test for association be-
tween the variables.

Table 14.19 Rank Correlation Calculations for the Cruise Example

Magazine Rank1Xi2 Rank1Yi2 di = Rank1xi2 - Rank1Yi2 d2
i

  1 14   2   12 144

  2   8   4     4   16

  3   1 16 -15 225

  4 16   1    15 225

  5 17   5    12 144

  6 13   6      7   49

  7 15   8      7   49

  8   2 11   -9   81

  9   7   9   -2    4

10   3 13 -10 100

11   6 12   -6   36

12   9 17   -8   64

13   5   3      2    4

14   4   7  -3    9

15 11 14  -3    9

16 12 15  -3    9

17 10 10     0   0

Sum 1,168

Solution Although Magazine 17 has an X rank of 10 and a Y rank of 10, ties are 
considered only within the X ranks, or within the Y ranks, and not between the X and Y 
ranks. Since there are no ties in the X or the Y ranks, we use Equation 14.28 and obtain 
the following:

rs = 1 -
6a

n

i=1
d2

 i

n1n2 - 12 = 1 -
611,1682

17311722 - 14 = -0.431

Since there are 17 pairs of observations, the cutoff points (see Appendix Table 11) for 
10% level and 5% level tests are, respectively, 

rs,0.05 = 0.412  and  rs,0.025 = 0.490

The null hypothesis of no association can be rejected against the two-sided alter-
native, according to the decision rule, at the 10% level but not at the 5% level. Our 
conclusions are not based on the assumption of population normality. The negative 
correlation coefficient indicates that the more one spends for advertising the lower 
the rate of return.

If there are no ties in the X or the Y ranks, then to calculate the Spearman rank cor-
relation with either Minitab or Excel is straightforward. If there are ties, we compute the 
simple correlation (Section 11.7) between the ranks.
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14.7 A NONPARAMETRIC TEST FOR RANDOMNESS

In Chapter 1 we presented graphs to plot time-series data. In this section we consider the 
runs test, a nonparametric test for randomness in time series. Time-series analysis and 
forecasting are presented in Chapter 16. 

Runs Test: Small Sample Size

First we consider a time series of n observations with n … 20. We denote observations 
above the median with +  signs and observations below the median with -  signs. These 
signs are used to define the sequence of observations in the series. 

Runs Test: Small Sample Size
Let R denote the number of runs in the sequence of n observations with 
n … 20. The null hypothesis is that the series is a set of random variables. 
 Appendix Table 14 gives the smallest significance level at which this null 
hypothesis can be rejected against the alternative of positive association 
 between adjacent observations, as a function of R and n.

If the alternative is the two-sided hypothesis on nonrandomness, the signifi-
cance level must be doubled if it is less than 0.5. Alternatively, if the significance 
level read from the table is greater than 0.5, the appropriate significance level 
for the test against the two-sided alternative is 2(1 - a). 

EXERCISES

Application Exercises
 14.42 Students in an introductory marketing course were 

given a written final examination as well as a project 
to complete as part of their final grade. For a random 
sample of 10 students, the scores on both the exam 
and the project are as follows:

Exam 81 62 74 78 93 69 72 83 90 84
Project 76 71 69 76 87 62 80 75 92 79

a. Find the Spearman rank correlation coefficient.
b. Test for association.

 14.43 The accompanying table shows, for a random sample 
of 20 long-term-growth mutual funds, percentage re-
turn over a period of 12 months and total assets (in 
millions of dollars).

Return Assets Return Assets Return Assets
29.3    300 16.0 421 12.9   75

27.6      70 15.5   99 11.3 610

23.7 3,004 15.2 756 9.9 264

22.3    161 15.0 730 7.9   27

22.0    827 14.4 436 6.7   71

19.6    295 14.0 143 3.3 719

17.6      29 13.7 117

a. Calculate the Spearman rank correlation coefficient.
b. Carry out a nonparametric test of the null hypoth-

esis of no association in the population against a 
two-sided alternative.

c. Discuss the advantages of a nonparametric test for 
these data.

Example 14.16 illustrates a time series with n = 16 daily observations on an index of 
the volume of shares traded on the New York Stock Exchange. If this series were random, 
then the volume traded on one day would be independent of the volume traded on any 
other day. In particular, a high-volume day would be no more likely to be followed by 
another high-volume day than would any other day. 
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Example 14.16 New York Stock Exchange (Runs 
Test: Small Sample Size)

 A series of 16 daily observations on an index of the volume of shares traded on the 
New York Stock Exchange is shown in Table 14.20. Test the null hypothesis of random-
ness. Data are stored in the data file Shares Traded.

Table 14.20 Index of Volume of Shares Traded

DAY VOLUME DAY VOLUME DAY VOLUME DAY VOLUME

1 98 5 113 9 114 13 109

2 93 6 111 10 107 14 108

3 82 7 104 11 111 15 128

4 103 8 103 12 109 16   92

Solution First, we compute the median. For an even number of observations, 
the median is the average of the middle pair when the observations are arranged in 
ascending order. Here, that is

median =
107 + 108

2
= 107.5

The runs test developed here separates the observations into a subgroup above the 
 median and a subgroup below the median. Notice that a line was drawn on Figure 14.3 
at the median of 107.5.

Figure 14.3 Index of Volume of Shares Traded versus Day (Runs Test)

Then, letting a +  denote observations above the median and a -  denote observa-
tions below the median, we find the following pattern over the sequential days:

 -  -  -  -  +  +  -  -  +  -  +  +  +  +  +  -
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This sequence consists of a run of four -  signs, followed by a run of two +  signs, a 
run of two -  signs, a run of one +  sign, a run of one -  sign, a run of five +  signs, and 
finally a run of one -  sign. In total, there are R = 7 runs.

If, as might be suspected here, there was a positive association between adjacent ob-
servations in time, we would expect to find relatively few runs. We ask how likely it is to 
observe 7 or fewer runs if the series is truly random. This requires knowledge of the distri-
bution of the number of runs when the null hypothesis of randomness is true. The cumula-
tive distribution is tabulated in Appendix Table 14. From the table, we see that, for n = 16 
observations, the probability under the null hypothesis of finding 7 or fewer runs is 0.214. 
Therefore, the null hypothesis of randomness can be rejected only against the alternative 
of positive association between adjacent observations at the a = 0.214 significance level. 
This is not small enough to reasonably reject the null hypothesis. We have merely failed to 
find strong evidence to reject it. Tests of randomness based on small samples such as this 
have quite low power.

Runs Test: Large Sample Size
Given that we have a time series with n observations and n 7 20, define the 
number of runs, R, as the number of sequences above or below the median. 
We want to test the null hypothesis

H0 : the series is random

The distribution of the number of runs under the null hypothesis can be 
approximated by a normal distribution. It can be shown that under the null 
hypothesis,

 Z =
R -

n
2

- 1

A n2 - 2n
41n - 12  (14.32)

has a standard normal distribution. This result provides a test for randomness.
The following tests have significance level a.

1. If the alternative hypothesis is positive association between adjacent ob-
servations, the decision rule is as follows:

 reject H0 if Z =
R -

n
2

- 1

A n2 - 2n
41n - 12 6 -za (14.33)

2. If the alternative is a two-sided hypothesis of nonrandomness, the deci-
sion rule is as follows:

 reject H0 if Z =
R -

n
2

- 1

A n2 - 2n
41n - 12 6 -za>2 or Z =

R -
n
2

- 1

A n2 - 2n
41n - 12 7 za>2 (14.34)

Runs Test: Large Sample Size

Next we consider the runs test for large samples of n observations with n 7 20. In this situa-
tion the normal approximation given in Equation 14.32 is appropriate.
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Example 14.17 Analysis of Sales Data (Runs Test: 
Large Sample Size)

You have been asked to determine if 30 weeks of sales follow a random pattern from one 
observation to the next in a time series. The data are stored in the data file Weekly Sales.

Solution Figure 14.4 is a time-series plot of the data with the median drawn on the 
graph. Examination of the plot shows that the series has eight 1R = 82 runs and suggests 
that the observations are not independent, since they appear to follow a pattern. 

Figure 14.4 Weekly Sales Data over Time (Runs Test)

The runs test statistic can be computed using Equation 14.32 as follows:

Z =
R -

n
2

- 1

A n2 - 2n
41n - 12 =

8 - 15 - 1

A900 - 60
116

= -2.97

The resulting p-value for a two-tailed test is 0.0030 from the standard normal distribu-
tion table, Appendix Table 1. Similarly using Equation 14.34 with a significance level of 
0.01, it follows that: 

z = -2.97 6 -2.576 

and the null hypothesis of randomness is rejected. Thus, we see the evidence in favor of
nonrandom series is quite overwhelming.

EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

Basic Exercises
14.44 A time series contains 16 observations. What is the 

probability that the number of runs

a. is at most 5? b. exceeds 12?

 14.45 A time series contains 10 observations. What is the 
probability that the number of runs is

a. fewer than 6?
b. no less than 4?
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 14.46 A time series contains 50 observations. What is the 
probability that the number of runs is

a. no more than 14?
b. fewer than 16?
c. greater than 28?

 14.47 Use the runs test to test for randomness the number 
of customers shopping at a new mall during a given 
week. The data are given as:

Day Number of Customers
Monday 525

Tuesday 540

Wednesday 469

Thursday 500

Friday 586

Saturday 640

Application Exercises
14.48 The data file Exchange Rate shows an index 

of the value of the U.S. dollar against trading 

partners’  currencies over 12 consecutive months. Use 
the runs test to test this series for randomness.

 14.49 The data file Inventory Sales shows the inven-
tory-sales ratio for manufacturing and trade in 

the United States over a period of 12 years. Test this 
series for randomness using the runs test.

 14.50 The data file Stock Market Index shows annual 
returns on a stock market index over 14 years. 

Test for randomness using the runs test.
 14.51 RELEVANT Magazine keeps records of traffic 

(like the number of weekly new visitors) to its 
Web site from various social networks such as Face-
book and Twitter (Butcher 2011). In Example 1.8 we 
constructed time-series plots of the number of 
weekly new visitors for the first nine weeks of 2011 
from both Facebook and Twitter. Test for random-
ness using the runs test. The data is stored in the 
data file RELEVANT Magazine.

DATA FILES
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CHAPTER EXERCISES AND APPLICATIONS

 14.52 Suppose that a random sample of firms with impaired 
assets was classified according to whether discretion-
ary write-downs of these assets were taken, and also 
according to whether there was evidence of subse-
quent merger or acquisition activity. Using the data in 
the accompanying table, test the null hypothesis of no 
association between these characteristics.

Write-Down Merger or Acquisition Activity?
Yes No

Yes 32 48

No 25 57

 14.53 In 2009 a survey found these airline preferences for 
people in Southeast Asia when choosing to fly to 
China: 40%, Thai Airlines; 41%, Singapore Airlines; 
and 19%, Cathay Pacific. In 2011 this survey was re-
peated, and from a sample of 1,000 responders, 365 
chose Thai, 540 chose Singapore, and 95 selected Ca-
thay Pacific. Can you conclude that the consumers still 
have the same purchase patterns?

 14.54 The human resources department is attempting to 
determine if employees’ undergraduate majors in-
fluence their performance. The majors considered 
are business, economics, mathematics, and all oth-
ers.  Personnel ratings are grouped as excellent, 
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strong, and average. The classifications are based 
on employees with two to four years of experience, 
as follows:

Business major excellent, 21; strong, 18; average, 10

Economics major excellent, 19; strong, 15; average, 5

Mathematics major excellent, 10; strong, 5; average, 5

Other major excellent, 5; strong, 15; average, 13

Do these data indicate that there is a difference in rat-
ings based on undergraduate major?

 14.55 A random sample of people from three different job 
classifications labeled A, B, and C was asked to indi-
cate preferences for three brands of camping lanterns: 
Big Star, Lone Star, and Bright Star. The preferences 
were as follows:

Group A Big Star, 54; Lone Star, 67; Bright Star, 39

Group B Big Star, 23; Lone Star, 13; Bright Star, 44

Group C Big Star, 69; Lone Star, 53; Bright Star, 59

Do these data indicate that there is a difference in rat-
ings for the three different groups?

 14.56 A liberal arts college was interested in determining 
if there were different graduate school patterns for 
students with undergraduate majors in history and 
economics. The college surveyed a random sample 
of recent graduates and found that a large number 
obtained graduate degrees in business, law, and 
theology. The frequency of persons in the various 
combinations is shown next. Based on these results, 
is there evidence that undergraduate economics and 
history majors pursue different graduate school 
programs?

Graduate Studies

Undergraduate Business Law Theology
Economics 30 20 10

History 6 34 20

 14.57 Suppose that you have collected market survey data for 
gender and product purchase. Perform a chi-square test 
to determine if there is a different probability of pur-
chase among men and women. Include in your answer 
the expected cell values under the null hypothesis.

Gender

Decision Male Female
Purchase 150 150

No purchase 50 250

 14.58 Tourism patterns are difficult to forecast; they nor-
mally vary from country to country and sometimes 
even between places quite close to each other. In 
Hong Kong, a survey asked 1,600 people their fa-
vorite Asian destination for a short holiday. The 
results were as follows: 43% go to China, 23% go 
to Thailand, 20% go to the Philippines, 5% go to 

Cambodia, and the rest choose other countries. 
The same survey has been carried out in Macau, 
China only 1 hour from Hong Kong by jet boat, and 
the results were as follows: 48%, China; 20%, Thai-
land; 22%, the Philippines; 3%,  Cambodia; and the 
remaining, other destinations. Would you conclude 
that the patterns are the same in the two cities?

 14.59 A manufacturer of household appliances wanted to 
determine if there was a relationship between family 
size and the size of washing machine purchased. The 
manufacturer was preparing guidelines for sales per-
sonnel and wanted to know if the sales staff should 
make specific recommendations to customers. A ran-
dom sample of 300 families was asked about family 
size and size of washing machine. For the 40 families 
with one or two people, 25 had an 8-pound washer, 
10 had a 10-pound washer, and 5 had a 12-pound 
washer. The 140 families with three or four people 
included 37 with the 8-pound washer, 62 with the 
10-pound washer, and 41 with the 12-pound washer. 
For the remaining 120 families with five or more 
people, 8 had an 8-pound washer, 53 had a 10-pound 
washer, and 59 had a 12-pound washer. Based on 
these results, what can be concluded about family 
size and size of washer? Construct a two-way table, 
state the hypothesis, compute the statistics, and state 
your conclusion.

 14.60 The gear-cutting department in a large manufactur-
ing firm produces high-quality gears. The number 
produced per hour by a single machinist is 1, 2, or 
3, as shown in the table. Company management is 
interested in determining the effect of worker expe-
rience on the number of units produced per hour. 
Worker experience is classified in three subgroups: 
1 year or less, 2 to 5 years, and more than 5 years. 
Use the data in the table to determine if experi-
ence and number of parts produced per hour are 
independent.

Units Produced/Hour

Experience 1 2 3 Total
…1 year 10 30 10   50

2–5 years 10 20 20   50

75 years 10 10 30   50

Total 30 60 60 150

 14.61 Aurica Sabou has been working on a plan for new 
store locations as part of her regional expansion. In 
the city proposed for expansion there are three pos-
sible locations: north, east, and west. From past expe-
rience she knows that the three major profit centers 
in her stores are tools, lumber, and paint. In select-
ing a location, the demand patterns in the different 
parts of the city were important. She commissioned a 
sampling study of the city that resulted in a two-way 
table for the variables residential location and prod-
uct purchased. This table was prepared by the mar-
ket research department using data obtained from 
the random sample of households in the three major 
residential areas of the city. Each residential area had 
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a separate phone number prefix, and the last four 
digits were chosen using a computer random num-
ber generator. Is there a difference in the demand 
patterns for the three major items among the differ-
ent areas of the city?

Product Demand

Area Tools Lumber Paint
East 100 50 50

North 50 95 45

West 65 70 75

 14.62 The Speedi-Flex delivery service is conducting a 
study of its delivery operations. As part of this 
study it collected data on package type by originat-
ing source for one day’s operation for one district 
office in the Southeast. These data are shown in the 
table. The major originating sources were identified 
as (1) small cities (towns), (2) central business dis-
tricts (CBDs), (3) light-manufacturing districts (fac-
tories), and (4) suburban residential communities 
(suburbs). Three major size and rate categories clas-
sify the items handled. Overnight envelopes must 
weigh 3 pounds or less and have a fixed charge of 
$12 anywhere in the United States. Small packages 
weigh from 4 to 10 pounds and have dimension re-
strictions. Large packages can weigh from 11 to 75 
pounds and have the lowest rate per pound and the 
longest delivery time.

Package Size (LB)

Package Source …3 4–10 11–75 Total
Towns   40 40   20 100

CBDs 119 63   18 200

Factories   18 71 111 200

Suburbs   69 64   17 150

a. Are there any differences in the patterns of pack-
ages originated at the various locations?

b. Which two combinations have the largest percent-
age deviation from a uniform pattern?

 14.63 A travel agent randomly sampled individuals in her 
target market and asked, Did you use a travel agent to 
book your last airline flight? By cross-referencing the 
answers to this question with the responses to the rest 
of the questionnaire, the agent obtained data such as 
that in the following contingency table:

Did You Use a Travel Agent  
to Book Your Last Flight?

Age Yes No
Under 30 15 30

30 to 39 20 42

40 to 49 47 42

50 to 59 36 50

60 or older 45 20

Determine if there is an association between the re-
spondent’s age and use of a travel agent to make res-
ervations for the respondent’s last flight.

 14.64 Do you think that the government should bail out the 
automobile industry? Suppose that this question was 
asked in a recent survey of 460 Americans.  Respondents 
were also asked to select the category corresponding to 
their age (younger than 30; 30 to 50; or older than 50). It 
was found that 120 respondents were younger than 30; 
220 were in the age group from 30 years to 50 years of 
age; and 120 respondents over 50 years old. From the 
respondents who were younger than 30 years of age, 
60 were opposed to the bailout, 40 were undecided, 
and the remainder were in favor. From the respon-
dents who were older than 50 years of age, two-thirds 
of these respondents were opposed to the bailout; the 
remaining were in favor; from the age group of 30 to 
50, 60% of the respondents were opposed; 10% in favor; 
and the remainder were undecided. Is there a relation-
ship between the respondents’ opinion and age?

 14.65 A random sample of companies was surveyed and asked 
to indicate if they had used an Internet career service 
site to search for prospective employees. The companies 
were also asked questions concerning the posting fee for 
use of such a site. Is there a relationship between use of 
such a site and management’s opinion on the posting fee?

Have You Used an Internet 
Career Service Site?

Posting Fee Yes No
Fee is too high 36 50

Fee is about right 82 28

 14.66 A company decided to test if the turnover it is experi-
encing in its sales team depends on the locations of the 
shops. The company decides to record the months of 
employment from two samples, one from the central 
district shop (the flagship shop, considered the best 
 location) and the other from the suburbs.

 Shop in the Central District Shop in the Suburbs

60, 11, 18, 19, 5, 25, 60, 7, 8, 
17, 37, 4, 8, 28, 27, 11, 60, 25, 
5, 13, 22, 17, 9, 4

25, 60, 22, 24, 23, 36, 39, 
15, 35, 16, 28, 9, 60, 29, 
16, 22, 60, 17, 60, 32

a. Based on this evidence, would it be possible to 
conclude at the 5% level that the location has some 
kind of influence in staff retention?

b. Which test would you use to prove it?

 14.67 Should large retailers offer banking services? Small 
community banks may be concerned about their 
 future if more retailers enter the world of banking. 
Suppose that a market research company conducted 
a national survey for one retailer that is considering 
offering banking services to its customers. The respon-
dents were asked to indicate the provider (bank, retail 
store, other) that they most likely would use for certain 
banking services (assuming that rate is not a factor). Is 
there a relationship between these two variables?
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Provider

Service Bank Retail Store Other
Checking account 100 45 10

Savings account 85 25 45

Home mortgage 30 10 80

 14.68 Many easy-weight-loss products are just gimmicks that 
attract people with the hope of a fast way to a slimmer 
body. Suppose that a random sample of residents in one 
community was asked if they had ever tried a quick-
weight-loss product. They were also asked if they thought 
that there should be stricter advertising controls to pro-
hibit deceptive weight-loss advertising. Are respondents’ 
views on advertising controls dependent on whether or 
not they had ever used a quick-weight-loss product?

Used a Quick-Weight-Loss Product?

Advertising Yes No
Stricter controls needed 85 40

Stricter controls not needed 25 64

 14.69 Downsizing is one method companies may use in an 
attempt to reduce costs. Suppose that the following 
contingency table shows the number of layoffs in three 
manufacturing plants during the last 4 months and the 
length of service (in months) by those employees that 
were laid off. Is there any relationship between theses 
two variables?

Company

Months of Service A B C
Less than 6 months 13 30 15

6 months to 1 year 15 11 10

More than 1 year 10 9 4

 14.70 Two years ago the manager of a local supermarket that 
sells three national brands (brands A, B, and C) and one 
store brand (brand D) of orange juice found that brands 
A and C were equally preferred, 33% preferred brand B, 
and 27% preferred the store brand, D. Now, the manager 
thinks that there has been a change in customer prefer-
ences and that the preference for store-brand orange 
juice has increased and perhaps will positively contrib-
ute to increased profits. The results from a recent random 
sample of shoppers indicate the following preferences.

Favorite brand A B C D (store brand)
Number 56 70 28 126

Has there been a change in customer preferences from 
the study 2 years ago?

 14.71 In Example 14.2 a random sample of 200 people was 
asked to indicate candy bar preference. Suppose that 
we also gathered demographic data such as gender. 
From the 50 who preferred Mr. Goodbar, it was found 
that 20% were female; from the 93 who preferred Her-
shey’s Milk Chocolate, 70 were female; from the 45 
who preferred Hershey’s Special Dark, 80% were male; 

and from the remainder who preferred Krackel, two-
thirds were male. Do the data indicate that there is an 
association between candy bar preference and gender?

 14.72 What does it mean to say that a test is nonparametric? 
What are the relative advantages of such tests?

 14.73 In a random sample of 12 analysts, 7 believed that au-
tomobile sales in the United States were likely to be 
significantly higher next year than in the present year, 
2 believed that sales would be significantly lower, and 
the others anticipated that next year’s sales would be 
roughly the same as those in the current year. What 
can we conclude from these data?

 14.74 In a random sample of 16 exchange rate analysts, 8 be-
lieved that the Japanese yen would be an excellent in-
vestment this year, 5 believed that it would be a poor 
investment, and 3 had no strong opinion on the ques-
tion. What conclusions can be drawn from these data?

 14.75 Of a random sample of 100 college students, 35 ex-
pected to achieve a higher standard of living than 
their parents, 43 expected a lower standard of living, 
and 22 expected about the same standard of living as 
their parents. Do these data present strong evidence 
that, for the population of students, more expect a 
lower standard of living compared with their parents 
than expect a higher standard of living?

 14.76 Of a random sample of 120 business school professors, 
48 believed students’ analytical skills had improved over 
the last decade, 35 believed these skills had deteriorated, 
and 37 saw no discernible change. Evaluate the strength 
of the sample evidence suggesting that, for all business 
school professors, more believe that analytical skills have 
improved than believe that these skills have deteriorated.

 14.77 A random sample of 10 corporate analysts was asked to 
rate, on a scale from 1 (very poor) to 10 (very high), the 
prospects for their own corporations and for the economy 
at large in the current year. The results obtained are shown 
in the accompanying table. Using the Wilcoxon signed 
rank test, discuss the proposition that in the aggregate 
corporate analysts are more optimistic about the prospects 
for their own companies than for the economy at large.

Analyst Own Corporation Economy at Large
1 8 8

2 7 5

3 6 7

4 5 4

5 8 4

6 6 9

7 7 7

8 5 2

9 4 6

10 9 6

 14.78 Nine pairs of hypothetical profiles were constructed 
for corporate employees applying for admission to an 
executive MBA program. Within each pair, these pro-
files were identical, except that one candidate was male 
and the other female. For interviews for employment 
of these graduates, evaluations on a scale of 1 (low) to 
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10 (high) were made of the candidates’ suitability for 
employment. The results are shown in the accompany-
ing table. Analyze these data using the Wilcoxon signed 
rank test test.

Interview Male Female
1 8 8

2 9 10

3 7 5

4 4 7

5 8 8

6 9 9

7 5 3

8 4 5

9 6 2

 14.79 Suppose that a random sample of 513 individuals 
were randomly sampled and information was col-
lected about the method a subject used to make an 
airline reservation (last reservation for either busi-
ness or pleasure) and the subject’s gender. Test the 
null hypothesis of no association between these 
two characteristics. The data are summarized as 
follows:

Reservation Method Female Male
Used a travel agent   56   74

Booked on the Internet 148 142

Called the airline’s  
toll-free number

 
  66

 
  34
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Introduction

In modern business applications of statistical analysis, there are a number of 
situations that require comparisons of processes at more than two levels. For 
example, the manager of Integrated Circuits, Inc., would like to determine if any 
of five different processes for assembling components results in higher pro-
ductivity per hour and/or in fewer defective components. Analyses to answer 
such questions come under the general heading of experimental design. An im-
portant tool for organizing and analyzing the data from this experiment is called 
analysis of variance, the subject of this chapter. The experiment might also be 
extended to a design that includes the question of which of four sources of 
raw materials leads to the highest productivity in combination with the different 
manufacturing processes. This question could be answered by using two-way 
analysis of variance. In another example the president of Prairie Flower Cereal 
is interested in comparing product sales per week of four different brands over 
three different stores. Again, we have a problem design that can be analyzed 
using analysis of variance. In Section 13.2 we showed that dummy variables 
could also be used for analysis of experimental design problems.

15
C H A P T E R

Analysis of Variance
C

H
A

P
TE

R
 O

U
TL

IN
E

15.1 COMPARISON OF SEVERAL POPULATION MEANS

In Sections 10.1 and 10.2 we saw how to test the hypothesis of equality of two popula-
tion means. In fact, two distinct tests were developed, the appropriate test depending on 
the mechanism employed in the generation of sample observations. Specifically, our tests 
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assumed either paired observations or independent random samples. This distinction is 
important; to clarify it, we pause to consider a simple illustration. Suppose that it is our 
objective to compare the fuel consumption recorded for two different makes of automo-
bile, A-cars and B-cars. We could randomly select 10 people to drive these cars over a 
specified distance, each driver being assigned to a car of each type, so that any particular 
driver will drive both an A-car and a B-car. The 20 resulting fuel-consumption figures 
obtained will consist of 10 pairs, each pair corresponding to a single driver. This is the 
matched pairs design, and its attraction lies in its ability to produce a comparison between 
the quantities of interest (in this case fuel consumption for the two types of car), while 
controlling for the possible importance of an additional relevant factor (individual driver 
differences). Thus, if a significant difference between the performance of A-cars and that 
of B-cars is found, we have some assurance that this is not a result of differences in driver 
behavior. An alternative design would be to take 20 drivers and randomly assign 10 of 
them to A-cars and 10 to B-cars (though, in fact, there is no need to have equal numbers of 
trials for each type of car). The 20 resulting fuel-consumption figures would then consti-
tute a pair of independent random samples of 10 observations each on A-cars and B-cars.

For these two types of design, we discussed in Chapter 10 the appropriate proce-
dures for testing the null hypothesis of equality of a pair of population means. In this 
chapter our aim is to extend these procedures to the development of tests for the equal-
ity of more than two population means. Suppose, for example, that our study included a 
third make of automobile, the C-car. The null hypothesis of interest would then be that 
the population mean fuel consumption is the same for all three makes of car. We show 
how tests for such hypotheses can be constructed, beginning with the case where inde-
pendent random samples are taken. Suppose that out of 20 drivers, 7 are randomly as-
signed to A-cars, 7 to B-cars, and 6 to C-cars. Using the data in Table 15.1, we computed 
the following:

 sample mean for A@cars =
146.3

7
= 20.9

 sample mean for B@cars =
162.4

7
= 23.2

 sample mean for C@cars =
137.4

6
= 22.9

Table 15.1 Fuel-Consumption Figures from Three Independent Random Samples, in 
Miles per Gallon

A-Cars B-Cars C-Cars

   22.2   24.6 22.7

   19.9   23.1 21.9

   20.3   22.0 23.2

   21.4   23.5 24.1

   21.2   23.6 22.1

   21.0   22.1 23.4

   20.3   23.5 —

Sums 146.3 162.4 137.4

Naturally, these sample means are not all the same. As always, however, when testing 
hypotheses, we are interested in the likelihood of such differences arising by chance 
if, in fact, the null hypothesis was true. If it is concluded that such  discrepancies 
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would be very unlikely to arise by chance, we would have reason to reject the null 
hypothesis.

To clarify the issues involved, consider Figure 15.1, which depicts two hypothetical 
sets of data. The sample means in part (a) of the figure are precisely the same as those in 
part (b). The crucial difference is that in the former, the observations are tightly clustered 
about their respective sample means, whereas in the latter there is much greater disper-
sion. Visual inspection of part (a) suggests very strongly the conjecture that the data, in 
fact, arise from three populations with different means. Looking at part (b) of the figure, 
by contrast, we would not be terribly surprised to learn that these data came from a com-
mon population.
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Figure 15.1 Two 
Sets of Sample Fuel-
Consumption Data 
on Three Makes of 
Automobile

This illustration serves to point out the very essence of the test for equality of popula-
tion means. The critical factor is the variability involved in the data. If the variability around 
the sample means is small compared with the variability among the sample means, as in 
Figure 15.1(a), we are inclined to doubt the null hypothesis that the population means are 
equal. If, as in Figure 15.1(b), the variability around the sample means is large compared 
with the variability among them, the evidence against the null hypothesis is rather weak. 
This being the case, it seems reasonable to expect that an appropriate test will be based on 
assessments of variation. This is indeed the case, and for this reason the general technique 
employed is referred to as the analysis of variance.

15.2 ONE-WAY ANALYSIS OF VARIANCE

The problem introduced in Section 15.1 can be treated quite generally. Suppose that 
we want to compare the means of K populations, each of which is assumed to have the 
same variance. Independent random samples of n1, n2, c, nK observations are taken 
from these populations. We use the symbol xij to denote the jth observation in the ith 
population. Then, using the format of Table 15.1, we can display the sample data as in 
Table 15.2.

The procedure for testing the equality of population means in this setup is called one-
way analysis of variance, a term that will become clearer when we discuss other analysis 
of variance models.
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The Framework for One-Way Analysis of Variance
Suppose that we have independent random samples of n1, n2, c, nK observa-
tions from K populations. If the population means are denoted m1, m2, c, mK, the 
one-way analysis of variance framework is designed to test the null hypothesis:

 H0 : m1 = m2 =  g = mK

 H1 : mi ? mj For at least one pair mi, mj

In this section we develop a test of the null hypothesis that the K population means are 
equal, given independent random samples from those populations. The obvious first step 
is to calculate the sample means for the k groups of observations. These sample means are 
denoted x1, x2, c, xk. Formally, then

xi =
a
ni

j=1
xij

ni
 1 i = 1, 2, c, K2

where ni denotes the number of sample observations in group i. In this notation we have 
already found for the data of Table 15.1:

x1 = 20.9 x2 = 23.2 x3 = 22.9

 Now, the null hypothesis of interest specifies that the K populations have a common 
mean. A logical step, then, is to form an estimate of that common mean from the sample 
observations. This is just the sum of all of the sample values divided by their total num-
ber. If we let n denote the total number of sample observations, then

n = a
K

i=1
ni

In our example n = 20. The overall mean of the sample observations can then be expressed as

   x =
a
K

i=1
a
ni

j=1
xij

n

where the double summation notation indicates that we sum over all observations within 
each group and over all groups; that is, we sum all of the available observations. An 
equivalent expression is as follows:

  x =
a
K

i=1
nixi

n

Table 15.2 Sample Observations from Independent Random Samples of K Populations

Population

1 2 c K

x11 x21 c xK1

x12 x22 c xK2

. .  .

. .  .

. . .

x1n x2n c xKn
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For the fuel consumption data of Table 15.1, the overall mean is as follows:

   x =
172120.92 + 172123.22 + 162122.92

20
= 22.3

If, in fact, the population mean fuel consumption is the same for A-cars, B-cars, and C-
cars, we then estimate that common mean to be 22.3 miles per gallon.

As indicated in Section 15.1, the test of equality of population means is based 
on a comparison of two types of variability exhibited by the sample members. The 
first is variability about the individual sample means within the K groups of obser-
vations. It is convenient to refer to this as within-groups variability. Second, we are 
interested in the variability among the K group means. This is called between-groups 
variability. We now seek measures, based on the sample data, of these two types of 
variability.

 To begin, consider variability within groups. To measure variability in the first group, 
we calculate the sum of squared deviations of the observations about their sample mean 
x1, that is,

SS1 = a
n1

j=1
1x1j - x122

Similarly, for the second group, whose sample mean is x2, we calculate

SS2 = a
n2

j=1
1x2j - x222

and so on. The total within-groups variability, denoted SSW, is then the sum of the sums 
of squares over all K groups—that is,

SSW = SS1 + SS2 +  g + SSK

or

SSW = a
K

i=1
a
ni

j=1
1xij - xi22

For the data on fuel consumption we have the following:

 SS1 = 122.2 - 20.922 + 119.9 - 20.922 +  g + 120.3 - 20.922 = 3.76

 SS2 = 124.6 - 23.222 + 123.1 - 23.222 +  g + 123.5 - 23.222 = 4.96

 SS3 = 122.7 - 22.922 + 121.9 - 22.922 +  g + 123.4 - 22.922 = 3.46

The within-group sum of squares is, therefore,

SSW = SS1 + SS2 + SS3 = 3.76 + 4.96 + 3.46 = 12.18

Next, we need a measure of variability between groups. A natural measure is based 
on the discrepancies between the individual group means and the overall mean. In fact, as 
before, these discrepancies are squared, giving1x1 - x22 , 1x2 - x22 , c,1xK - x22
In computing the total between-group sum of squares, SSG, we weight each squared dis-
crepancy by the number of sample observations in the corresponding group (so that the 
most weight is given to the squared discrepancies in groups with most observations), 
giving

SSG = a
K

i=1
ni 1xi - x22

Thus, for our fuel-consumption data,

 SSG = 172120.9 - 22.322 + 172123.2 - 22.322 + 162122.9 - 22.322
 = 21.55
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Another sum of squares is often calculated. This is the sum of squared discrepan-
cies of all the sample observations about their overall mean. This is called the total sum of 
squares and is expressed as follows:

SST = a
K

i=1
a
ni

j=1
1xij - x22

In fact, we show in the appendix to this chapter that the total sum of squares is the sum of 
the within-group and between-group sums of squares—that is,

SST = SSW + SSG

Hence, for the fuel consumption data we have the following:

SST = 12.18 + 21.55 = 33.73

Sum of Squares Decomposition for One-Way Analysis 
of Variance
Suppose that we have independent random samples of n1, n2, c, nK observa-
tions from K populations. Denote by x1, x2, c, xK the K group sample means 
and by x the overall sample mean. We define the following sums of squares:

  within groups: SSW = a
K

i=1
a
ni

j=1
1xij - xi22 (15.1)

  between groups: SSG = a
K

i=1
ni 1xi - x22  (15.2)

  total: SST = a
K

i=1
a
ni

j=1
1xij - x22  (15.3)

where xij denotes the jth sample observation in the ith group.
Then,

 SST = SSW + SSG (15.4)

The decomposition of the total sum of squares into the sum of two components—
within-groups and between-groups sums of squares—provides the basis for the analysis 
of variance test of equality of group population means. We can view this decomposition 
as expressing the total variability of all the sample observations about their overall mean 
as the sum of variability within groups and variability between groups. Schematically, 
this is shown in Figure 15.2.

Figure 15.2

Sum of Squares 
Decomposition for 
One-Way Analysis 
of Variance

Within-groups
sum of squares

Between-groups
sum of squares

Total sum of squares

Our test of the equality of population means is based on the assumption that the K 
populations have a common variance. If the null hypothesis that the population means 
are all the same is true, each of the sums of squares, SSW and SSG, can be used as the basis 
for an estimate of the common population variance. To obtain these estimates, the sums of 
squares must be divided by the appropriate number of degrees of freedom.
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First, we show in the chapter appendix that an unbiased estimator of the population 
variance results if SSW is divided by 1n - K2. The resulting estimate is called the within-
groups mean square, denoted MSW, so that

MSW =
SSW

n - K

For our data we have the following:

MSW =
12.18

20 - 3
= 0.71647

If the population means are equal, another unbiased estimator of the population variance 
is obtained by dividing SSG by 1K - 12, also shown in the chapter appendix. The result-
ing quantity is called the between-groups mean square, denoted MSG, and, hence,

MSG =
SSG

K - 1

For the fuel-consumption data,

MSG =
21.55
3 - 1

= 10.775

When the population means are not equal, the between-groups mean square does not pro-
vide an unbiased estimate of the common population variance. Rather, the expected value 
of the corresponding random variable exceeds the common population variance, as it also 
carries information about the squared differences of the true population means.

 If the null hypothesis were true, we would now be in possession of two unbiased esti-
mates of the same quantity, the common population variance. It would be reasonable to 
expect these estimates to be quite close to each other. The greater the discrepancy between 
these two estimates, all else being equal, the stronger our suspicion that the null hypoth-
esis is not true. The test of the null hypothesis is based on the ratio of mean squares (see 
the chapter appendix):

F =
MSG
MSW

If this ratio is quite close to 1, there is little cause to doubt the null hypothesis of equal-
ity of population means. However, as already noted, if the variability between groups 
is large compared to the variability within groups, we suspect the null hypothesis to be 
false. This is the case where a value considerably larger than 1 arises for the F ratio. The 
null hypothesis is rejected for large values of this ratio.

 A formal test follows from the fact that, if the null hypothesis of equality of population 
means is true, the random variable follows the F distribution (discussed in Section 10.4) with 
numerator degrees of freedom 1K - 12 and denominator degrees of freedom 1n - K2, 
assuming the population distributions to be normal.

Hypothesis Test for One-Way Analysis of Variance
Suppose that we have independent random samples of n1, n2, c, nK observa-
tions from K populations. Denote by n the total sample size, so that

n = n1 + n2 + g + nK

We define the mean squares as follows:

 within groups : MSW =
SSW

n - K
 (15.5)

 between groups : MSG =
SSG

K - 1
 (15.6)
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For the fuel-consumption data, we find the following:

 
MSG
MSW

=
10.775

0.71647
= 15.039

The numerator and denominator degrees of freedom are, respectively, 1K - 12 = 2 and 1n - K2 = 17. Thus, for a 1% significance level test, from Appendix Table 9, we have the 
following:

F2,17,0.01 = 6.112

Hence, these data allow us to reject, at the 1% significance level, the null hypothesis that 
population mean fuel consumption is the same for all three types of automobiles.

 The computations involved in carrying out this test are very conveniently summarized 
in a one-way analysis of variance table. The general form of the table is set out in Table 15.3. 
For the fuel consumption data the analysis of variance is set out in Table 15.4. Note that in 
some expositions the within-groups sum of squares is referred to as the error sum of squares.

The null hypothesis to be tested is that the K population means are 
equal—that is,

H0 : m1 = m2 = g = mK

We make the following additional assumptions:

1. The population variances are equal.
2. The population distributions are normal.

A test of significance level a is provided by the decision rule

 reject H0 if 
MSG
MSW

7 FK- 1,n- K,a (15.7)

where FK -1,n -K,a is the number for which

P1FK- 1,n- K 7 FK- 1,n- K,a2 = a
and the random variable FK -1,n -K follows an F distribution with numerator de-
grees of freedom 1K - 12 and denominator degrees of freedom 1n - K2.

The p-value for this test is the smallest significance value that would allow 
us to reject the null hypothesis.

Table 15.3
General Format of 
One-Way Analysis of 
Variance Table

Source of  
Variation

Sum of  
Squares

Degrees of  
Freedom

 
Mean Squares

 
F Ratio

Between groups SSG K - 1 MSG =
SSG

K - 1
MSG
MSW

Within groups SSW n - K MSW =
SSW

n - K
Total SST n - 1   

Table 15.4 
One-Way Analysis 
of Variance Table for 
Fuel-Consumption 
Data

Source of 
Variation

Sum of  
Squares

Degrees of  
Freedom

Mean  
Squares

 
F Ratio

Between groups 21.55 2 10.78 15.05

Within groups 12.18 17 0.7165  

Total 33.73 19   
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Example 15.1 Reading Difficulty of Magazine 
Advertisements (One-Way Analysis of Variance)

The fog index is used to measure the reading difficulty of a written text: The higher the value 
of the index, the more difficult the reading level. We want to know if the reading difficulty 
index is different for three magazines: Scientific American, Fortune, and the New Yorker.

Solution Independent random samples of 6 advertisements were taken from Scientific 
American, Fortune, and the New Yorker, and the fog indices for the 18 advertisements 
were measured, as recorded in Table 15.5 (Shuptrine and McVicker 1981 ).

Table 15.5 Fog Index of Reading Difficulty for Three Magazines

SCIENTIFIC AMERICAN FORTUNE NEW YORKER

15.75 12.63 9.27
11.55 11.46 8.28
11.16 10.77 8.15
 9.92  9.93 6.37
 9.23  9.87 6.37
 8.20  9.42 5.66

From these data we can derive the analysis of variance table using a statistical program 
such as Minitab. Figure 15.3 contains the analysis of variance output. To test the null hypoth-
esis that the population mean fog indices are the same, the computed F ratio—F = 6.97—in 
the analysis of variance table must be compared with tabulated values of the F distribution 
with (2, 15) degrees of freedom. From Appendix Table 9 we find the following:

F2,15,0.01 = 6.359

Figure 15.3  One-Way Analysis of Variance for Reading Difficulty in Scientific 
American, Fortune, and the New Yorker (Minitab Output)

Source
Factor
Error
Total

DF
2

15
17

SS
48.53
52.22

100.75

MS
24.26
3.48

F
6.97

P
0.007

S = 1.866 R-Sq = 48.17% R-Sq(adj) = 41.26%

Level
SCIENTIFIC AMERI
FORTUNE
NEW YORKER

N
6
6
6

Mean
10.968
10.680
7.350

StDev
2.647
1.202
1.412

Pooled StDev = 1.866

Individual 95% CIs For Mean Based on
Pooled StDev

)

)

)

(

(

(

*

*

*

6.0 8.0 10.0 12.0

One-way ANOVA: SCIENTIFIC AMERICAN, FORTUNE, NEW YORKER

Thus, the null hypothesis of equality of the three population mean fog indices is re-
jected at the 1% significance level. Note also that the computed p-value as found in 
Figure 15.3 is 0.007. We have strong evidence that the reading difficulty is different, 
with the New Yorker having the lowest index. Note that the Minitab output provides a 
graphical display of subgroup means and their confidence intervals. This output pro-
vides a visual display of the differences between subgroup means, noting in this case 
that the New Yorker differs substantially from Scientific American and Fortune.
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Multiple Comparisons Between Subgroup Means

After we have concluded that subgroup means are different by rejecting the null hy-
pothesis, we might naturally ask which subgroup means are different from others. 
Thus, we would like to have a minimal interval that could be used to decide if two 
subgroup means are different in a statistical sense. Or, more precisely, can we reject a 
hypothesis that certain of the subgroup means are not different from others when we 
have concluded that at least one of the subgroup means is different from others? This 
is an important question for applied analysis—but one that leads to certain additional 
complications.

If we have two subgroups, then we can use the hypothesis-testing methods developed 
in Chapter 10 to compute a minimum significant difference (MSD) between two sample 
means that would lead us to reject the hypothesis that the population means are equal 
and, thus, that we have evidence to conclude that the population means are different. In 
those cases we would compute a common estimate of variance sp and the resulting MSD 
can be computed as follows:

MSD = ta>2 spA 1
n1

+
1
n2

Although this procedure, based on hypothesis tests with probability of error a, works 
well for two subgroups, it does not work well when there are K subgroups. In that case 
the number of paired comparisons can be computed using the combinations equation de-
veloped in Chapter 3:

CK
 2 =

K!1K - 22!2!

Where n1 and n2 are the subgroup sample sizes. Thus, the probability of error a would no 
longer hold.

A number of procedures have been developed to deal with the multiple-compari-
sons question. Essentially, they involve developing intervals that are somewhat wider 
than those for the two-subgroup case. These intervals are developed using advanced 
mathematical statistics analysis that provides intervals with the correct a levels for 
many subgroups. We present here a procedure developed by John Tukey, which uses 
an extended form of the Student’s t distribution. Factors identified as Q are presented in 
Appendix Table 13 for various numbers of subgroups, degrees of freedom, and a equal 
to 0.01 and 0.05.

Multiple-Comparison Procedure
The minimum significant difference between K subgroups is computed using

MSD1K2 = Q  

sp2n

with

sp = 2MSW

with the factor q selected from Table 13 for the appropriate level of a 
(0.01, 0.05), the number of subgroups K, and the degrees of freedom for 
MSW. To obtain the value of Q from Table 13, note that in Table 13 the 
 columns are based on the number of subgroups and the rows indicate 
the degrees of freedom for error. The resulting MSD can be used to indi-
cate which subgroup means are different and, thus, provides a very useful 
screening device that can be used to extend the results from the analyses 
we have discussed here.
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Population Model for One-Way Analysis of Variance

It is instructive to view the one-way analysis of variance model in a different light. Let the 
random variable Xij denote the jth observation from the ith population, and let mi stand 
for the mean of this population. Then Xij can be viewed as the sum of two parts—its mean 
and a random variable eij having a mean of 0. Therefore, we can write the following:

Xij = mi + eij

Now, because independent random samples are taken, the random variables eij will be 
uncorrelated with one another. Moreover, given our assumption that the population vari-
ances are all the same, it follows that the eij all have the same variances. This equation can 
be viewed as such a model, with unknown parameters m1, m2, c, mK. The null hypothesis 
of interest is as follows:

H0 : m1 = m2 = g = mK

A test on these parameters is facilitated by the further assumption of normality.
The model can be written in a slightly different manner. Let m denote the overall mean 

of the K combined populations and Gi be the discrepancy between the population mean 
for the ith group and this overall mean, so that

Gi = mi - m   or   mi = m + Gi

Substituting into the original equation gives

Xij = m + Gi + eij

so that an observation is made up of the sum of an overall mean m, a group-specific term 
Gi, and a random error eij. Then, our null hypothesis is that every population mean mi is 
the same as the overall mean, or

H0 : G1 = G2 = g = GK = 0

This population model and some of the assumptions are illustrated in Figure 15.4. For 
the fuel-consumption data, each type of car’s, actual fuel consumption recorded in any trial 
can be represented by a normally distributed random variable. The population means of 
fuel consumption, m1, m2, and m3, for A-cars, B-cars, and C-cars, respectively, determine 
the centers of these distributions. According to our assumption these population distribu-
tions must have the same variances. Figure 15.4 also shows the mean m of the three com-
bined populations and the differences Gi between the individual population means and the 
overall mean. Finally, for B-cars, we have marked by a dot the ith sample observation. The 
random variable eij is then the difference between the observed value and the mean of the 
sub-population i from which it is drawn.

Addendum to Example 15.1 Application of Multiple 
Comparisons

In Example 15.1 we compared the reading difficulty of three magazines and the de-
grees of freedom for error was 15. For a = 0.05 the value of q from Table 13 is 3.673. 
Thus, the minimum significant difference is as follows:

 MSD132 = 3.673 
1.87218

 = 1.619

with

sp = 23.48 = 1.87

Using this value of 1.619 and the subgroup means in Figure 15.3, we can see that the 
New Yorker mean is significantly different from both Scientific American and Fortune, but 
the latter two are not different.
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Figure 15.4

Illustration of the 
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EXERCISES

Basic Exercises
 15.1 Given the following analysis of variance table, com-

pute mean squares for between groups and within 
groups. Compute the F ratio and test the hypothesis 
that the group means are equal.

Source of  
Variation

Sum of  
Squares

Degrees of 
Freedom

Between groups 1,000  4

Within groups  750 15

Total 1,750 19

 15.2 Given the following analysis of variance table, com-
pute mean squares for between groups and within 
groups. Compute the F ratio and test the hypothesis 
that the group means are equal.

Source of  
Variation

Sum of  
Squares

Degrees of  
Freedom

Between groups  879  3

Within groups  798 16

Total 1,677 19

 15.3 Given the following analysis of variance table, com-
pute mean squares for between groups and within 
groups. Compute the F ratio and test the hypothesis 
that the group means are equal.

Source of 
Variation

Sum of  
Squares

Degrees of  
Freedom

Between groups 1,000  2

Within groups  743 15

Total 1,743 17

Application Exercises
 15.4 A manufacturer of cereal is considering three alter-

native box colors—red, yellow, and blue. To check 
whether such a consideration has any effect on sales, 

16 stores of approximately equal size are chosen. Red 
boxes are sent to 6 of these stores, yellow boxes to 5 
others, and blue boxes to the remaining 5. After a few 
days a check is made on the number of sales in each 
store. The results (in tens of boxes) shown in the fol-
lowing table were obtained.

Red Yellow Blue
43 52 61

52 37 29

59 38 38

76 64 53

61 74 79

81   

a. Calculate the within-groups, between-groups, and 
total sum of squares.

b. Complete the analysis of variance table, and test the 
null hypothesis that the population mean sales levels 
are the same for all three box colors.

 15.5 An instructor has a class of 23 students. At the be-
ginning of the semester, each student is randomly 
assigned to one of four teaching assistants—Smiley, 
Haydon, Alleline, or Bland. The students are encour-
aged to meet with their assigned teaching assistant to 
discuss difficult course material. At the end of the se-
mester, a common examination is administered. The 
scores obtained by students working with these teach-
ing assistants are shown in the accompanying table.

Smiley Haydon Alleline Bland
72 78 80 79

69 93 68 70

84 79 59 61

76 97 75 74

64 88 82 85

 81 68 63
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a. Calculate the within-groups, between-groups, and 
total sum of squares.

b. Complete the analysis of variance table and test 
the null hypothesis of equality of population mean 
scores for the teaching assistants.

 15.6 Three suppliers provide parts in shipments of 500 units. 
Random samples of six shipments from each of the three 
suppliers were carefully checked, and the numbers of 
parts not conforming to standards were recorded. These 
numbers are listed in the following table:

Supplier A Supplier B Supplier C
28 22 33

37 27 29

34 29 39

29 20 33

31 18 37

33 30 38

a. Prepare the analysis of variance table for these data.
b. Test the null hypothesis that the population mean 

numbers of parts per shipments not conforming to 
standards are the same for all three suppliers.

c. Compute the minimum significant difference and 
indicate which subgroups have different means.

 15.7 A corporation is trying to decide which of three 
makes of automobile to order for its fleet—domestic, 
Japanese, or European. Five cars of each type were or-
dered, and, after 10,000 miles of driving, the operating 
cost per mile of each was assessed. The accompanying 
results in cents per mile were obtained.

Domestic Japanese European
18.0 20.1 19.3

15.6 15.6 15.4

15.4 16.1 15.1

19.1 15.3 18.6

16.9 15.4 16.1

a. Prepare the analysis of variance table for these data.
b. Test the null hypothesis that the population mean 

operating costs per mile are the same for these 
three types of car.

c. Compute the minimum significant difference and 
indicate which subgroups have different means.

 15.8 Random samples of seven freshmen, seven sopho-
mores, and seven juniors taking a business statistics 
class were drawn. The accompanying table shows 
scores on the final examination.

Freshmen Sophomores Juniors
82 71 64

93 62 73

61 85 87

74 94 91

69 78 56

70 66 78

53 71 87

a. Prepare the analysis of variance table.
b. Test the null hypothesis that the three population 

mean scores are equal.
c. Compute the minimum significant difference and 

indicate which subgroups have different means.

 15.9 Samples of four salespeople from each of four regions 
were asked to predict percentage increases in sales 
volume for their territories in the next 12 months. The 
predictions are shown in the accompanying table.

West Midwest South East
6.8 7.2 4.2 9.0

4.2 6.6 4.8 8.0

5.4 5.8 5.8 7.2

5.0 7.0 4.6 7.6

a. Prepare the analysis of variance table.
b. Test the null hypothesis that the four population 

mean sales growth predictions are equal.

 15.10 Independent random samples of six assistant profes-
sors, four associate professors, and five full professors 
were asked to estimate the amount of time outside the 
classroom spent on teaching responsibilities in the last 
week. Results, in hours, are shown in the accompany-
ing table.

Assistant Associate Full
 7 15 11

12 12  7

11 15  6

15  8  9

 9   7

14   

a. Prepare the analysis of variance table.
b. Test the null hypothesis that the three population 

mean times are equal.

 15.11 Two tutoring services offer crash courses in prepara-
tion for the CPA exam. To check on the effectiveness of 
these services, 15 students were chosen. Five students 
were randomly assigned to service A, 5 were assigned 
to service B, and the remaining 5 did not take a crash 
course. Their scores on the examination, expressed as 
percentages, are given in the table.

Service A  
Course

Service B  
Course

No 
Course

79 74 72

74 69 71

92 87 81

67 81 61

85 64 63

a. Prepare the analysis of variance table.
b. Test the null hypothesis that the three population 

mean scores are the same.
c. Compute the minimum significant difference and 

indicate which subgroups have different means.
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15.3 THE KRUSKAL-WALLIS TEST

As we have already noted, the one-way analysis of variance test of Section 15.2 gener-
alizes to the multipopulation case for the t test comparing two population means when 
independent random samples are available. The test is based on an assumption that the 
underlying population distributions are normal. In Section 14.6 we introduced the Mann-
Whitney test, a nonparametric test that is valid for the comparison of the central locations 
of two populations based on independent random samples, even when the population 
distributions are not normal. It is also possible to develop a nonparametric alternative to 
the one-way analysis of variance test. This is known as the Kruskal-Wallis test, employed 
when an investigator has strong grounds for suspecting that the parent population distri-
butions may be markedly different from the normal.

 15.12 In the study of Example 15.1, independent random 
samples of six advertisements from True Confessions, 
People Weekly, and Newsweek were taken. The fog in-
dices for these advertisements are given in the ac-
companying table. Test the null hypothesis that the 
population mean fog indices are the same for adver-
tisements in these three magazines and compute the 
minimum significant difference and indicate which 
subgroups have different means.

True Confessions People Weekly Newsweek
12.89 9.50 10.21

12.69 8.60  9.66

11.15 8.59  7.67

 9.52 6.50  5.12

 9.12 4.79  4.88

 7.04 4.29  3.12

 15.13 For the one-way analysis of variance model, we write 
the jth observation from the ith group as

Xij = m + Gi + eij

where m is the overall mean, Gi is the effect specific to the 
ith group, and eij is a random error for the jth observation 
from the ith group. Consider the data of Example 15.1.

a. Estimate m.
b. Estimate Gi for each of the three magazines.
c. Estimate e32, the error term corresponding to the sec-

ond observation (8.28) for the New Yorker.

 15.14 Use the model for the one-way analysis of variance for 
the data of Exercise 15.12.

a. Estimate m
b. Estimate Gi for each of the three magazines.
c. Estimate e13, the error term corresponding to the 

third observation (11.15) for True Confessions.

Like the majority of the nonparametric tests we have already encountered, the Kruskal-
Wallis test is based on the ranks of the sample observations. We illustrate the computation 
of the test statistic by reference to the fuel-consumption data of Table 15.1. The sample 
values are all pooled together and ranked in ascending order, as in Table 15.6, using the 
average of adjacent ranks in the case of ties.

Table 15.6 Fuel-Consumption Figures (in Miles per Gallon) and Ranks from Three 
Independent Random Samples

A-Cars Rank B-Cars Rank C-Cars Rank

22.2 11 24.6  20 22.7 12

19.9  1 23.1  13 21.9  7

20.3  2.5 22.0   8 23.2 14

21.4  6 23.5  16.5 24.1 19

21.2  5 23.6  18 22.1  9.5

21.0  4 22.1   9.5 23.4 15

20.3  2.5 23.5  16.5   

Rank sum 32  101.5  76.5
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The test is based on the sums of the ranks R1, R2, c, RK for the K samples. In the fuel-
consumption example,

R1 = 32 R2 = 101.5 R3 = 76.5

Now, the null hypothesis to be tested is that the three population means are the same. We 
would be suspicious of that hypothesis if there were substantial differences among the aver-
age ranks for the K samples. In fact, our test is based on the statistic where ni are the sample 
sizes in the K groups and n is the total number of sample observations. Define W as follows:

W =
12

n1n + 12ak

i=1

R2
 i

ni
- 31n + 12

The null hypothesis would be in doubt if a large value for W were observed. The basis for 
the test follows from the fact that, unless the sample sizes are very small, the random vari-
able corresponding to the test statistic has, under the null hypothesis, a distribution that is 
well approximated by the x2 distribution with 1K - 12 degrees of freedom.

For our fuel-consumption data, we find the following:

W =
1212021212 c 13222

7
+
1101.522

7
+
176.522

6
d - 1321212 = 11.10

Here, we have 1K - 12 = 2 degrees of freedom, so for a 1% significance level test, we 
find from Appendix Table 7 that

x2
2,0.01 = 9.210

Hence, the null hypothesis that the population mean fuel consumption is the same for the 
three types of automobiles can be rejected even at the 1% significance level. Of course, we 
also rejected this hypothesis using the analysis of variance test of Section 15.2. However, 
here we have been able to do so without imposing the assumption of normality of the 
population distributions.

The Kruskal-Wallis Test
Suppose that we have independent random samples of n1, n2, cnK observa-
tions from K populations. Let

n = n1 + n2 + g + nK

denote the total number of sample observations. Denote by R1, R2, c, RK the 
sums of ranks for the K samples when the sample observations are pooled 
together and ranked in ascending order. The test of the null hypothesis, H0, of 
equality of the population means is based on the statistic

 W =
12

n1n + 12ak

i=1

R2
 i

ni
- 31n + 12 (15.8)

A test of significance level a is given by the decision rule

 reject H0 if W 7 x2
k-1,a (15.9)

where x2
K -1,ais the number that is exceeded with probability a by a x2 random 

variable with 1K - 12 degrees of freedom.
This test procedure is approximately valid, provided that the sample con-

tains at least five observations from each population.
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Example 15.2 Importance of Brand Names 
(Kruskal-Wallis Test)

A research study was designed to determine if women from different occupational 
subgroups assign different levels of importance to brand names when purchasing 
soft drinks.

Solution Independent random samples of 101 clerical, 112 administrative, and 
96 professional women were asked to rate, on a scale from 1 to 7, the importance 
attached to brand name when purchasing soft drinks. The value of the Kruskal-
Wallis statistic for this study was reported as 25.22. Test the null hypothesis that the 
population mean ratings are the same for these three subgroups.

 The calculated test statistic is as follows:

W = 25.22

Since there are K = 3 groups, we have, for a 1% test,

x2
k-1,a = x2

2,0.01 = 9.210

Thus, the null hypothesis that the three population mean ratings are the same is very 
clearly rejected on the evidence of this sample, even at the 1% level of significance. We 
have strong evidence that women from different occupational subgroups assign differ-
ent levels of importance to brand names.

EXERCISES

Basic Exercises
 15.15 Consider a problem with three subgroups with the sum 

of ranks in each of the subgroups equal to 45, 98, and 88 
and with subgroup sizes equal to 6, 6, and 7. Complete 
the Kruskal@Wallis test and test the null hypothesis of 
equal subgroup ranks.

 15.16 Consider a problem with four subgroups with the 
sum of ranks in each of the subgroups equal to 49, 84, 
76, and 81 and with subgroup sizes equal to 4, 6, 7, 
and 6. Complete the Kruskal-Wallis test and test the 
null hypothesis of equal subgroup ranks.

 15.17 Consider a problem with four subgroups with the 
sum of ranks in each of the subgroups equal to 71, 88, 
82, and 79 and with subgroup sizes equal to 5, 6, 6, 
and 7. Complete the Kruskal-Wallis test and test the 
null hypothesis of equal subgroup ranks.

Application Exercises
 15.18 For the data of Exercise 15.4, use the Kruskal-Wallis 

test of the null hypothesis that the population mean 
sales levels are identical for three box colors.

 15.19 Using the data of Exercise 15.5, perform a Kruskal-
Wallis test of the null hypothesis that the population 
mean test scores are the same for students assigned to 
the four teaching assistants.

 15.20 Using the data of Exercise 15.6, carry out a test of the 
null hypothesis of equality of the three population 
mean numbers of parts per shipment not conforming 
to standards without assuming normality of popula-
tion distributions.

 15.21 For the data of Exercise 15.7, test the null hypothesis 
that the population mean operating costs per mile are 
the same for all three types of automobiles without as-
suming normal population distributions.

 15.22 Using the data of Exercise 15.8, carry out a non-
parametric test of the null hypothesis of equality of 
population mean examination scores for freshmen, 
sophomores, and juniors.

 15.23 Based on the data of Exercise 15.9, use the Kruskal-
Wallis method to test the null hypothesis of equality 
of growth predictions for population mean sales for 
the four regions.

 15.24 Refer to Exercise 15.10. Without assuming normal pop-
ulation distributions, test the null hypothesis that the 
population mean times spent outside the classroom on 
teaching responsibilities are the same for assistant, as-
sociate, and full professors.

 15.25 Based on the data of Exercise 15.11, perform the Kruskal-
Wallis test of the null hypothesis of equal population 
mean scores on the CPA exam for students using no 
tutoring services and using services A and B.

 15.26 Independent random samples of 101 college sopho-
mores, 112 college juniors, and 96 college seniors were 
asked to rate, on a scale of 1 to 7, the importance at-
tached to brand name when purchasing a car. The ob-
tained value of the Kruskal-Wallis statistic was 0.15.

a. What null hypothesis can be tested using this 
information?

b. Carry out this test.
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15.4  TWO-WAY ANALYSIS OF VARIANCE: ONE OBSERVATION 
PER CELL, RANDOMIZED BLOCKS

Although our primary interest lies in the analysis of one particular feature of an experi-
ment, we may suspect that a second factor could exert an important influence on the out-
come. In the earliest sections of this chapter we discussed an experiment in which the 
objective was to compare the fuel consumption of three types of automobiles. Data were 
collected from three independent random samples of trials and analyzed through a one-
way analysis of variance. It was assumed that the variability in the sample data was due 
to two causes—genuine differences between the performance characteristics of these three 
types of car and random variation. In fact, we might suspect that part of the observed ran-
dom variability could be explained by differences in driver habits. Now, if this last factor 
could be isolated, the amount of random variability in the experiment would be reduced 
accordingly. This might, in turn, make it easier to detect differences in the performance of 
the automobiles. In other words, by designing an experiment to account for differences in 
driver characteristics, we hope to achieve a more powerful test of the null hypothesis that 
population mean fuel consumption is the same for all types of automobiles.

 In fact, it is quite straightforward to design an experiment in such a way that the in-
fluence of a second factor of this kind can be taken into account. Suppose, once again, that 
we have three makes of automobile (say, a-cars, b-cars, and g-cars) whose fuel economies 
we wish to compare. We consider an experiment in which six trials are to be run with each 
type of car. If these trials are conducted using six drivers, each of whom drives a car of all 
three types, it will be possible, since every car type will have been tested by every driver, 
to extract from the results information about driver variability as well as information 
about the differences among the three types of car. The additional variable—in this case, 
drivers—is sometimes called a blocking variable. The experiment is said to be arranged in 
blocks; in our example there would be six blocks, one for each driver.

This kind of blocked design can be used to obtain information about two factors si-
multaneously. For example, suppose that we want to compare fuel economy obtained not 
only by different types of automobiles, but also by different types of drivers. In particular, 
we may be interested in the effect of driver age on fuel economy. To do this, drivers can 
be subdivided into age categories. We might use the following six age classes (in years):

 1. 25 and under
 2. 26–35
 3. 36–45
 4. 46–55
 5. 56–65
 6. Over 65

Then we can arrange our experiment so that an automobile from each group is driven by 
a driver from each age class. In this way, in addition to testing the hypothesis that popula-
tion mean fuel consumption is the same for each automobile type, we can test the hypoth-
esis that population mean fuel consumption is the same for each age class.

In fact, whether a car of each type is driven by each of six drivers or a car of each type 
is driven by a driver from each of six age classes, the procedure for testing equality of 
population mean fuel consumption for the automobile types is the same. In this section 
we use the latter design for purposes of illustration.

 Table 15.7 gives results for an experiment involving three automobile types and six 
driver age classes. The comparison of automobile types is the main focus of interest, and 
driver ages are used as a blocking variable.

This kind of design is called a randomized blocks design. The randomization arises 
because we randomly select one driver from the first age class to drive an a-car, one driver 
from the second age class to drive an a-car, and so on. This procedure is repeated for each 
driver class and for each of the car types. If possible, the trials should be carried out in 
random order rather than block by block.
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Suppose that we have K groups and that there are H blocks. We use xij to denote the 
sample observation corresponding to the ith group and the jth block. Then, the sample 
data may be set out as in Table 15.8. 

Table 15.7 Sample Observations on Fuel Consumption Recorded for Three Types of 
Automobiles Driven by Drivers in Six Classes

 Automobile Type

Driver Class a-Cars b-Cars g-Cars Sum

1  25.1  23.9  26.0  75.0

2  24.7  23.7  25.4  73.8

3  26.0  24.4  25.8  76.2

4  24.3  23.3  24.4  72.0

5  23.9  23.6  24.2  71.7

6  24.2  24.5  25.4  74.1

Sum 148.2 143.4 151.2 442.8

Table 15.8
Sample Observation 
on K Groups and H 
Blocks

 Group

Block 1 2 c K

1 x11 x21 c xK1

2 x12 x22 c xK2

. . .  .

. . .  .

. . .  .

H x1H x2H c xKH

To develop a test of the hypothesis that the population means are the same for all K 
groups, we require the sample means for these groups. For the mean of the ith group, we 
use the notation xi~, so

xi~ =
a
H

j=1
xij

H
  1 i = 1, 2, c, K2

From Table 15.7 we obtain the following:

x1~ =
148.2

6
= 24.7 x2~ =

143.4
6

= 23.9 x3~ =
151.2

6
= 25.2

We are also interested in the differences in the population block means. Hence, we 
require the sample means for the H blocks. We use x

~j to denote the sample mean for the 
jth block, so

x
~j =

a
K

i=1
xij

K
 1 j = 1, 2, c, H2

For the fuel-consumption data of Table 15.7, we have the following:

 x
~1 =

75.0
3

= 25.0 x
~2 =

73.8
3

= 24.6 x
~3 =

76.2
3

= 25.4

 x
~4 =

72.0
3

= 24.0 x
~5 =

71.7
3

= 23.9 x
~6 =

74.1
3

= 24.7
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Finally, we require the overall mean of the sample observations. If n denotes the total 
number of observations, then

n = HK

and the sample mean observation is as follows:

x =
a
K

i=1
a
H

j=1
xij

n
=

a
K

i=1
xi~

K
=

a
H

j=1
x
~j

H

For the data of Table 15.7,

x =
442.8

18
= 24.6

Before considering the form of an appropriate test for the hypothesis of interest, it is 
useful to examine the population model that is implicitly being assumed. Let the random 
variable Xij correspond to the observation for the ith group and jth block. This value is 
then regarded as the sum of the following four components:

 1. An “overall” mean m
 2. A parameter Gi, which is specific to the ith group and measures the discrepancy be-

tween the mean for that group and the overall mean
 3. A parameter Bj, which is specific to the ith block and measures the discrepancy be-

tween the mean for that block and the overall mean
 4. A random variable eij, which represents experimental error, or that part of the obser-

vation not explained by either the overall mean or the group or block membership

We can therefore write the following:

Xij = m + Gi + Bj + eij

The error term eij is taken to obey the standard assumptions of the multiple regression 
model. In particular, then, we assume independence and equality of variances.

We can now write this as follows:

Xij - m = Gi + Bj + eij

Now, given sample data, the overall mean m is estimated by the overall sample mean x, 
so an estimate of the left-hand side is provided by 1xij - x2. The difference Gi between 
the population mean for the ith group and the overall population mean is estimated by 
the corresponding difference in sample means, 1xi~ - x2. Similarly, Bj is estimated by 1x
~j - x2. Finally, by subtraction, we estimate the error term by1xij - x2 - 1xi~ - x2 - 1x

~j - x2 = xij - xi~ - x
~j + x

Thus, we have for the sample members1xij - x2 = 1xi~ - x2 - 1x
~j - x2 + 1xij - xi~ - x

~j + x2
To illustrate, consider the fuel consumption recorded by a driver from the third class 

with an a-car. From Table 15.7,

x13 = 26.0

The term on the left-hand side is as follows:

x13 - x = 26.0 - 24.6 = 1.4

For the group (automobile) effect, we have the following:

x1~ - x = 24.7 - 24.6 = 0.1

(Notice that this term will result whenever the a-car is driven.) For the block (driver) ef-
fect, we have the following:

x
~3 - x = 25.4 - 24.6 = 0.8
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Finally, the error term is as follows:

x13 - x1~ - x
~3 + x = 26.0 - 24.7 - 25.4 + 24.6 = 0.5

Thus, we have, for this observation,

1.4 = 0.1 + 0.8 + 0.5

We can interpret this equation as follows: When a driver from the third age class tested 
the a-car, he consumed 1.4 miles per gallon more than the average for all cars and drivers. 
Of this amount, it is estimated that 0.1 is due to the automobile, 0.8 is due to the driver age 
class, and the remaining 0.5 results from other factors, which we put down to chance vari-
ability or experimental error.

Now, if both sides are squared and summed over all n sample observations, it can be 
shown that the result is as follows:

a
K

i=1
a
H

j=1
1xij - x22 = H a

K

i=1
1xi~ - x22 + K a

H

j=1
1x
~j - x22 + a

K

i=1
a
H

j=1
1xij - xi~ - x

~j + x22
This equation expresses the total sample variability of the observations about their 
overall mean as the sum of variabilities due to differences among groups, differences 
among blocks, and error, respectively. It is on the decomposition of these sums of 
squares that the analysis of experiments of this type is based. The analysis is called 
two-way analysis of variance, since the data are categorized in two ways, according to 
groups and blocks.

We illustrate this important sum of squares decomposition in Figure 15.5. Notice, by 
contrast with the decomposition for the one-way analysis of variance, that the total sum 
of squares of the sample observations about their overall mean is broken down here into 
three components. We summarize the components in Equations 15.10 to 15.14; the extra 
component arises because of our ability to extract from the data information about differ-
ences among blocks.

Figure 15.5 Sum 
of Squares 
Decomposition for 
Two-Way Analysis 
of Variance with One 
Observation per Cell

Between-blocks
sum of squares

Error sum of
squares

Between-groups
sum of squares

Total sum of squares

For the fuel-consumption data of Table 15.7, we find

 SST = 125.1 - 24.622 + 124.7 - 24.622 + g + 125.4 - 24.622 = 11.88

 SSG = 63124.7 - 24.622 + 123.9 - 24.622 + 125.2 - 24.6224 = 5.16

 SSB = 33125.0 - 24.622 + 124.6 - 24.622 + g + 124.7 - 24.6224 = 4.98

so, by subtraction,

SSE = SST - SSG - SSB = 11.88 - 5.16 - 4.98 = 1.74
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From this point, the tests associated with the two-way analysis of variance proceed in 
a fashion similar to the one-way analysis of Section 15.2. First, the mean squares are ob-
tained by dividing each sum of squares by the appropriate number of degrees of freedom. 
For the total sum of squares, the degrees of freedom are 1 less than the total number of 
observations, that is, 1n - 12. For the sum of squares between groups, the degrees of free-
dom are 1 less than the number of groups, or 1K - 12. Similarly, for the sum of squares 
between blocks, the number of degrees of freedom is 1H - 12. Hence, by subtraction, the 
degrees of freedom associated with the sum of squared errors are as follows:

 1n - 12 - 1K - 12 - 1H - 12 = n - K - H + 1

 = KH - K - H + 1

 = 1K - 121H - 12
The null hypothesis that the population group means are equal can then be tested through 

the ratio of the mean square for groups to the mean square error, as shown in Equation 15.18. 
Very often a blocking variable is included in the analysis simply to reduce variability due to 
experimental error. However, sometimes the hypothesis that the block population means are 
equal is also of interest. This can be tested through the ratio of the mean square for blocks to 
the mean square error from Equation 15.19. As in the case of the one-way analysis of variance, 
the relevant standard for comparison is obtained from a tail probability of the F distribution.

For the fuel-consumption data, the mean squares are as follows:

 MSG =
SSG

K - 1
=

5.16
2

= 2.58

 MSB =
SSB

H - 1
=

4.98
5

= 0.996

 MSE =
SSE1K - 121H - 12 =

1.74
10

= 0.174

To test the null hypothesis that the population mean fuel consumption is the same for 
all three types of automobiles, we require the following:

MSG
MSE

=
2.58

0.174
= 14.83

Sum of Squares Decomposition for Two-Way Analysis 
of Variance
Suppose that we have a sample of observations with xij denoting the obser-
vation in the ith group and jth block. Suppose that there are K groups and H 
blocks, for a total of

n = KH

observations. Denote the group sample means by xi~1 i = 1, 2, c, K2 the block 
sample means by x

~j1 j = 1, 2, c, H2 and the overall sample mean by x.
We define the following sum of squares:

  total : SST = a
K

i=1
a
H

j=1
1xij - x22  (15.10)

  between groups : SSG = H a
K

i=1
1xi~ - x22  (15.11)

  between blocks : SSB = K a
H

j=1
1x
~j - x22  (15.12)

  error : SSE = a
K

i=1
a
H

j=1
1xij - xi~ - x

~j + x22 (15.13)

Then,

 SST = SSG + SSB + SSE (15.14)
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For a 1% significance level test, we have from Appendix Table 9,

FK- 1,1K- 121H- 12,a = F2,10,0.01 = 7.559

Therefore, on the evidence of these data, the hypothesis of equal mean population perfor-
mances for the three types of automobiles is clearly rejected at the 1% significance level.

In this particular example, the null hypothesis of equality of the population block 
means is the hypothesis that population values of mean fuel consumption are the same for 
each driver age class. The test is based on the following:

MSB
MSE

=
0.996
0.174

= 5.724

For a 1% test we have, from Appendix Table 9,

FH- 1,1K- 121H- 12,a = F5,10,0.01 = 5.636

Hence, the null hypothesis of equal population means for the six driver age classes is also 
rejected at the 1% significance level.

Once again, it is very convenient to summarize the computations in tabular form. The 
general setup for the two-way analysis of variance table is shown in Table 15.9. For the fuel-
consumption data, this analysis of variance is set out in Figure 15.6. The numbers of degrees of 
freedom are determined by the numbers of groups and blocks. The mean squares are obtained 
by dividing the sums of squares by their associated degrees of freedom. The mean square er-
ror is then the denominator in the calculation of the two F ratios on which our tests are based.

Hypothesis Tests for Two-Way Analysis of Variance
Suppose that we have a sample observation for each group-block combina-
tion in a design containing K groups and H blocks:

xij = m + Gi + Bj + eij

where Gi is the group effect and Bj is the block effect.
Define the following mean squares:

 between groups : MSG =
SSG

K - 1
 (15.15)

 between blocks : MSB =
SSB

H - 1
 (15.16)

 error : MSE =
SSE1K - 121H - 12 (15.17)

We assume that the error terms eij in the model are independent of one 
another and have the same variance. We further assume that these errors are 
normally distributed.

Then, a test of significance level a of the null hypothesis, H0, that the K pop-
ulation group means are all the same is provided by the following decision rule:

 reject H0 if 
MSG
MSE

7 FK- 1, 1K- 121H- 12,a (15.18)

A test of significance level a of the null hypothesis, H0, that the H population 
block means are all the same is provided by the decision rule

 reject H0 if 
MSB
MSE

7 FH- 1,1K- 121H- 12,a (15.19)

Here, Fv1,v2,a is the number exceeded with probability a by a random variable 
following an F distribution with numerator degrees of freedom v1 and denomi-
nator degrees of freedom v2.
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Table 15.9 General Format of Two-Way Analysis of Variance Table

Source of Variation Sum of Squares Degrees of Freedom Mean Squares F Ratio

Between groups SSG K - 1
MSG =

SSG
K - 1

MSG
MSE

Between blocks SSB H - 1
MSB =

SSB
H - 1

MSB
MSE

Error SSE 1K - 121H - 12
MSE =

SSE1K - 121H - 12
Total SST n - 1

Example 15.3 Automobile Fuel Consumption 
(Two-Way Analysis of Variance)

We wish to determine if there is strong evidence to conclude that there is a difference in 
automobile fuel consumption for different cars used by different drivers.

Solution The gas-mileage data from Table 15.7 can be analyzed using Minitab, and 
the output is shown in Figure 15.6. Figure 15.6 also shows the various sums of squares 
and F ratios. The computed F ratio for the car of 14.83 results in a rejection of the null 
hypothesis that there are no differences between cars. Similarly the computed F ratio for 
the driver of 5.72 results in a rejection of the null hypothesis that there are no differences 
between drivers. Thus, both car and driver have significant effects on fuel consumption.

Figure 15.6 Results for Two-Way Analysis of Variance (Minitab Output)

Two-way ANOVA: Mileage versus Car, Driver

Source
Car
Driver
Error
Total

DF
2
5
10
17

SS
5.16
4.98
1.74
11.88

MS
2.580
0.996
0.174

F
14.83
5.72

P
0.001
0.009

S = 0.4171 R-Sq = 85.35% R-Sq(adj) = 75.10%

Individual 95% CIs For Mean Based on
Pooled StDev

)( *

)( *

)( *

)( *

)( *

)( *

)( *

)( *
)( *

24.00 24.60 25.20 25.80

Individual 95% CIs For Mean Based on
Pooled StDev

Driver
1
2
3
4
5
6

Mean
25.0
24.6
25.4
24.0
23.9
24.7

23.80 24.50 25.20 25.90

Car
1
2
3

Mean
24.7
23.9
25.2
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EXERCISES

Basic Exercises
 15.27 Consider a two-way analysis of variance with one ob-

servation per cell and randomized blocks with the fol-
lowing results:

Source of 
Variation

Sum of 
Squares

Degrees of  
Freedom

Between groups   231  4

Between blocks   348  5

Error   550 20

Total 1,129 29

Compute the mean squares and test the hypotheses 
that between-group means are equal and between-
block means are equal.

 15.28 Consider a two-way analysis of variance with one ob-
servation per cell and randomized blocks with the fol-
lowing results:

Source of 
Variation

Sum of 
Squares

Degrees of  
Freedom

Between groups 380  6

Between blocks 232  5

Error 387 30

Total 989 41

Compute the mean squares and test the hypotheses 
that between-group means are equal and between-
block means are equal.

 15.29 Consider a two-way analysis of variance with one ob-
servation per cell and randomized blocks with the fol-
lowing results:

Source of  
Variation

Sum of  
Squares

Degrees of  
Freedom

Between groups 131  3

Between blocks 287  6

Error 360 18

Total 778 27

Compute the mean squares and test the hypotheses 
that between-group means are equal and between-
block means are equal.

Application Exercises
 15.30 Four financial analysts were asked to predict earn-

ings growth over the coming year for five oil com-
panies. Their forecasts, as projected percentage 

increases in earnings, are given in the accompany-
ing table.

a. Prepare the two-way analysis of variance table.
b. Test the null hypothesis that the population 

mean growth forecasts are the same for all oil 
companies.

 Analyst

Oil Company A B C D
1  8 12  7 13

2  9  9  8 12

3 12 10  9 10

4 11 10 10 12

5  9  8 10 14

 15.31 An agricultural experiment designed to assess dif-
ferences in yields of corn for four different variet-
ies, using three different fertilizers, produced the 
results (in bushels per acre) shown in the following 
table:

 Variety

Fertilizer A B C D
1 86 88 77 84

2 92 91 81 93

3 75 80 83 79

a. Prepare the two-way analysis of variance table.
b. Test the null hypothesis that the population  

mean yields are identical for all four varieties  
of corn.

c. Test the null hypothesis that population mean 
yields are the same for all three brands of  
fertilizer.

 15.32 A company has test-marketed three new types of 
soup in selected stores over a period of 1 year. The 
following table records sales achieved (in thousands 
of dollars) for each of the three soups in each quarter 
of the year.

 Soup

Quarter A B C
1 47 57 65

2 63 63 76

3 79 67 54

4 52 50 49

a. Prepare the two-way analysis of variance table.
b. Test the null hypothesis that population mean sales 

are the same for all three types of soup.
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 15.33 A diet soda manufacturer wants to compare the ef-
fects on sales of three can colors—red, yellow, and 
blue. Four regions are selected for the test, and three 
stores are randomly chosen from each region, each 
to display one color of cans. The accompanying table 
shows sales (in tens of cans) at the end of the experi-
mental period.

 Can Color

Region Red Yellow Blue
East 47 52 60
South 56 54 52
Midwest 49 63 55
West  41  44  48

a. Prepare the appropriate analysis of variance  
table.

b. Test the null hypothesis that population mean sales 
are the same for each can color.

 15.34 An instructor in an economics class is considering 
three different texts. He is also considering three types 
of examinations—multiple choice, essay, and a mix of 
multiple choice and essay questions. During the year 
he teaches nine sections of the course and randomly 
assigns a text–examination type combination of each 
section. At the end of the course he obtained students’ 
evaluations for each section. These ratings are shown 
in the accompanying table.

 Text

Examination A B C
Multiple choice 4.8 5.3 4.9

Essays 4.6 5.0 4.3

Mix 4.6 5.1 4.8

a. Prepare the analysis of variance table.
b. Test the null hypothesis of equality of population 

mean ratings for the three texts.
c. Test the null hypothesis of equality of population 

mean ratings for the three examination types.

 15.35 We introduced for the two-way analysis of variance 
the population model

Xij - m = Gi + bj + eij

For the data of Exercise 15.33, obtain sample estimates 
for each term on the right-hand side of this equation 
for the east region–red can combination.

 15.36 For the data of Exercise 15.34, obtain sample estimates 
for each term on the right-hand side of the equation 
used in the previous exercise for the text C–multiple 
choice combination.

 15.37 Four real estate agents were asked to appraise the val-
ues of 10 houses in a particular neighborhood. The ap-
praisals were expressed in thousands of dollars, with 
the results shown in the following table.

Source of Variation Sum of Squares
Between agents   268

Between houses 1,152

Error 2,352

a. Complete the analysis of variance table.
b. Test the null hypothesis that population mean  

assessments are the same for these four real  
estate agents.

 15.38 Four brands of fertilizer were evaluated. Each brand 
was applied to each six plots of land containing soils 
of different types. Percentage increases in corn yields 
were then measured for the 24 brand-soil-type combi-
nations. The results obtained are summarized in the 
accompanying table.

Source of Variation Sum of Squares
Between fertilizers 135.6

Between soil types  81.7

Error 111.3

a. Complete the analysis of variance table.
b. Test the null hypothesis that population 

mean yield increases are the same for the four 
fertilizers.

c. Test the null hypothesis that population mean 
yield increases are the same for the six soil  
types.

 15.39 Three television pilots for potential situation-com-
edy series were shown to audiences in four regions 
of the country—the East, the South, the Midwest, 
and the West Coast. Based on audience reactions, 
a score (on a scale from 0 to 100) was obtained for 
each show. The sums of squares between groups 
(shows) and between blocks (regions) were found 
to be

SSG = 95.2  and  SSB = 69.5

and the error sum of squares was as follows:

SSE = 79.3

Prepare the analysis of variance table, and test the 
null hypothesis that the population mean scores 
for audience reactions are the same for all three 
shows.

 15.40 Suppose that, in the two-way analysis of variance 
setup with one observation per cell, there are just 
two groups. Show in this case that the F ratio for test-
ing the equality of the group population means is 
precisely the square of the test-statistic discussed in  
Section 10.1 for testing equality of population 
means, given a sample of matched pairs. Hence, 
deduce that the two tests are equivalent in this par-
ticular case.
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15.5  TWO-WAY ANALYSIS OF VARIANCE: MORE THAN ONE 
OBSERVATION PER CELL

In the two-way analysis of variance layout of Section 15.4, we can view the tabulated raw 
data (as in Tables 15.7 and 15.8) as being broken down into cells, where each cell refers 
to a particular group-block combination. Thus, for example, the results obtained when 
a driver from the fourth age class drives a b-car constitute a single cell. A feature of the 
design analyzed in Section 15.4 is that each cell contains just a single sample observation. 
Thus, a driver from the fourth age class tests a b-car only once.

In this section we consider the possibility of replicating the experiment so that, for ex-
ample, b-cars would be driven by more than one driver from the fourth age class. The data 
resulting from such a design would then involve more than just a single observation per 
cell. There are two major advantages in extending the sample in this way. First, when more 
sample data are available, the resulting estimates will be more precise, and we will be better 
able to distinguish differences among the population means. Second, a design with more 
than one observation per cell allows the isolation of a further source of variability—the  
interaction between groups and blocks. Such interactions occur when differences in group 
effects are not distributed uniformly across blocks. For example, drivers who achieve 
better-than-average fuel consumption figures may be considerably more successful in 
getting better fuel economy than other drivers when driving an a-car than when driv-
ing a b-car. Thus, this better-than-average performance is not uniformly spread over all 
types of cars but rather is more manifest in some types than others. This possibility of 
driver-car interaction can be taken into account in an analysis based on more than one 
observation per cell.

To illustrate the kind of data that can be analyzed, Table 15.10 contains results on fuel 
consumption recorded for drivers from five age classes with three types of automobiles: 
X-cars, Y-cars, and Z-cars. The three observations in each cell refer to independent trials 
by drivers from a given age class with automobiles of a particular type.

Table 15.10 Sample Observations on Fuel Consumption Recorded for Three Types of 
Automobiles Driven by Five Classes of Drivers; Three Observations per Cell

 Automobile Type

Driver Class X-Cars Y-Cars Z-cars

1 25.0 25.4 25.2 24.0 24.4 23.9 25.9 25.8 25.4
2 24.8 24.8 24.5 23.5 23.8 23.8 25.2 25.0 25.4
3 26.1 26.3 26.2 24.6 24.9 24.9 25.7 25.9 25.5
4 24.1 24.4 24.4 23.9 24.0 23.8 24.0 23.6 23.5
5 24.0 23.6 24.1 24.4 24.4 24.1 25.1 25.2 25.3

To denote the individual sample observations, we require a triple subscript, so xijl 
will denote the lth observation in the ijth cell—that is, the lth observation in the cell cor-
responding to the ith group and the jth block. As before, we will let K denote the num-
ber of groups and H, the number of blocks. We denote by m the number of observations 
per cell. Hence, in the example of Table 15.10, K = 3, H = 5, and m = 3. This notation is 
 illustrated in Table 15.11.

Based on the results of an experiment of this type, there are three null hypotheses that 
can be tested: no difference between group means, no difference between block means, 
and no group-block interaction. In order to carry out these tests, we will again calculate 
various sample means, defined and calculated as follows:
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Table 15.11
Sample Observations 
on K Groups and H 
Blocks; m Observa-
tions per Cell

 Group

Block 1 2 c K

1 x111x112 cx11m x211x212 cx21m c xK11xK12 cxK1m

2 x121x122 cx12m x221x222 cx22m xK21xK22 cxK2m

. . . .

. . . .

. . . .

H x1H1x1H2 cx1Hm x2H1x2H2 cx2Hm c xKH1xKH2 cxKHm

 1. Group Means
  The mean of all the sample observations in the ith group is denoted xi~~, so

xi~~ =
a
H

j=1
a
m

l=1
xijl

Hm

  From Table 15.10 we find the following:

 x1~~ =
25.0 + 25.4 + g + 23.6 + 24.1

15
= 24.86

 x2~~ =
24.0 + 24.4 + g + 24.4 + 24.1

15
= 24.16

 x3~~ =
25.9 + 25.8 + g + 25.2 + 25.3

15
= 25.10

 2. Block Means
  The mean for all the sample observations in the jth block is denoted x

~j~, so

x
~j~ =

a
K

i=1
a
m

l=1
xijl

Km

  From Table 15.10 we find the following:

 x
~1~ =

25.0 + 25.4 + g + 25.8 + 25.4
9

= 25.00

 x
~2~ =

24.8 + 24.8 + g + 25.0 + 25.4
9

= 24.53

 x
~3~ =

26.1 + 26.3 + g + 25.9 + 25.5
9

= 25.57

 x
~4~ =

24.1 + 24.4 + g + 23.6 + 23.5
9

= 23.97

 x
~5~ =

24.0 + 23.6 + g + 25.2 + 25.3
9

= 24.47

 3. Cell Means
  To check the possibility of group-block interactions, it is necessary to calculate the 

sample mean for each cell. Let xij~ denote the sample mean for the (ij)th cell. Then,

xij~ =
a
m

l=1
xijl

m
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  Hence, we find for the data from Table 15.10,

 x11~ =
25.0 + 25.4 + 25.2

3
= 25.2

 x12~ =
24.8 + 24.8 + 24.5

3
= 24.7

  and, similarly,

x13~ = 26.2 x14~ = 24.3 x15~ = 23.9

 x21? = 24.1 x22~ = 23.7 x23~ = 24.8 x24~ = 23.9 x25~ = 24.3

 x31~ = 25.7 x32~ = 25.2 x33~ = 25.7 x34~ = 23.7 x35~ = 25.2

 4. Overall Mean
  We denote the mean of all the sample observations by x, so

x =
a
K

i=1
a
H

j=1
a
m

l=1
xijl

KHm

  For our data, this quantity is simplest to calculate as the average of the three group 
sample means, as follows:

x =
24.86 + 24.16 + 25.10

3
= 24.71

Now, to get a feeling for the analysis, it is convenient to think in terms of the assumed 
population model. Let Xjil denote the random variable corresponding to the lth observa-
tion in the ijth cell. Then the model assumed in our analysis is as follows:

Xijl = m + Gi + Bj + Lij + eijl

The first three terms on the right-hand side are precisely the same as those in the 
model without replication. As before, they represent an overall mean, a group-specific 
factor, and a block-specific factor. The next term, Lij, represents the effect of being in the 
ijth cell, given that the overall, group, and block effects are already accounted for. If there 
were no group-block interaction, this term would be 0. Its presence in the model allows us 
to test for interaction. Finally, the error term, eijl, is a random variable representing experi-
mental error.

We will rewrite the model in deviation form:

Xijl - m = Gi + Bj + Lij + eijl

It is shown that the total sum of squares can be decomposed as the sum of four terms, 
representing variability due to groups, blocks, interaction between groups and blocks, 
and error.

Without providing detailed derivations the decomposition on which the tests are 
based is shown in Equations 15.20–15.25.

Two-Way Analysis of Variance: Several Observations 
per Cell
Suppose that we have a sample of observations on k groups and h blocks, 
with m observations per cell. Let xijl denote the lth observation in the cell for 
the ith group and jth block. Let x denote the overall sample mean, xi~~ be the 
group sample means, x

~j~ be the block sample means, and xij~ be the cell sam-
ple means.
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 Figure 15.7 depicts the decomposition of the total sum of squares of the sample observa-
tions about their overall mean as the sum of four components. It differs from Figure 15.5 in 
that, as the experiment is replicated, we are now able to isolate an interaction sum of squares.

Then we define the following sums of squares and associated degrees of 
freedom:

 
Sum of Squares

Degrees of  
Freedom

Total: SST = a
i
a

j
a

l
1xijl - x22 KHm - 1 (15.20)

Between 
groups:

SSG = Hm a
K

i=1
1xi~~ - x22 K - 1 (15.21)

Between 
blocks:

SSB = Km a
H

i=1
1x
~j~ - x22 H - 1 (15.22)

Interaction: SSI = m a
K

i=1
a
H

j=1
1xij~ - xi~~ - x

~j~ + x2 1K - 121H - 12 (15.23)

Error: SSE = a
i
a

j
a

l
1xijl - xij~22 HK1m - 12 (15.24)

Then,

 SST = SSG + SSB + SSI + SSE (15.25)

Division of the component sums of squares by their corresponding  
degrees of freedom yields the mean squares MSG, MSB, MSI, and MSE. Tests 
of the hypotheses of no effects for groups, blocks, and interaction are based 
on the respective F ratios:

MSG
MSE

  
MSB
MSE

  
MSI
MSE

The tests are carried out with reference to the F distributions with the correspond-
ing numerator and denominator degrees of freedom. Their validity rests on the 
assumption that the eijl behave as a random variable from a normal distribution.

Figure 15.7

Sum of Squares 
Decomposition for  
a Two-Way Analysis 
of Variance with 
More than One 
Observation per Cell

Between-groups
sum of squares

Error sum of
squares

Interaction sum
of squares

Between-blocks
sum of squares

Total sum of squares

As before, the calculations involved can be conveniently summarized in an analysis 
of variance table. The general form of the table when there are m observations per cell in a 
two-way analysis of variance is shown in Table 15.12.
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Table 15.12
General Format of the 
Two-Way Analysis of 
Variance Table with m 
 Observations per Cell

Source of  
Variation

Sum of  
Squares

Degrees of 
Freedom

 
Mean Squares

 
F Ratio

Between groups SSG K - 1 MSG =
SSG

K - 1
MSG
MSE

Between blocks SSB H - 1 MSB =
SSB

H - 1
MSB
MSE

Interaction SSI 1K - 121H - 12 MSI =
SSI1K - 121H - 12 MSI

MSE

Error SSE KH1m - 12 MSE =
SSE

KH1m - 12
Total SST

In fact, formulas that are computationally simpler exist for the calculation of the 
various sums of squares. Nevertheless, the arithmetic involved is still rather tedious and 
should be performed using a computer. We will not go into further detail here but will 
simply report in Figure 15.8 the results of the calculations for our data. In practice, analy-
sis of variance computations are typically carried out using a statistical computer package 
such as Minitab. Thus, considerations of arithmetic complexity rarely impose any con-
straint on practical analyses.

Figure 15.8

Minitab Analysis of 
Variance Output for 
Fuel-Consumption 
Data of Table 15.10

Source
Car
Driver
Interaction
Error
Total

DF
2
4
8
30
44

SS
7.156
13.148
6.604
1.160
28.068

MS
3.57800
3.28700
0.82550
0.03867

F
92.53
85.01
21.35

P
0.000
0.000
0.000

S = 0.1966 R-Sq = 95.87% R-Sq(adj) = 93.94%

Individual 95% CIs For Mean Based on
Pooled StDev

Car
1
2
3

Mean
24.86
24.16
25.10

)( *

)( *

)( *

)( *

)( *
)( *

)( *
)( *

24.30 24.60 25.90 25.20

24.00 24.50 25.00 25.50

Indiviual 95% CIs For Mean Based on
Pooled StDev

Driver
1
2
3
4
5

Mean
25.0000
24.5333
25.5667
23.9667
24.4667

Two-way ANOVA: Mileage versus Car, Driver

The degrees of freedom in Figure 15.8 follow from the fact that for these data we have 
the following:

K = 3 H = 5 m = 3
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The mean squares are obtained by dividing the sums of squares by their associated de-
grees of freedom. Finally, the F ratios follow from dividing, in turn, each of the first three 
mean squares by the error mean square.

Using the material in Figure 15.8, we can test the three null hypotheses of interest. First, 
we test the null hypothesis of no interaction between drivers and automobile type. This test 
is based on the calculated F ratio 21.35 and the p-value of 0.000. Since the numerator and de-
nominator degrees of freedom are 8 and 30, respectively, we have, from Appendix Table 9, 

F8,30,0.01 = 3.173

The null hypothesis of no interaction between car type and driver is very clearly rejected 
at the 1% level of significance, since 21.35 is greater than 3.173.

Next, we test the null hypothesis that the population mean fuel consumption is the 
same for X-cars, Y-cars, and Z-cars. The test is based on the calculated F ratio 92.53. From 
Appendix Table 9, we find for a 1% test with numerator and denominator degrees of free-
dom 2 and 30, respectively,

F2,30,0.01 = 5.390

Hence, the null hypothesis of equality of the population means for automobile types is 
overwhelmingly rejected at the 1% significance level.

 Finally, we test the null hypothesis that the population mean fuel consumption is the 
same for all five driver age classes. From Figure 15.8 the test is based on the calculated 
F ratio 85.01. The numerator and denominator degrees of freedom are 4 and 30, respec-
tively, so for a 1% significance level test,

F4,30,0.01 = 4.018

The null hypothesis of equality of population means for the driver age classes is very 
clearly rejected at the 1% significance level.

 The evidence of our data points very firmly to the following three conclusions:

 1. Average fuel consumption is not the same for X-cars, Y-cars, and Z-cars.
 2. The average performance levels are not the same for all driver classes.
 3. The differences in driver performance are not spread evenly over all three types of 

automobiles. Rather, compared with other drivers, a driver from a particular age 
class is likely to do relatively better in one automobile type than in another.

So far in this section, we have assumed that the number of observations in each cell is the 
same. However, this restriction is not necessary and may, on occasion, be inconvenient for an 
investigator. In fact, the formulas for the computation of sums of squares can be modified to 
allow for unequal cell contents. We are not concerned here with the technical details of the 
calculation of appropriate sums of squares. Generally, an investigator will have available a 
computer package for this purpose. Rather, our interest lies in the analysis of the results.

Example 15.4 Worker Satisfaction Level 
(Two-Way Analysis of Variance)

A study (Kim 1980 ) was designed to compare the satisfaction levels of introverted and 
extroverted workers performing stimulating and nonstimulating tasks. For the purpose 
of this study, there are two worker types and two task types, producing four combina-
tions. The sample mean satisfaction levels reported by workers in these four combina-
tions were as follows:

Introverted worker, nonstimulating task (16 observations): 2.78
Extroverted worker, nonstimulating task (15 observations): 1.85
Introverted worker, stimulating task (17 observations): 3.87
Extroverted worker, stimulating task (19 observations): 4.12
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The following table shows the calculated sums of squares and associated degrees 
of freedom. Complete the analysis of variance table and analyze the results of this 
experiment.

SOURCE OF VARIATION SUM OF SQUARES DEGREES OF FREEDOM

Task 62.04  1

Worker type  0.06  1

Interaction  1.85  1

Error 23.31 63

Total 87.26 66

Solution  Once again, the mean squares are obtained from division of the sums of 
squares by their associated degrees of freedom. The F ratios then follow from division 
of the task, worker type, and interaction mean squares by the error mean square. The 
analysis of variance table may now be completed as shown.

SOURCE OF  
VARIATION

SUM OF  
SQUARES

DEGREES OF  
FREEDOM

MEAN  
SQUARES

 
F RATIOS

Task 62.04  1 62.04 167.68

Worker type  0.06  1  0.06   0.16

Interaction  1.85  1  1.85   5.00

Error 23.31 63  0.37

Total 87.26 66

The analysis of variance table can be used as the basis for testing three null hypoth-
eses. For the null hypothesis of equal mean population satisfaction levels with the two 
types of task, the calculated F ratio is 167.68. We have numerator degrees of freedom 1 
and denominator degrees of freedom 63, so by using Minitab for a 1% test,

F1,63,0.01 = 7.055

Hence, the null hypothesis of equal population mean satisfaction levels for stimulat-
ing and nonstimulating tasks is very clearly rejected. This result is not surprising. We 
would naturally expect workers to be more satisfied when performing stimulating 
rather than nonstimulating tasks.

 Next, we test the null hypothesis that the population mean satisfaction levels are 
the same for introverted and extroverted workers. Here, the calculated F ratio is 0.16. 
Again, the degrees of freedom are 1 and 63, so for a 5% test,

F1,63,0.05 = 3.993

The null hypothesis of equal mean levels of satisfaction for introverted and extroverted 
workers cannot be rejected at the 5% level of significance.

 In many studies the interaction term is not, in itself, of any great importance. The 
main reason for including it in the analysis is to “soak up” some of the variability in the 
data, rendering any differences between population means easier to detect. However, 
in this particular study the interaction is of major interest. The null hypothesis of no 
interaction between task and worker type in determining worker satisfaction levels is 
tested through the calculated F ratio equal to 5.00. Once again, the numerator and de-
nominator degrees of freedom are 1 and 63, respectively. Hence, comparison with the 
tabulated values of the F distribution reveals that the null hypothesis of no interaction 
can be rejected at the 5% level but not at the 1% level of significance.
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EXERCISES

Basic Exercises
 15.41 Consider an experiment with treatment factors A and B, 

with factor A having four levels and factor B having 
three levels. The results of the experiment are summa-
rized in the following analysis of variance table.

Compute the mean squares and test the null hy-
potheses of no effect from either treatment and no in-
teraction effect.

Source of Variation
Sum of  
Squares

Degrees of  
Freedom

Treatment A groups  71  3

Treatment B groups  63  2

Interaction  50  6

Error 280 60

Total 464 71

 15.42 Consider an experiment with treatment factors A and B, 
with factor A having five levels and factor B having 
six levels. The results of the experiment are summa-
rized in the following analysis of variance table:

Source of Variation
Sum of  
Squares

Degrees of  
Freedom

Treatment A groups  86   4

Treatment B groups  75   5

Interaction  75  20

Error 300  90

Total 536 119

Compute the mean squares and test the null hypoth-
eses of no effect from either treatment and no interac-
tion effect.

 15.43 Consider an experiment with treatment factors A 
and B, with factor A having three levels and factor 
B having seven levels. The results of the experiment 
are summarized in the following analysis of vari-
ance table:

Source of Variation
Sum of  
Squares

Degrees of  
Freedom

Treatment A groups  37   2

Treatment B groups  58   6

Interaction  57  12

Error 273  84

Total 425 104

Compute the mean squares and test the null hypoth-
eses of no effect from either treatment and no interac-
tion effect.

Application Exercises
 15.44 Suppose that scores given by judges to competitors 

in the ski-jumping events of the Winter Olympics 
were analyzed. For the men’s ski-jumping com-
petition, suppose there were 22 contestants and  

9 judges. Each judge in seven subevents assessed 
each  contestant. The scores given can, thus, be 
treated in the framework of a two-way analysis of 
variance with 198 contestant-judge cells, seven ob-
servations per cell. The sums of squares are given in 
the following table:

Source of Variation Sum of Squares
Between contestants   364.50

Between judges    0.81

Interaction    4.94

Error 1,069.94

a. Complete the analysis of variance table.
b. Carry out the associated F tests and interpret your 

findings.

 15.45 Refer to Exercise 15.44. Twelve pairs were entered in 
the ice-dancing competition. Once again, there were 
9 judges, and contestants were assessed in seven sub-
events. The sums of squares between groups (pairs of 
contestants) and between blocks (judges) were found 
to be

SSG = 60.10 and SSB = 1.65

while the interaction and error sums of squares were 
as follows:

SSI = 3.35 and SSE = 31.61

Analyze these results and verbally interpret the 
conclusions.

 15.46 A psychologist is working with three types of apti-
tude tests that may be given to prospective manage-
ment trainees. In deciding how to structure the testing 
process, an important issue is the possibility of inter-
action between test takers and test type. If there were 
no interaction, only one type of test would be needed. 
Three tests of each type are given to members of each 
of four groups of subject type. These were distin-
guished by ratings of poor, fair, good, and excellent in 
preliminary interviews. The scores obtained are listed 
in the following table:

Test Type

Subject Type Profile Fit Mindbender Psych Out
Poor 65 68 62 69 71 67 75 75 78

Fair 74 79 76 72 69 69 70 69 65

Good 64 72 65 68 73 75 78 82 80

Excellent 83 82 84 78 78 75 76 77 75

a. Set up the analysis of variance table.
b. Test the null hypothesis of no interaction between 

subject type and test type.

 15.47 Random samples of two freshmen, two sopho-
mores, two juniors, and two seniors each from 
four dormitories were asked to rate, on a scale of 1 
(poor) to 10 (excellent), the quality of the dormitory 
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 environment for studying. The results are shown in 
the following table:

Dormitory

Year A B C D
Freshman 7 5 8 6 9 8 9 9

Sophomore 6 8 5 5 7 8 8 9

Junior 5 4 7 6 6 7 7 8

Senior 7 4 6 8 7 5 6 7

a. Set up the analysis of variance table.
b. Test the null hypothesis that the population mean 

ratings are the same for the four dormitories.
c. Test the null hypothesis that the population mean 

ratings are the same for the four student years.
d. Test the null hypothesis of no interaction between 

student year and dormitory rating.

 15.48 In some experiments with several observations per 
cell the analyst is prepared to assume that there is no 
interaction between groups and blocks. Any apparent 
interaction found is then attributed to random error. 
When such an assumption is made, the analysis is 
carried out in the usual way, except that what were 
previously the interaction and error sums of squares 
are now added together to form a new error sum of 
squares. Similarly, the corresponding degrees of free-
dom are added. If the assumption of no interaction is 
correct, this approach has the advantage of providing 
more error degrees of freedom and, hence, more pow-
erful tests of the equality of group and block means. 
For the study of Exercise 15.47, suppose that we now 
make the assumption of no interaction between dor-
mitory ratings and student years.

a. State, in your own words, what is implied by this 
assumption.

b. Given this assumption, set up the new analysis of 
variance table.

c. Test the null hypothesis that the population mean 
ratings are the same for all dormitories.

d. Test the null hypothesis that the population mean 
ratings are the same for all four student years.

 15.49 Refer to Exercise 15.31. Having carried out the experi-
ment to compare mean yields per acre of four varieties 
of corn and three brands of fertilizer, an agricultural 
researcher suggested that there might be some inter-
action between variety and fertilizer. To check this 

possibility, another set of trials was carried out, pro-
ducing the yields in the table.

Variety

Fertilizer A B C D
1 80 88 73 88

2 94 91 79 93

3 81 78 83 83

a. What would be implied by an interaction between 
variety and fertilizer?

b. Combine the data from the two sets of trials and 
set up an analysis of variance table.

c. Test the null hypothesis that the population mean 
yield is the same for all four varieties of corn.

d. Test the null hypothesis that the population mean 
yield is the same for all three brands of fertilizer.

e. Test the null hypothesis of no interaction between 
variety of corn and brand of fertilizer.

 15.50 Refer to Exercise 15.33. Suppose that a second store 
for each region–can color combination is added to 
the study, yielding the results shown in the following 
table. Combining these results with those of Exercise 
15.33, carry out the analysis of variance calculations 
and discuss your findings.

Can Color

Region Red Yellow Blue
East 45 50 54

South 49 51 58

Midwest 43 60 50

West 38 49 44

 15.51 Having carried out the study of Exercise 15.34, the 
instructor decided to replicate the study the follow-
ing year. The results obtained are shown in the table. 
Combining these results with those of Exercise 15.34, 
carry out the analysis of variance calculations and dis-
cuss your findings.

Text

Examination A B C
Multiple choice 4.7 5.1 4.8

Essays 4.4 4.6 4.0

Mix 4.5 5.3 4.9

KEY WORDS

• interaction, 670
• Kruskal-Wallis test, 658
• mean squares, 651
• one-way analysis of variance, 647
• one-way analysis of variance table, 652
• randomized blocks design, 661
• sums of squares, 650

• sum of squares decomposition for 
one-way analysis of variance, 650

• sum of squares decomposition  
for two-way analysis of variance, 665

• two-way analysis of variance: one 
 observation per cell, randomized 
blocks, 661

• two-way analysis of variance: several 
observations per cell, 672

• two-way analysis of variance table, 
666



 Chapter Exercises and Applications 679

CHAPTER EXERCISES AND APPLICATIONS

 15.52 Carefully distinguish between the one-way analysis of 
variance framework and the two-way analysis of vari-
ance framework. Give examples different from those 
discussed in the text and exercises of business prob-
lems for which each might be appropriate.

 15.53 Carefully explain what is meant by the interaction 
effect in the two-way analysis of variance with more 
than one observation per cell. Give examples of this 
effect in business-related problems.

 15.54 Consider a study to assess the readability of financial re-
port messages. The effectiveness of the written message 
is assessed using a standard procedure. Financial re-
ports were given to independent random samples from 
three groups—certified public accountants, chartered 
financial analysts, and commercial bank loan officer 
trainees. The procedure was then administered, and the 
scores for the sample members were recorded. The null 
hypothesis of interest is that the population mean scores 
for the three groups are identical. Test this hypothesis, 
given the information in the accompanying table.

Source of  
Variation

Sum of  
Squares

Degrees of  
Freedom

Between groups   5,165     2

Within groups 120,802 1,005

Total 125,967 1,007

 15.55 In an experiment designed to assess aids to the success 
of interviews of graduate students carried out by fac-
ulty mentors, interviewers were randomly assigned to 
one of three interview modes—feedback, feedback and 
goal setting, and control. For the feedback mode inter-
viewers had the opportunity to examine and discuss 
their graduate students’ reactions to previous inter-
views. In the feedback-and-goal-setting mode, faculty 
mentors were encouraged to set goals for the forth-
coming interview. For the control group, interviews 
were carried out in the usual way, without feedback 
or goal setting. After the interviews were completed, 
the satisfaction levels of the graduate students with 
the interviews were assessed. For the 45 people in the 
feedback group, the mean satisfaction level was 13.98. 
The 49 people in the feedback-and-goal-setting group 
had a mean satisfaction level of 15.12, whereas the 41 
control group members had a mean satisfaction level 
of 13.07. The F ratio computed from the data was 4.12.

a. Prepare the complete analysis of variance table.
b. Test the null hypothesis that the population mean 

satisfaction levels are the same for all three types 
of interview.

 15.56 A study classified each of 134 lawyers into one of 
four groups based on observation and an interview. 
The 62 lawyers in group A were categorized as hav-
ing high levels of stimulation and support and aver-
age levels of public spirit. The 52 lawyers in group B 
had low stimulation, average support, and high pub-
lic spirit. Group C contained 7 lawyers with average 

stimulation, low support, and low public spirit. The 13 
lawyers in group D were assessed as low on all three 
criteria. Salary levels for these four groups were com-
pared. The sample means were 7.87 for group A, 7.47 
for group B, 5.14 for group C, and 3.69 for group D. 
The F ratio calculated from these data was 25.60.

a. Prepare the complete analysis of variance table.
b. Test the null hypothesis that the population 

mean salaries are the same for lawyers in these 
four groups.

 15.57 In a study to estimate the effects of smoking on routine 
health risk, employees were classified as continuous 
smokers, recent ex-smokers, long-term ex-smokers, 
and those who never smoked. Samples of 96, 34, 86, 
and 206 members of these groups were taken. Sample 
mean numbers of mean health risk rates per month 
were found to be 2.15, 2.21, 1.47, and 1.69, respec-
tively. The F ratio calculated from these data was 2.56.

a. Prepare the complete analysis of variance table.
b. Test the null hypothesis of equality of the four 

population mean health risk rates.

 15.58 Michigan has had restrictions on price advertising for 
wine. However, for a period these restrictions were 
lifted. Data were collected on total wine sales over three 
periods of time—under restricted price advertising, with 
restrictions lifted, and after the re-imposition of restric-
tions. The accompanying table shows sums of squares 
and degrees of freedom. Assuming that the usual re-
quirements for the analysis of variance are met—in par-
ticular, that sample observations are independent of one 
another—test the null hypothesis of equality of popula-
tion mean sales in these three time periods.

Source of  
Variation

Sum of  
Squares

Degrees of  
Freedom

Between groups  11,438.3028  2

Within groups 109,200.0000 15

Total 120,638.3028 17

 15.59 Independent random samples of the selling prices of 
houses in four districts were taken. The selling prices 
(in thousands of dollars) are shown in the accompa-
nying table. Test the null hypothesis that population 
mean selling prices are the same in all four districts.

District A District B District C District D
73 85 97 61

63 59 86 67

89 84 76 84

75 70 78 67

70 80 76 69

 15.60 For the data of Exercise 15.59, use the Kruskal-Wallis 
test to test the null hypothesis that the population 
mean selling prices of houses are the same in the four 
districts.
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 15.61 A study was aimed at assessing the class-schedule 
satisfaction levels, on a scale of 1 (very dissatisfied) 
to 7 (very satisfied), of nontenured faculty who were 
job-sharers, full time, or part-time. For a sample of 25 
job-sharers, the mean satisfaction level was 6.60; for a 
sample of 24 full-time faculty, the mean satisfaction 
level was 5.37; for a sample of 20 part-time faculty, the 
mean satisfaction level was 5.20. The F ratio calculated 
from these data was 6.62.

a. Prepare the complete analysis of variance table.
b. Test the null hypothesis of equality of the three 

population mean satisfaction levels.

 15.62 Consider the one-way analysis of variance setup.

a. Show that the within-groups sum of squares can 
be written as follows:

SSW = a
K

i=1
a
ni

j=1
x2

ij - a
K

i=1
nix

2
 i

b. Show that the between-groups sum of squares can 
be written as follows:

SSG = a
K

i=1
nix

2
 i - nx2

c. Show that the total sum of squares can be written 
as follows:

SST = a
K

i=1
a
ni

j=1
x2

ij - nx2

 15.63 Consider the two-way analysis of variance setup, with 
one observation per cell.

a. Show that the between-groups sum of squares can 
be written as follows:

SSG = H a
K

i=1
x2

i~ - nx2

b. Show that the between-blocks sum of squares can 
be written as follows:

SSB = K a
H

j=1
x2
~j - nx2

c. Show that the total sum of squares can be written 
as follows:

SST = a
K

i=1
a
H

j=1
x2

ij - nx 2

d. Show that the error sum of squares can be written 
as follows:

SSE = a
K

i=1
a
H

j=1
x2

ij - H a
K

i=1
x2

i~ - K a
H

j=1
x2
~j + nx2

 15.64 A survey indicates that soccer supporters can be di-
vided into three spending categories when going to 
a game: high, medium, and low. These values were 
obtained from a sample of 235 people. The sums of 
squares for these levels of spending are given in the 
accompanying table. Complete the analysis of vari-
ance table, and test the null hypothesis that there is no 
difference in spending between supporter groups.

Source of Variation Sum of Squares
Within supporter groups 2,456

Between supporter groups 1,345

Total 3,801

 15.65 Three real estate agents were each asked to assess the 
values of five houses in a neighborhood. The results, 
in thousands of dollars, are given in the table. Prepare 
the analysis of variance table, and test the null hypoth-
esis that population mean valuations are the same for 
the three real estate agents.

Agent

House A B C
1 210 218 226

2 192 190 198

3 183 187 185

4 227 223 237

5 242 240 237

 15.66 Students were classified according to three parental in-
come groups and also according to three possible score 
ranges on the SAT examination. One student was cho-
sen randomly from each of the nine cross-classifications, 
and the grade point averages of those sample members 
at the end of the sophomore year were recorded. The re-
sults are shown in the accompanying table.

Income Group

Sat Score High Moderate Low
Very high 3.7 3.6 3.6

High 3.4 3.5 3.2

Moderate 2.9 2.8 3.0

a. Prepare the analysis of variance table.
b. Test the null hypothesis that the population mean 

grade point averages are the same for all three in-
come groups.

c. Test the null hypothesis that the population mean 
grade point averages are the same for all three SAT 
score groups.

 15.67 For the two-way analysis of variance model with one 
observation per cell, write the observation from the ith 
group and jth block as

Xij = m + Gi + Bj + eij

Refer to Exercise 15.65 and consider the observation 
on agent B and house 1 1x21 = 2182.
a. Estimate m.
b. Estimate and interpret G2.
c. Estimate and interpret B1.
d. Estimate e21.

 15.68 Refer to Exercise 15.66 and consider the observation on 
moderate-income group and high SAT score 1x22 = 3.52.
a. Estimate m.
b. Estimate and interpret G2.
c. Estimate and interpret B2.
d. Estimate e22.
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 15.69 Consider the two-way analysis of variance setup, with 
m observations per cell.

a. Show that the between-groups sum of squares can 
be written as follows:

SSG = Hm a
K

i=1
x2

i~~ - HKmx2

b. Show that the between-blocks sum of squares can 
be written as follows:

SSB = Km a
H

j=1
x2
~j~ - HKmx2

c. Show that the error sum of squares can be written 
as follows:

SSE = a
K

i=1
a
H

j=1
a
m

l=1
x2

ijl - m a
K

i=1
a
H

j=1
x2

ij~

d. Show that the total sum of squares can be written 
as follows:

SST = a
K

i=1
a
H

j=1
a
m

l=1
x2

ijl - HKmx2

e. Show that the interaction sum of squares can be 
written as follows:

SSI = ma
K

i=1
a
H

j=1
x2

ij~ - Hm a
K

i=1
x2

i~~ - Km a
H

j=1
x2
~j~ + HKmx2

 15.70 Purchasing agents were given information about a 
cellular phone system and asked to assess its quality. 
The information given was identical except for two 
factors—price and country of origin. For price there 
were three possibilities: $150, $80, and no price given. 
For country of origin there were also three possibili-
ties: United States, Taiwan, and no country given. Part 
of the analysis of variance table for the quality assess-
ments of the purchasing agents is shown here. Com-
plete the analysis of variance table and provide a full 
analysis of these data.

Source of  
Variation

Sum of  
Squares

Degrees of  
Freedom

Between prices  0.178  2

Between countries  4.365  2

Interaction  1.262  4

Error 93.330 99

 15.71 In the study of Exercise 15.70, information on the cel-
lular phone system was also shown to MBA students. 
Part of the analysis of variance table for their quality 
assessments is shown here. Complete the analysis of 
variance table and provide a full analysis of these data.

Source of  
Variation

Sum of  
Squares

Degrees of  
Freedom

Between prices  0.042  2

Between countries 17.319  2

Interaction  2.235  4

Error 70.414 45

 15.72 Having carried out the study of Exercise 15.66, the 
investigator decided to take a second independent 
random sample of one student from each of the 
nine income–SAT score categories. The grade point 
averages found are given in the accompanying 
table.

Income Group

Sat Score High Moderate Low
Very high 3.9 3.7 3.8

High 3.2 3.6 3.4

Moderate 2.7 3.0 2.8

a. Prepare the analysis of variance table.
b. Test the null hypothesis that the population mean 

grade point averages are the same for all three in-
come groups.

c. Test the null hypothesis that the population mean 
grade point averages are the same for all three SAT 
score groups.

d. Test the null hypothesis of no interaction between 
income group and SAT score.

 15.73 An experiment was carried out to test the effects on 
yields of five varieties of corn and five types of fertil-
izer. For each variety-fertilizer combination, six plots 
were used and the yields recorded, with the results 
shown in the following table:

Variety of Corn

Fertilizer  
Type A B C D E

1 75 77 74 67 93 90 79 83 72 77

79 83 73 65 87 82 87 88 79 83

85 78 79 80 86 88 86 90 78 86

2 80 72 71 69 84 88 77 82 70 75

76 73 75 62 90 79 84 87 80 80

70 74 77 63 83 80 82 83 74 81

3 85 87 76 73 88 94 81 86 77 83

80 79 77 70 89 86 90 90 87 79

87 80 83 80 89 93 87 88 86 88

4 80 79 74 77 86 87 80 77 79 85

82 77 69 78 90 85 90 84 88 80

85 80 74 76 83 88 80 88 87 82

5 75 79 75 80 92 88 82 78 80 87

86 82 84 80 89 94 85 86 90 83 

79 83 72 77 86 90 82 89 86 83

a. Test the null hypothesis that the population 
mean yields are the same for all five varieties 
of corn.

b. Test the null hypothesis that the population 
mean yields are the same for all five brands of 
fertilizer.

c. Test the null hypothesis of no interaction between 
variety and fertilizer.
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Appendix: Mathematical Derivations
1 TOTAL SUM OF SQUARES

 SST = a
K

i=1
a
ni

j- 1
1xij - x22

 = a
K

i=1
a
ni

j- 1
1xij - xi + xi - x22

 = a
K

i=1
a
ni

j- 1
1xij - xi22 + a

K

i=1
a
ni

j- 1
1xi - x22 + 2 a

K

i=1
1xi - x2 ani

j- 1
1xij - xi2

 = a
K

i=1
a
ni

j- 1
1xij - xi22 + a

K

i=1
ni1xi - x22

 SST = SSW + SSG

Note:  a
ni

j=1
1xij - x2 = 0

2 WITHIN-GROUPS MEAN SQUARE (MSW)

For each subgroup i:

 s2 = E
£ ani

j=1
1xij - mi22

ni

§
 = E

£ ani

j=1
1xij - xi + xi - mi22

ni

§
 = E

£ ani

j=1
1xij - xi22

ni

§
+
s2

ni

 
1ni - 12s2

ni
= E
£ ani

j=1
1xij - xi22

ni

§
 sn 2 =

a
ni

j=1
1xij - xi22
ni - 1

Summing over k subgroups:

 sn 2 =
a
K

i=1
a
ni

j=1
1xij - xi22

n - K
=

SSW
n - K

 sn 2 = MSW

3 BETWEEN-GROUPS MEAN SQUARE (MSG)

mi = m  i = 1, c, K
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Then,

 sn 2 = E
£ aKi=1

a
ni

j=1
1xij - x22

n - 1
§

 = E
£ aKi=1

a
ni

j=1
1xij - xi + xi - x22

n - 1
§

 = E
£ aKi=1

a
ni

j=1
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n - 1
+

a
K

i=1
a
ni

j=1
1xi - x22

n - 1
§

 =
1n - K2sn 2

n - 1
+

a
K

i=1
ni 1xi - x22
n - 1

 
1K - 12sn 2

n - 1
=

a
K

i=1
ni 1xi - x22
n - 1

 sn 2 =
a
K

i=1
ni 1xi - x22
K - 1

 sn 2 = MSG =
SSG

K - 1

4 RATIO OF MEAN SQUARES

If

H0 : m1 = m2 = g = mK

is true, then MSG—with 1K - 12 degrees of freedom—is an estimator of s2 and

x2
K- 1 =

1K - 12MSG

s2

In addition, MSW with 1n - K2 degrees is an estimator of s2, and, therefore,

x2
n- K =

1n - K2MSW

s2

Thus,

FK- 1,n- K =

x2
K- 1

K - 1
x2

n- K

n - K

=
MSG
MSW
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Introduction

In this chapter we develop procedures for analyzing data sets that contain 
 measurements over time for various variables. Examples of time-series data 
i nclude monthly product sales and interest rates, quarterly corporate earnings and 
aggregate consumption, and daily closing prices for shares of common stock.
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Forecasting with  
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Time Series
A time series is a set of measurements, ordered over time, on a particular quantity of 
interest. In a time series, the sequence of the observations is important, in contrast to 
cross-section data for which the sequence of observations is not important.

Time-series data typically possess special characteristics—associated with 
the sequence of the observations—that necessitate the development of special 
statistical analysis methods. Virtually all the procedures of data analysis and in-
ference that we have developed are based on the assumption that samples are 
random—in particular, that the observation’s errors are independent. Only very 
rarely will the assumption of independence be realistic for time-series data. For 
example, consider a series of monthly sales for a manufactured product and 
note possible reasons for lack of independence. If sales were higher than aver-
age last month, then it is reasonable to expect that high sales will continue be-
cause the strong underlying economic and business conditions are not likely 
to change abruptly. Thus, we can expect similarity in sales during  adjacent 
months. We also note that sales of many products have a seasonal pattern—
shorts and swimsuits have higher sales in spring and early summer compared 
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to winter. Many retail stores have peak sales during the fourth quarter be-
cause of holiday gift purchases. These and many other examples establish 
the case for lack of independence.

The lack of independence between time-series observations leads to  serious 
problems if conventional statistical procedures—which assume  independence—
are used with time-series data. We saw the problem in Section 13.7 when 
 examining the problems of using conventional regression procedures when the 
errors are correlated between observations. The independence assumption is 
crucial, and other serious problems can occur if conventional procedures are 
used when the observations are dependent. In this chapter we focus on exam-
ining time-series analysis procedures that apply to a single time series. In par-
ticular there are many situations in which we want to forecast  future values of 
the series. Forecasting is a major objective of this chapter. 

We have considered the negative aspect of the kinds of dependency pat-
terns likely to occur in time-series data. These are real problems and require 
special procedures. However, this dependency can also be exploited to pro-
duce lower-variance forecasts of future time-series values. For example, if there 
is a correlation between adjacent-month errors in a retail series, then that cor-
relation can be used to provide a better forecast for the next month compared 
to a forecast based on a random sample. We will develop procedures based on 
the assumption that past patterns of relationship between measurements in a 
time series will continue into the future and can be used for forecasting—this is 
rather like arguing that we can, in fact, learn from a study of history.

The important assumption that enables us to forecast using the methods 
that follow is that the relationships between variables continue into the fu-
ture. Thus, if there is a correlation between observations that are separated 
by one or more places, we assume that correlation continues. If the mean 
levels increase, decrease, or stay the same, we assume that pattern contin-
ues. However, it is certainly possible that the pattern will not continue into 
the future. A war or major disaster may occur. Unanticipated “bubbles” may 
not be recognized, such as the housing price bubble that occurred in 2005 
and resulted from poor business behavior that was not part of the previous 
historical pattern. Thus, the economic forecaster in applied situations needs 
to be aware of the broader issues beyond the particular series that is being 
forecast. Unusual situations—such as “Black Swans”—do occur. 

16.1 COMPONENTS OF A TIME SERIES

As a first step, in Sections 16.1 through 16.3 we develop some descriptive procedures for 
analyzing time-series data. The series of interest is denoted by X1, X2, c, Xn, and at time 
t the series value is Xt.

A standard model for the behavior of time series identifies various components of the 
series. Traditionally, four components are represented, at least in part, in most time series:

 1. Trend component
 2. Seasonality component
 3. Cyclical component
 4. Irregular component

Many time series exhibit a tendency to grow or decrease rather steadily over long 
periods of time, indicating a trend component. For example, measures of national wealth, 
such as gross domestic product, have typically grown over time. Trends often hold up 
over time, and, when they do, this provides an important component for developing fore-
casts. Figure 16.1 shows the time series for quarterly gross domestic product for more 
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Figure 16.1 Gross Domestic Product by Quarter Indicating a Trend 

than 60 years, from the data file Macro2010. This pattern clearly shows a strong upward-
trend component that is stronger in some periods than in others. This time plot reveals a 
major trend component that is important for initial analysis and is usually followed by 
more sophisticated analyses, as we show in future sections.

Another important component is the seasonal pattern. Figure 16.2 shows quarterly 
earnings per share of a corporation. The fourth-quarter earnings are substantially higher, 
and the second-quarter earnings are somewhat higher compared to the other periods. 
Note how this pattern continues to repeat over the four-quarter cycle representing each 
year. In addition to the seasonality component, there is also a noticeable upward trend in 
earnings per share. Our treatment of seasonality depends on our objectives. For example, 
if it is important to forecast each quarter as precisely as possible, then we include a sea-
sonality component in our model. In Section 13.2, for instance, we showed how dummy 
variables can be used to estimate a seasonality component in a time series. Thus, if we 
anticipate that the seasonality pattern will continue, then the estimation of the seasonality 
component must be included in our forecasting model.

For some other purposes, seasonality can be a nuisance. In many applications the analyst 
requires an assessment of overall movements in a time series, uncontaminated by the influ-
ence of seasonal factors. For instance, suppose that we have just received the most recent 
fourth-quarter earnings figures of the corporation in Figure 16.2. We already know that these 
will very likely probably be a good deal higher than those of the previous quarter. What we 
would like to do is assess how much of this increase in earnings is due to purely seasonal fac-
tors and how much represents real underlying growth. In other words, we would like to pro-
duce a time series free from seasonal influence. Such a series is said to be seasonally adjusted. 
We will say a little more about seasonal adjustment in Section 16.2.

Seasonal patterns in a time series constitute one form of regular, oscillatory  behavior. 
In addition, many business and economic time series exhibit oscillatory or cyclical 
 patterns not related to seasonal behavior. For example, many economic series follow 
 business cycle patterns of upswings and downswings. Figure 16.3 shows a cyclical 
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Figure 16.2 Revised Quarterly Earnings per Share of a Corporation Indicating 
a Seasonality Component

Figure 16.3 Shiller Home Price Index Indicating Cyclical Behavior



688 Chapter 16 Forecasting with Time-Series Models 

pattern for the Shiller home price index, going back to 1890. In the early part of the 20th 
century there were numerous cycles, followed by a major drop and then various cycles 
during the 1920s and 1930s. After a large increase during World War II, we saw a de-
crease in sales to a trough in 1949, followed by an upswing to a peak in the mid-1950s, 
and, thereafter, a slow steady decline. The most dramatic change began in the late 1990s 
and led to the housing bubble, which finally started to collapse in 2007, contributing sub-
stantially to the largest major recession since the 1930s. Those who correctly predicted 
the bubble  collapse and took appropriate action experienced significant gains. However, 
most investors and homeowners did not, and there were major losses by large invest-
ment banking firms. This pattern is a common business-cycle time series, and we can 
describe historical behavior by cyclical movements. However, we are not suggesting that 
there is sufficient regularity in such historical patterns to allow the reliable prediction of 
future peaks and troughs—as we have seen in our recent history. Indeed, the available 
evidence suggests that this is not the case.

We have discussed three sources of variability in a time series. If we could characterize time 
series primarily in terms of trend, seasonal, and cyclical components, then the series would 
vary smoothly over time, and forecasts could be made using these components. However, 
 actual data do not behave in that way. In addition to the major components, the series will 
exhibit  irregular components, induced by a multitude of factors influencing the behavior of 
any actual series and exhibiting patterns that look rather unpredictable on the basis of past 
 experience. These patterns can be thought of as similar to the random error term in a regression 
model. In all of the component examples that we have plotted so far, we can see the irregular 
component clearly on top of the structural components.

Time-Series Component Analysis
A time series can be described by models based on the following components:

Tt Trend component
St Seasonality component
Ct Cyclical component
It Irregular component

Using these components, we can define a time series as the sum of its compo-
nents or as an additive model:

Xt = Tt + St + Ct + It

Alternatively, in other circumstances we might define a time series as the 
product of its components or as a multiplicative model—often represented as 
a logarithmic additive model:

 Xt = TtStCtIt

 ln1Xt2 = ln1Tt2 + ln1St2 + ln1Ct2 + ln1It2
We do not have to restrict ourselves to these two structural forms. For example, 
in some cases we might have a combination of additive and multiplicative forms.

Much of the early work in time-series analysis concentrated on the isolation of the 
individual components from a series. Thus, at any point in time, the series value could be 
expressed as a function of the components. Often this approach was achieved by the use 
of moving averages, as we discuss in the next two sections. This approach has been re-
placed in large part by more modern approaches. An exception is the problem of seasonal 
adjustment, which requires the extraction of the seasonality component from the series, 
which we discuss in Section 16.2.

The more modern approach to time-series analysis involves the construction of a for-
mal model, in which various components are either explicitly or implicitly present, to 
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describe the behavior of a data series. In model building there are two possible treat-
ments of series components. One is to regard them as being fixed over time, so that, for 
example, a trend might be represented by a straight line. This approach is often valuable 
in the analysis of physical data but is far less appropriate in business and economic ap-
plications, where experience suggests that any apparently fixed effects are all too often il-
lusory on closer examination. To illustrate the point, suppose that we consider the Shiller 
home price index data for only the years 1946–2010. We see in Figure 16.3 that over the 
period 1950 through 1990, there appears to be a slow upward trend with a number of cy-
cles, especially toward the later part of this period. However, had this “trend” been pro-
jected forward a few years, the resulting forecasts of future sales would have been highly 
inaccurate—the bubble would have been missed. It is only when we look at the picture 
in future years that we see just how inappropriate a fixed-trend model would have been.

For business and economic data another treatment of the regular components of a 
time series is preferable. Rather than regarding them as being fixed for all time, it is gener-
ally more sensible to think of them as steadily evolving over time. Thus, we need not be 
committed to fixed trend or seasonal patterns but can allow for the possibility that these 
components change with time. Models of this sort are considered after we have looked at 
moving averages. Finally, it is important to note that looking at time series plots such as 
those in Figures 16.1–16.3 can provide valuable insights into time-related changes. 

EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

Application Exercises
16.1 The data file Housing Starts shows private 

housing units started per thousand of popula-
tion in the United States over a period of 24 years. Use 
a computer to prepare a time plot of this series and 

comment on the components of the series revealed by 
this plot.

 16.2 The data file Earnings per Share shows earn-
ings per share of a corporation over a period of 

28 years.
Use a computer to prepare a time plot of this 

series and comment on the components of the series 
revealed by this plot.

16.2 MOVING AVERAGES

The irregular component in some time series may be so large that it obscures any underly-
ing component effects; thus, any visual interpretation of the time plot is very difficult. In 
these circumstances the actual plot will appear rather jagged, and we may want to smooth 
it to achieve a clearer picture. We can smooth the series by using a moving average.

The method of moving averages utilizes the idea that any large irregular component at 
any point in time will exert a smaller effect if we average the point with its immediate neigh-
bors. The simplest procedure we can use is a simple, centered 12m + 12-point moving aver-
age. That is, we replace each observation xt by the average of itself and its neighbors, as follows:

 x*t =
1

2m + 1
 a

m

j= - m
xt + j

 =
xt - m + xt - m+ 1 + g + xt + g + xt + m- 1 + xt + m

2m + 1

For example, if we set m at 2, the 5-point moving average is 

x*t =
xt - 2 + xt - 1 + xt + xt + 1 + xt + 2

5

Since the first observation is x1, the first moving average term is

x*3 =
x1 + x2 + x3 + x4 + x5

5
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This is the average of the first five observations. For the Shiller home price index data in 
Table 16.1, we have, for 1948,

x*3 =
106.5 + 109.3 + 101.2 + 100.0 + 105.9

5
= 104.6

Similarly, x*4 for 1949 is the average of the second through the sixth observations, and so 
on. Table 16.1 gives the original and smoothed series. Notice that for centered moving 
averages, we lose the first m and last m observations. Thus, while the original series runs 
from 1946 through 2010, the smoothed series goes from 1948 through 2008.

Table 16.1 Shiller Real Home Price Index with the Simple Centered 5-Point Moving Average

 
Year

Shiller Real  
Home Price Index

Moving Average  
5-Point Centered

 
Year

Shiller Real 
Home Price Index

Moving Average  
5 Point Centered

1946 106.5 1979 122.1 115.2

1947 109.3 1980 117.1 114.7

1948 101.2 104.6 1981 110.8 112.7

1949 100.0 104.1 1982 107.3 109.4

1950 105.9 103.0 1983 106.1 107.6

1951 103.9 105.7 1984 105.9 107.6

1952 104.0 108.5 1985 107.7 110.0

1953 114.7 110.4 1986 111.2 113.3

1954 114.2 112.7 1987 118.9 117.6

1955 115.5 115.0 1988 122.8 121.4

1956 115.3 114.6 1989 127.5 122.4

1957 115.1 113.9 1990 126.5 121.6

1958 112.7 112.9 1991 116.3 119.3

1959 111.0 111.7 1992 114.7 116.1

1960 110.5 110.6 1993 111.3 112.8

1961 109.2 109.9 1994 111.5 111.5

1962 109.7 109.1 1995 110.3 110.5

1963 109.4 109.0 1996 109.9 110.9

1964 107.0 109.0 1997 109.6 112.5

1965 109.7 108.5 1998 113.1 115.7

1966 109.4 107.9 1999 119.5 120.3

1967 107.2 108.3 2000 126.3 126.8

1968 106.4 108.4 2001 133.0 134.8

1969 108.6 108.7 2002 142.0 144.6

1970 110.4 109.5 2003 153.1 157.1

1971 110.7 110.2 2004 168.4 171.1

1972 111.6 110.1 2005 189.1 179.8

1973 109.9 109.8 2006 202.8 179.1

1974 108.1 108.8 2007 185.5 172.2

1975 108.6 108.3 2008 149.7 160.3

1976 105.7 109.6 2009 133.6 *

1977 109.4 112.4 2010 129.7 *

1978 116.3 114.1
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A moving average can be generated using Minitab, as shown in Figure 16.4. We see 
both the original series and the smoothed series—the 5-point moving average series—
plotted versus time. As we can see, the moving average series is, indeed, smoother than 
the original series. Thus, the moving average series has removed the underlying irregular 
component from the series to reveal the structural components more clearly.

Simple Centered (2m � 1)-Point Moving Averages
Let x1, x2, x3, c, xn be n observations on a time series of interest. A smoothed 
series can be obtained by using a simple centered 12m + 12-point moving 
average:

 x*t =
1

2m + 1
 a

m

j= - m
xt + j  1t = m + 1, m + 2, c , n - m2 (16.1)

Figure 16.4 Simple Centered 5-Point Moving Average of Shiller Home Price Index Data

The kind of moving average discussed in this section is just one of many that might 
have been used. It is often deemed desirable to use a weighted average, in which most 
weight is given to the central observation, with weights for other values decreasing as 
their distance from the central observation increases. For example, we might use a 
weighted average such as

x*t =
xt - 2 + 2xt - 1 + 4xt + 2xt + 1 + xt + 2

10

In any event, the objective in using moving averages remains the smoothing out of 
the irregular component in order to allow us to form a clearer picture of the underlying 
irregularities in a time series. The technique is perhaps of most value for descriptive pur-
poses, in the production of graphs such as Figure 16.4.
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Extraction of the Seasonal Component Through Moving Averages

We now move to develop a procedure for using moving averages to extract seasonal com-
ponents from business and economic series. Seasonal components can be a nuisance, and 
the analyst may want to remove them from the series to obtain a keener appreciation of 
the behavior of other components. Recall also that in Section 13.2 we showed how dummy 
variables could be used to estimate and control seasonal effects.

Consider a quarterly time series with a seasonal component. Our strategy to remove 
seasonality will be to produce four-period moving averages so that the various seasonal 
values are brought together in a single seasonal moving average. For example, using the 
earnings-per-share data in Table 16.2, the first member of the series is

0.300 + 0.460 + 0.345 + 0.910
4

= 0.50375

and the second member is

0.460 + 0.345 + 0.910 + 0.330
4

= 0.51125

The complete series is shown in Table 16.2.

Table 16.2
Actual Earnings per 
Share of a Corpora-
tion and Centered 
4-Point Moving 
 Average

Year  
Quarter

 
Earnings

4-Point Moving 
Averages

Centered 4-Point 
Moving Averages

1.1 0.3 * *
1.2 0.46 * *
1.3 0.345 0.50375 0.5075
1.4 0.91 0.51125 0.5219
2.1 0.33 0.53250 0.5444
2.2 0.545 0.55625 0.5725
2.3 0.44 0.58875 0.6094
2.4 1.04 0.63000 0.6469
3.1 0.495 0.66375 0.6769
3.2 0.68 0.69000 0.7206
3.3 0.545 0.75125 0.7581
3.4 1.285 0.76500 0.7888
4.1 0.55 0.81250 0.8269
4.2 0.87 0.84125 0.8781
4.3 0.66 0.91500 0.9200
4.4 1.58 0.92500 0.9400
5.1 0.59 0.95500 0.9763
5.2 0.99 0.99750 1.0163
5.3 0.83 1.03500 1.0375
5.4 1.73 1.04000 1.0475
6.1 0.61 1.05500 1.0663
6.2 1.05 1.07750 1.1163
6.3 0.92 1.15500 1.1663
6.4 2.04 1.17750 1.2000
7.1 0.7 1.22250 1.2400
7.2 1.23 1.25750 1.2925
7.3 1.06 1.32750 1.3425
7.4 2.32 1.35750 1.3800
8.1 0.82 1.40250 1.4263
8.2 1.41 1.45000 1.5013
8.3 1.25 1.55250 *
8.4 2.73 * *
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This new series of moving averages should be free from seasonality, but there is still 
a problem. The location in time of the members of the series of moving averages does not 
correspond precisely with that of the members of the original series. The first term is the 
average of the first four observations, and, thus, we might regard it as being centered 
between the second and third observations:

x*2.5 =
x1 + x2 + x3 + x4

4

Similarly, the second term could be written as follows:

x*3.5 =
x2 + x3 + x4 + x5

4

This problem can be overcome by centering our series of 4-point moving averages. 
This can be done by calculating the averages of adjacent pairs, which for the first value is 

x*3 =
x*2.5 + x*3.5

2
=

0.50375 + 0.51125
2

= 0.5075

This value is the centered moving average corresponding to the third observation of the 
original series. The remainder of the series of centered moving averages is in the final col-
umn of Table 16.2. Note again that this procedure results in the loss of two observations 
from each end of the series.

The series of centered moving averages is plotted in Figure 16.5, along with the origi-
nal series. Clearly, the seasonality component has been removed. In  addition, because we 
have used moving averages, the irregular component has also been smoothed. The result-
ing picture thus allows us to judge the nonseasonal regularities in the data. We see that 
the smoothed series is dominated by an upward trend. Closer examination reveals steady 
earnings growth in the early part of the series, a central portion of rather slower growth, 
and resumption in the last part of the period of a pattern similar to the early one.

Figure 16.5 Centered 4-Point Moving Averages and Original Series for Earnings per Share 
of a Corporation
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A Simple Moving Average Procedure for Seasonal 
Adjustment
Let xt 1t = 1, 2, c , n2 be a seasonal time series of period s (s = 4 for quarterly 
data and s = 12 for monthly data). A centered s-point moving average series, 
x*t , is obtained through the following steps, where it is assumed that s is even:

1. Form the s-point moving averages:

 x*t + 0.5 =
a
s /2

j= -1s >  22+ 1
xt + j

s
  at =

s
2

, 
s
2

+ 1, c , n -
s
2
b  (16.2)

2. Form the centered s-point moving averages:

 x*t =
x*t - 0.5 + x*t + 0.5

2
 at =

s
2

+ 1, 
s
2

+ 2, c , n -
s
2
b  (16.3)

We have seen that the series of centered s-point moving averages can be a use-
ful tool for gaining descriptive insight into the structure of a time series. Since it is 
largely free from seasonality and embodies a smoothing of the irregular component, 
it is well suited for the identification of a trend and/or cyclical component. This 
 series of moving averages also forms the basis for many practical seasonal adjust-
ment procedures. The specific procedure depends on a number of factors, including 
the amount of stability one assumes in the seasonal pattern and whether seasonality 
is viewed as additive or multiplicative. In the latter case we often take logarithms of 
the data.

Next, we discuss a seasonal-adjustment approach that is based on the implicit as-
sumption of a stable seasonal pattern over time. The procedure is known as the seasonal 
index method. We assume that for any month or quarter in each year, the effect of sea-
sonality is to increase or decrease the series by the same percentage.

We illustrate the seasonal index method using the corporate earnings data. The 
seasonally adjusted series is computed in Table 16.3. The first two columns contain 
the original series and the centered 4-point moving average. To assess the influence 
of seasonality, we express the original series as a percentage of the centered 4-point 
moving average series. Thus, for example, for the third quarter of year 1, we have the 
following:

100ax3

x*3
b = 100a 0.345

0.5075
b = 67.98

These percentages are also entered into Table 16.4, where the calculation of the seasonal 
index is shown. To assess the effect of seasonality in the first quarter, we find the median 
of the seven percentages for that quarter. This is the fourth value when they are arranged 
in ascending order—that is, 60.43. In a similar way we find the median of xt as a percent-
age of x*t  for each of the other quarters.

Year 
Quarter xt x*t

100a xt

x*t
b Seasonal  

Index
Adjusted  

Series

1.1 0.300*    61.06 0.4913

1.2 0.460*    96.15 0.4784

1.3 0.345 0.5075  67.98  72.95 0.4729

1.4 0.910 0.5219 174.36 169.84 0.5358

Table 16.3
Seasonal Adjustment 
of Earnings per Share 
of a Corporation by 
the Seasonal Index 
Method

(continued)
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Year 
Quarter xt x*t

100a xt

x*t
b Seasonal  

Index
Adjusted  

Series

2.1 0.330 0.5444  60.62  61.06 0.5405

2.2 0.545 0.5725  95.20  96.15 0.5668

2.3 0.440 0.6094  72.20  72.95 0.6032

2.4 1.040 0.6469 160.77 169.84 0.6123

3.1 0.495 0.6769  73.13  61.06 0.8107

3.2 0.680 0.7206  94.37  96.15 0.7072

3.3 0.545 0.7581  71.89  72.95 0.7471

3.4 1.285 0.7888 162.91 169.84 0.7566

4.1 0.550 0.8269  66.51  61.06 0.9008

4.2 0.870 0.8781  99.08  96.15 0.9048

4.3 0.660 0.9200  71.74  72.95 0.9047

4.4 1.580 0.9400 168.09 169.84 0.9303

5.1 0.590 0.9763  60.43  61.06 0.9663

5.2 0.990 1.0163  97.41  96.15 1.0296

5.3 0.830 1.0375  80.00  72.95 1.1378

5.4 1.730 1.0475 165.16 169.84 1.0186

6.1 0.610 1.0663  57.21  61.06 0.9990

6.2 1.050 1.1163  94.06  96.15 1.0920

6.3 0.920 1.1663  78.88  72.95 1.2611

6.4 2.040 1.2000 170.00 169.84 1.2011

7.1 0.700 1.2400  56.45  61.06 1.1464

7.2 1.230 1.2925  95.16  96.15 1.2793

7.3 1.060 1.3425  78.96  72.95 1.4531

7.4 2.320 1.3800 168.12 169.84 1.3660

8.1 0.820 1.4263  57.49  61.06 1.3429

8.2 1.410 1.5013  93.92  96.15 1.4665

8.3 1.250*    72.95 1.7135

8.4 2.730*   169.84 1.6074

Table 16.3  
(continued)

Table 16.4
Calculation of  Seasonal 
Index for Earnings 
per Share Data of a 
Corporation

Quarter

Year 1 2 3 4 Sums

1   67.98 174.36  

2 60.62 95.20 72.20 160.77  

3 73.13 94.37 71.89 162.91  

4 66.51 99.08 71.74 168.09  

5 60.43 97.41 80.00 165.16  

6 57.21 94.06 78.88 170.00  

7 56.45 95.16 78.96 168.12  

8 57.49 93.92    

Median 60.43 95.16 72.20 168.09 395.88

Seasonal index 61.06 96.15 72.95 169.84 400
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To obtain seasonal indices, we also adjust the indices so that their average is 100. 
In Table 16.4, we see that the four medians sum only to 395.88. We can obtain the final 
indices—that have a mean of 100—by multiplying each median by (400/395.88). For the 
first quarter we have

seasonal index = 60.43a 400
395.88

b = 61.06

We interpret this figure as estimating that the effect of seasonality is to lower first-quarter 
earnings to 61.06% of what they would have been in the absence of seasonal factors.

The seasonal indices, from the last row of Table 16.4, are entered in the fifth column 
of Table 16.3. Notice that the same index is used for any particular quarter in every year. 
Finally, we obtain our seasonally adjusted value:

adjusted value = original valuea 100
seasonal index

b
For example, for the third quarter of year 1 the seasonally adjusted value is 

0.345a 100
72.95

b = 0.4729

The complete seasonally adjusted series obtained in this way is given in the final col-
umn of Table 16.3 and graphed in Figure 16.6. Notice that there is a suggestion of a little 
remaining seasonality in the latter part of the period. This suggests that a more elaborate 
approach, allowing for changing seasonal patterns, may be desirable.

Figure 16.6

Seasonally Adjusted 
Earnings per Share 
of a Corporation
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The seasonal-index method presented here provides one simple solution to the index 
problem. Many important time series—such as gross domestic product and its compo-
nents, employment and unemployment, prices, and wages—have strong seasonal com-
ponents. Generally, data on such quantities are published by government agencies in 
both unadjusted and adjusted forms. Although they are more complex than the method 
described here, official adjustment procedures are typically based on moving averages. 
The seasonal-adjustment procedure most commonly employed in official U.S. govern-
ment publications is the Census X-11 method. It differs from the seasonal-index method 
in allowing for a steadily evolving seasonal pattern over time. It can be shown that in its 
additive version of X-11 estimates the seasonal component of a monthly time series to a 
close approximation by

St =
zt - 36 + 2zt - 24 + 3zt - 12 + 3zt + 3zt + 12 + 2zt + 24 + zt + 36

15

where

zt = xt - x* t
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with xt the original value of the series at time t and x*t  the corresponding centered 12-point 
moving average. Of course, if such a procedure is used, some special treatment is needed 
for values toward the end of the series because the expression for the seasonal factor in-
volves values in the time series that have not yet occurred. A possible way of accomplish-
ing this is to replace unknown future values of a series in the moving average by forecasts 
based on the available data.

EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

Application Exercises
16.3 The data file Fargo Electronics Earnings shows 

quarterly sales of a corporation over a period of 
6 years.

a. Draw a time plot of this series and discuss its 
features.

b. Use the seasonal-index method to seasonally adjust 
this series. Graph the seasonally adjusted series and 
discuss its features.

 16.4 The data file Fargo Electronics Sales shows 
quarterly sales of a corporation over a period of 

6 years.

a. Draw a time plot of this series and discuss its 
features.

b. Use the seasonal-index method to seasonally adjust 
this series. Graph the seasonally adjusted series and 
discuss its features.

 16.5 The data file Gold Price shows the year-end 
price of gold (in dollars) over 14 consecutive 

years. Compute a simple, centered 3-point moving 
 average series for the gold price data. Plot the 
smoothed series and discuss the resulting graph.

 16.6 The data file Housing Starts shows private 
housing units started per thousand of popula-

tion in the United States over a period of 24 years. 
Compute a simple, centered 5-point moving average 
series for the housing starts data. Draw a time plot of 
the smoothed series and comment on your results.

 16.7 The data file Earnings per Share shows earn-
ings per share of a corporation over a period of 

28 years. Compute a simple, centered 7-point moving 
average series for the corporate earnings data. Based 

on a time plot of the smoothed series, what can be said 
about its regular components?

 16.8 Let

x*t =
1

2m + 1
 a

m

j= - m
xt + j

be a simple, centered 12m + 12-point moving aver-
age. Show that

x*t + 1 = x*t  
xt + m+ 1 - xt - m

2m + 1

How might this result be used in the efficient compu-
tation of series of centered moving averages?

 16.9 The data file Acme LLC Earnings per Share 
shows earnings per share of a corporation over 

a period of 7 years.

a. Draw a time plot of these data. Does your graph 
suggest the presence of a strong seasonal compo-
nent in this earnings series?

b. Using the seasonal index method, obtain a season-
ally adjusted earnings series. Graph this series and 
comment on its behavior.

 16.10 a.  Show that the centered s-point moving average se-
ries of Section 16.2 can be written as follows:

x*t =
xt -1s >  22 + 21xt - (s >  22+ 1 + g + xt +1s >  22- 1) + xt +1s >  22

2s

b. Show that

x*t + 1 = x*t +
xt +1s >  22+ 1 + xt +1s >  22 - xt -1s >  22+ 1 - xt -1s >  22

2s

Discuss the computational advantages of this formula 
in the seasonal adjustment of monthly time series.

16.3 EXPONENTIAL SMOOTHING

We now examine some procedures for using the current and past values of a time series 
to forecast future values of the series. This easily stated problem can be very difficult to 
resolve satisfactorily. A vast array of forecasting methods are in common use, and, to a 
great extent, the eventual choice will be problem specific, depending on the resources and 
objectives of the analyst and the nature of the available data.

Our aim is to use the available observations, x1, x2, c, xn, of a series to predict the 
unknown future values xt+1, xt+2, c. Forecasting is of crucial importance in the business 
environment as a rational basis for decision making. For example, monthly product sales 
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are predicted as a basis for inventory-control policy. Forecasts of future earnings are used 
when making investment decisions.

In this section we introduce a forecasting method known as simple exponential 
smoothing, which performs quite effectively in a number of forecasting applications. In 
addition, it forms the basis for some more elaborate forecasting methods. Exponential 
smoothing is appropriate when the series is nonseasonal and has no consistent upward or 
downward trend.

In the absence of trend and seasonality, the objective is to estimate the current level of 
the time series and then use this estimate to forecast future values. Our position is that we 
are standing at time t, we are looking back on the series of observations xt, xt-1, xt-2, c, 
and we want to make a forecast of future values based on the history that we know. As a 
prelude, we consider two extreme possibilities. First, we might simply use the most recent 
observation to forecast all future observations. In some cases, such as prices in speculative 
markets, this may be the best we can do, but the result is often not very successful. How-
ever, in many series with irregular components, we would probably want to use a number 
of previous observations in the series. This would identify any patterns that might exist 
in the time series and avoid using only a random fluctuation as the basis of our forecast.

At the opposite extreme, we might use the average of all past values as our estimate 
of the current level. A moment's reflection suggests that often this would not be useful 
because all past values would be treated equally. Thus, for example, if we tried to predict 
future sales by this procedure, we would be assigning equal importance to sales many 
years ago and to recent sales. It seems reasonable that more recent experience should have 
a greater impact on our forecast.

Simple exponential smoothing allows a compromise between these extremes, providing 
a forecast based on a weighted average of current and past values. In forming this average, 
most weight is given to the most recent observation, rather less to the immediately preced-
ing value, less to the one before that, and so on. We estimate the level at the current time t by

xnt = axt + a11 - a2xt - 1 + a11 - a22 xt - 2 + g

where a is a number between 0 and 1. For example, with a = 0.5, the forecast of future 
observations is

xnt = .5xt + .25xt - 1 + .125xt - 2 + g

so that a weighted average, with declining weights, is applied to current and past obser-
vations in computing the forecasts.

From this model we see that the forecast of the series at any time t is estimated by

xnt = axt + a11 - a2xt - 1 + a11 - a22 xt - 2 + g

and, similarly, the level at the previous time period 1t - 12 is estimated by

xnt - 1 = axt - 1 + a11 - a2xt - 2 + a11 - a22 xt - 3 + g

Multiplying through by 1 - a, we have the following:11 - a2xnt - 1 = a11 - a2xt - 1 + a11 - a22 xt - 2 + a11 - a23 xt - 3 + g

Hence, on subtracting these two equations, we obtain 

xnt - 11 - a2xnt - 1 = axt

And by simple manipulation, we have the equation for computing the simple exponential 
smoothing forecast:

xnt = 11 - a2 xnt - 1 + axt  for 0 6 a 6 1

This provides a convenient recursive algorithm for calculating forecasts. The forecast value, 
xnt, at time t is a weighted average of the previous period forecast xnt-1 and the latest ob-
servation xt. The weights given to each depend on the choice of a, which is defined as the 
smoothing constant. Note that a small value of a gives greater weight to xnt-1, which is based 
on the past history of the series, and less weight to xt, which represents the most recent data.
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We can illustrate the procedure using the Shiller home price index data shown in Table 16.1 
with a value of a = 0.6. The process begins by setting the first element of the series:

xn1 = x1 = 106.5

The second value in the forecast is then

 xn2 = .4xn1 + .6x2

 = 1 .421106.52 + 1 .621109.32 = 108.2

This process continues through the series so that

 xn3 = .4xn2 + .6x3

 = 1 .421108.22 + 1 .621101.22 = 104.0

Forecasting Through Simple Exponential Smoothing
Let x1, x2, c, xn be a set of observations on a nonseasonal time series with no 
consistent upward or downward trend. Forecasting though simple  exponential 
smoothing then proceeds as follows:

1. We obtain the smoothed series xnt, as

xn1 = x1

 xnt = 11 - a2xnt - 1 + axt   10 6 a 6 1; t = 2, 3, c, n2 (16.4)

 where a is a smoothing constant whose value is fixed between 0 and 1.
2. Standing at time n, we obtain forecasts of future values, xn +h, of the 

series by

xnn+ h = xnn  1h = 1, 2, 3, c 2
So far we have said little about the choice of the smoothing constant, a, in practical 

applications. In applications this choice may be based on either subjective or objective 
grounds. One possibility is to rely on experience or judgment. For instance, an analyst 
who wants to predict product demand may have had considerable experience in working 
with data on similar product lines and may use that experience to select an appropriate a. 
Visual inspection of a graph of the available data can also be useful in suggesting an ap-
propriate value for the smoothing constant. If the series appears to contain a substantial 
irregular element, we do not want to give too much weight to the most recent observation 
alone since it might not indicate what we expect in the future. This would suggest a rela-
tively low value for the smoothing constant, a. But if the series is rather smooth, we would 
use a higher value for a in order to give more weight to the most recent observation.

A more objective approach is to try several different values and see which would have 
been most successful in predicting historical movements in the time series. We might, for 
example, compute the smoothed series at values of a of 0.8, 0.6, 0.4, and 0.2 and choose 
the value that provides the best forecast in the historical series. We would compute the er-
ror for each forecast as follows:

et = xt - xnt - 1

One possibility is to compute, for each trial value of a, the sum of squared forecast errors:

SS = a
n

t=2
e2

 t = a
n

t=2
1xt - xnt - 122

The value of a that minimizes the sum of squared forecast errors will be used for 
future predictions. Simple exponential smoothing can be performed using Minitab. 
Figure 16.7 shows a plot for the Shiller home price index of the original and smoothed 
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series using a = 0.9, which was established by trying different values and finding the 
value that provided a satisfactory fit.

Whatever value of the smoothing constant is used, Equation 16.4 can be regarded as 
an updating mechanism. At time 1t - 12 the level of the series is estimated by xnt -1. Then, 
in the next period, the new observation xt is used to update this estimate so that the new 
estimate of level is a weighted average of the previous estimate and the new observation.

The Holt-Winters Exponential Smoothing Forecasting Model

Many business forecasting procedures are based on extensions of simple exponential 
smoothing. The Holt-Winters exponential smoothing procedure allows for trend, and 
possibly also seasonality, in a time series.

First, we consider a nonseasonal time series. We want to estimate not only the current 
level of the series but also the trend—regarded as the difference between the current level 
and the preceding level.

We denote xt as the observed value and xnt as the estimate of the level. The trend  estimate 
is represented as Tt. The principle behind the estimation of these two quantities is much the 
same as in the simple exponential smoothing algorithm. The two estimating equations are

 xnt = 11 - a21xnt - 1 + Tt - 12 + axt   10 6 a 6 12
 Tt = 11 - b2Tt - 1 + b1xnt - xnt - 12   10 6 b 6 12

where a and b are smoothing constants whose values are set between 0 and 1.
Comparable to simple exponential smoothing, the Holt-Winters procedure uses these 

equations to update previous estimates using a new observation. The estimate of level 
xnt-1 made at time 1t - 12, taken in conjunction with the trend estimate, Tt-1, suggests for 
time t a level 1xnt-1 + Tt-12. This estimate is modified, in light of the new observation, xt, 
to obtain an updated estimate of level, xnt, using the given equation.

Figure 16.7 Shiller Home Price Index with Original and Simple Exponential Smoothing Values
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Similarly, trend at time 1t - 12 is estimated as Tt-1. However, once the new observa-
tion, xt, is available, an estimate of trend is suggested as the difference between the two most 
recent estimates of level. The trend estimate at time t is then the weighted average as given.

We begin the computations by setting the following:

T2 = x2 - x1  and  xn2 = x2

Then, the previous equations are applied, in turn, for t = 3, 4, c, n. We demonstrate 
these calculations in Example 16.1. The entire procedure is summarized next.

Forecasting with the Holt-Winters Method: 
Nonseasonal Series
Let x1, x2, c, xn be a set of observations on a nonseasonal time series. 
Forecasting with the Holt-Winters method: nonseasonal series proceeds 
as follows.

1. Obtain estimates of level xnt and trend Tt as

 xn2 = x2 T2 = x2 - x1  

 xnt = 11 - a21xnt - 1 + Tt - 12 + axt   10 6 a 6 1; t = 3, 4, c , n2 
 Tt = 11 - b2Tt - 1 + b1xnt - xnt - 12  10 6 b 6 1; t = 3, 4, c , n2 (16.5)

 where a and b are smoothing constants whose values are fixed between 
0 and 1.

2. Standing at time n, we obtain forecasts of future values, xn +h, of the series by

 xnn+ h = xnn + hTn (16.6)

 where h is the number of periods in the future.

Example 16.1 Forecasting Consumer Credit 
(Holt-Winters Exponential Smoothing)

You are asked to obtain a forecast for outstanding consumer credit using the Holt-Winters 
exponential smoothing procedure.

Solution The calculations that follow use the consumer credit data in Table 16.5, 
which also includes the calculations for the Holt-Winters procedure.

Table 16.5 Holt-Winters Calculations for Consumer Credit Outstanding (a = 0.7, b = 0.6)

t xt xnt Tt

 1 133   
 2 155 155 22
 3 165 169 17
 4 171 175 11
 5 194 192 14
 6 231 223 25
 7 274 266 36
 8 312 309 40
 9 313 324 25
10 333 338 18
11 343 347 13
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The initial estimates of level and trend in year 2 are

xn2 = x2 = 155

and

T2 = x2 - x1 = 155 - 133 = 22

This smoothing application uses a = 0.7, b = 0.6, and the following equations:

 xnt = 0.31xnt-1 + Tt-12 + 0.7xt

 Tt = 0.4Tt-1 + 0.61xnt - xnt-12
Then, for t = 3,

 xn3 = 0.31xn2 + T22 + 0.7x3

 = 10.321155 + 222 + 10.7211652
 = 168.6

and, in addition,

 T3 = 0.4T2 + 0.61xn3 - xn22
 = 10.421222 + 10.621168.6 - 1552
 = 16.96

Then, for t = 4,

 xn4 = 0.31xn3 + T32 + 0.7x4

 = 10.321168.6 + 16.962 + 10.7211712
 = 175.4

and, in addition,

 T4 = 0.4T3 + 0.61xn4 - xn32
 = 10.42116.962 + 10.621175.4 - 168.62
 = 10.86

The remaining calculations continue in the same way, setting, in turn, t = 5, 6, c, 11. 
The results of these calculations are shown in Table 16.5.

Now let us use these level and trend estimates to forecast future observations. 
Given a series x1, x2, c, xn, the most recent level and trend estimates are xnt and Tn, 
respectively. In the production of forecasts it is assumed that this latest trend will con-
tinue from the most recent level. Thus, we forecast using the relationship

xnn +1 = xnn + Tn

and, for the following one,

xnn +2 = xnn + 2Tn

In general, for h periods ahead,

xnn +h = xnn + hTn

From Table 16.5 the most recent level and trend estimates are 

 xn11 = 347

 T11 = 13

Then, the forecasts for the next three periods are as follows:

 xn12 = 347 + 13 = 360

 xn13 = 347 + 1221132 = 373

 xn14 = 347 + 1321132 = 386
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The Holt-Winters procedure can be computed in Minitab, and Figure 16.8 shows 
the time-series graph and the forecasts.

Figure 16.8 Consumer Credit Outstanding Observed and Forecasts Using 
Minitab Calculations
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Double Exponential Smoothing for Credit

The Minitab procedure differs slightly from the procedure just described. Minitab 
computes an estimate for the first period using the following procedure:

1. Minitab fits a linear regression model to time-series data (y variable) versus time 
(x variable).

2. The constant from this regression is the initial estimate of the level component; the 
slope coefficient is the initial estimate of the trend component.

As a result, the values calculated by the Minitab program differ slightly from those 
in Table 16.5. The comparable values computed by the Minitab procedure are shown 
in Table 16.6. The Minitab procedure generally provides slightly better forecasts com-
pared to the more simplified procedure we have shown. For other statistical packages, 
check the specific computational algorithms to ensure that you understand what is be-
ing computed. Usually this can be done by clicking the Help option.

Table 16.6 Minitab Calculations for Consumer Credit Outstanding 1a = 0.7, b = 0.62
TIME OBSERVED CONSUMER CREDIT LEVEL EXPECTED VALUE TREND FORECASTS

 1 133 130 28  
 2 155 156 27  
 3 165 170 19  
 4 171 177 12  
 5 194 192 14  
 6 231 224 24  
 7 274 266 35  
 8 312 309 40  
 9 313 324 25  
10 333 338 18  
11 343 347 13  
12    360
13    373
14    385
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Forecasting Seasonal Time Series

We now examine an extension of the Holt-Winters method that allows for seasonality. 
In most practical problems, the seasonal factor is taken to be multiplicative, so that, for 
example, in dealing with monthly sales figures, we might think of January in terms of a 
proportion of average monthly sales. As before, the trend component is assumed to be 
additive.

Similar to the nonseasonal case, we use xt, xnt, and Tt to denote, respectively, the ob-
served value and the level and trend estimates at time t. The seasonal factor is denoted Ft, 
so if the time series contains s periods per year, the seasonal factor for the corresponding 
period in the previous year will be Ft- s.

In the Holt-Winters model the estimates of level, trend, and the seasonal factor are 
updated by the following three equations

 xnt = 11 - a21xnt - 1 + Tt - 12 + a 
xt

Ft - s
 10 6 a 6 12

 Tt = 11 - b2Tt - 1 + b1xnt - xnt - 12 10 6 b 6 12
 Ft = 11 - g2Ft - s + g

xt

xnt
 10 6 g 6 12

where a, b, and g are smoothing constants with values between 0 and 1.
The term 1xnt-1 + Tt-12 is an estimate of the level at time t computed at the previous time 

period t - 1. This estimate is then updated when xt becomes available. But we also remove 
the influence of seasonality by deflating it by the latest available estimate, Ft- s, of the seasonal 
factor for that period. The updating equation for trend, Tt, is the same as used previously.

Finally, the seasonal factor, Ft, is estimated using the third equation. The most recent 
estimate of the factor, available from the previous year, is Ft- s. However, dividing the 
new observation, xt, by the level estimate, xnt, suggests a seasonal factor xt >  xnt. The new 
estimate of the seasonal factor is then a weighted average of these two quantities.

Forecasting with the Holt-Winters Method:  
Seasonal Series
Let x1, x2, c, xn be a set of observations on a seasonal time series of period s 
(with s = 4 for quarterly data and s = 12 for monthly data). Forecasting with 
the Holt–Winters method: seasonal series uses a set of recursive estimates 
from the historical series. These estimates utilize a level factor, a; a trend fac-
tor, b; and a multiplicative seasonal factor, g. The recursive estimates are 
based on the following equations:

  xnt = 11 - a21xnt - 1 + Tt - 12 + a 
xt

Ft - s
    10 6 a 6 12 

  Tt = 11 - b2Tt - 1 + b1xnt - xnt - 12       10 6 b 6 12 
  Ft = 11 - g2Ft - s + g 

xt

xnt
        10 6 g 6 12 (16.7)

where xnt is the smoothed level of the series, Tt is the smoothed trend of the 
series, and Ft is the smoothed seasonal adjustment for the series. The compu-
tational details are tedious and best left to a computer. We have demonstrated 
the algorithm used by Minitab, but numerous quality statistical packages have 
similar procedures. These computer procedures may differ in the way they 
handle the generation of factors for the initial periods of an observed time 
series, and, thus, you should consult the documentation for the package to de-
termine the exact procedure used. Minitab uses a dummy variable regression 
procedure to obtain estimates for the initial periods.
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This procedure is demonstrated using the corporate earnings per share in 
Minitab. A plot of observed and fitted values, along with forecasts for the next 
four periods, is shown in Figure 16.9. Forecasts are obtained by using the most re-
cent trend and level estimates and then adjusting for the particular seasonal factor. 
Given a season containing s time periods, the forecast for one period ahead would 
be as follows:

xnn+ 1 = 1xnn + Tn2Fn+ 1 - s

After the initial procedure generates the level, trend, and seasonal factors 
from a historical series, we can use the results to forecast future values at h 
time periods ahead from the last observation, xn, in the historical series. The 
forecast equation is as follows:

 xnn+ h = 1xnn + hTn2Fn+ h - s (16.8)

We note that the seasonal factor, F, is the one generated for the most recent 
seasonal time period.

Figure 16.9
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Winter’s Multiplicative Model for Earnings

Our example data contain 32 time periods and a seasonal factor s = 4, indicating 
quarterly data. Thus, to forecast the next observation beyond the end of the series, we 
use the following:

xn33 = 1xn32 + T322F29

The procedure that we have developed here can be implemented using the 
Minitab procedure labeled “Winters method” smoothing forecast. Specifically, the 
method described here uses the multiplicative option. The Winters method employs 
a level component, a trend component, and a seasonal component at each period. 
It uses three weights, or smoothing parameters, to update the components at each 
period. Initial values for the level and trend components are obtained from a linear 
regression on time. Initial values for the seasonal component are obtained from a 
dummy variable regression using detrended data. The Winters method smoothing 
equations for the multiplicative model are those previously used.
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Table 16.7 Computational Results: Minitab Application of Holt-Winters Smoothing Procedure: Seasonal Series

Year 
Quarter

Corporate 
Earnings

Smoothed 
Value

Level 
Estimate

Trend 
Estimate

Seasonal 
Estimate

 
Forecast

1.1 0.300 0.043 0.387 0.242 0.713 

1.2 0.460 0.360 0.562 0.208 0.851 

1.3 0.345 0.433 0.609 0.128 0.628  

1.4 0.910 1.055 0.631 0.075 1.529  

2.1 0.330 0.450 0.584 0.014 0.609  

2.2 0.545 0.498 0.619 0.024 0.872  

2.3 0.440 0.389 0.672 0.039 0.646  

2.4 1.040 1.028 0.696 0.031 1.505  

3.1 0.495 0.424 0.770 0.053 0.633  

3.2 0.680 0.671 0.801 0.042 0.856  

3.3 0.545 0.518 0.843 0.042 0.646  

3.4 1.285 1.269 0.869 0.034 1.486  

4.1 0.550 0.550 0.886 0.025 0.624  

4.2 0.870 0.758 0.964 0.052 0.888  

4.3 0.660 0.623 1.019 0.053 0.648  

4.4 1.580 1.514 1.067 0.051 1.482  

5.1 0.590 0.666 1.032 0.008 0.588  

5.2 0.990 0.916 1.077 0.026 0.910  

5.3 0.830 0.697 1.193 0.071 0.681  

5.4 1.730 1.767 1.215 0.047 1.441  

6.1 0.610 0.714 1.150 –0.009 0.548  

6.2 1.050 1.047 1.147 –0.006 0.914  

6.3 0.920 0.782 1.246 0.046 0.721  

6.4 2.040 1.795 1.354 0.077 1.487  

7.1 0.700 0.741 1.355 0.039 0.526  

7.2 1.230 1.238 1.370 0.027 0.902  

7.3 1.060 0.988 1.433 0.045 0.734  

7.4 2.320 2.131 1.519 0.066 1.515  

8.1 0.820 0.799 1.572 0.059 0.523  

8.2 1.410 1.419 1.597 0.042 0.889  

8.3 1.250 1.172 1.671 0.058 0.744  

8.4 2.730 2.531 1.765 0.076 1.537  

9.1      0.963

9.2      1.705

9.3      1.48

9.4      3.18

This forecast is for the first quarter; thus, we use the most recent first-quarter seasonal 
factor, which is F29. In general, if we are forecasting h periods into the future, we obtain 
the forecast as follows:

xnn+ h = 1xnn + hTn2Fn+ h - s
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The forecast here uses a level factor, a = 0.5; a trend factor, b = 0.5; and a seasonal factor, 
g = 0.7.

Finally, in Table 16.7 we show the detailed results of the computation of trend, level, 
and seasonal factors for each period.

The actual forecasts obtained through the Holt-Winters approach will depend on the 
specific values chosen for the smoothing constants. As in our earlier discussion of expo-
nential smoothing, this choice could be based on either subjective or objective criteria. The 
analyst's experience with similar data sets might suggest suitable values of the smooth-
ing constants. Alternatively, several different sets of possible values could be tried on the 
available historical data, and the set that would have yielded the best forecasts for that 
data could be used to generate the forecasts. This strategy is easy to implement by using 
a statistical computer package, as shown by the example we demonstrated using Minitab.

EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

Application Exercises
16.11 The data file Inventory Sales shows the inven-

tory-sales ratio for manufacturing and trade in 
the United States over a period of 12 years. Use the 
method of simple exponential smoothing to obtain 
forecasts of the inventory-sales ratio over the next 
4 years. Use a smoothing constant of a = 0.6. Graph 
the observed time series and the forecasts.

 16.12 The data file Gold Price shows the year-end 
price of gold (in dollars) over 14 consecutive 

years. Use the method of simple exponential smooth-
ing, with a smoothing constant of a = 0.7, to obtain 
forecasts of the price of gold in the next 5 years.

 16.13 The data file Housing Starts shows private 
housing units started per thousand of population 

in the United States over a period of 24 years. Using 
the data, employ the method of simple exponential 
smoothing with smoothing constant a = 0.5 to predict 
housing starts in the next 3 years.

 16.14 The data file Earnings per Share shows earn-
ings per share of a corporation over a period of 

18 years.

a. Using smoothing constants a = 0.8, 0.6, 0.4, and 
0.2, find forecasts based on simple exponential 
smoothing.

b. Which of the forecasts would you choose to use?

 16.15 a.  If forecasts are based on simple exponential 
smoothing, with xnt denoting the smoothed value 
of the series at time t, show that the error made 
in forecasting xt, standing at time 1t - 12, can be 
written as follows:

et = xt - xnt - 1

b. Hence, show that we can write xnt = xt - 11 - a2et,
from which we see that the most recent observation 
and the most recent forecast error are used to com-
pute the next forecast.

 16.16 Suppose that in the simple exponential smoothing 
method, the smoothing constant a is set equal to 1. 
What forecasts will result?

 16.17 Comment on the following statement: We know that 
all business and economic time series exhibit variabil-
ity through time. Yet if simple exponential smoothing 
is used, the same forecast results for all future values 
of the time series. Since we know that all future values 
will not be the same, this is absurd.

 16.18 The data file Industrial Production Canada 
shows an index of industrial production for 

Canada over a period of 15 years. Use the Holt-Winters 
procedure with smoothing constants a = 0.7 and 
b = 0.5 to obtain forecasts over the next 5 years.

 16.19 The data file Hourly Earnings shows manufac-
turing hourly earnings in the United States over 

24 months. Use the Holt-Winters procedure with 
smoothing constants a = 0.7 and b = 0.6 to obtain 
forecasts for the next 3 months.

 16.20 The data file Food Prices shows an index of 
food prices, seasonally adjusted, over a period 

of 14 months in the United States. Use the Holt-Winters 
method with smoothing constants a = 0.5  and 
b = 0.5 to  obtain forecasts for the next 3 months.

 16.21 The data file Profit Margins shows percentages 
of profit margins of a corporation over a period 

of 11 years. Obtain forecasts for the next 2 years, using 
the Holt-Winters method with smoothing constants 
a = 0.4 and b = 0.4.

 16.22 The data file Quarterly Earnings shows quar-
terly sales of a corporation over a period of 

6 years. Use the Holt-Winters seasonal method to obtain 
forecasts of sales up to eight quarters ahead. Employ 
smoothing constants a = 0.4, b = 0.5, and g = 0.6. 
Graph the data and the forecasts.

 16.23 The data file Quarterly Sales shows quarterly sales 
of a corporation over a period of 6 years. Use the 

Holt-Winters seasonal method to obtain forecasts of sales 
up to eight quarters ahead. Employ smoothing constants 
a = 0.5, b = 0.6, and g = 0.7. Graph the data and the 
forecasts.
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16.4 AUTOREGRESSIVE MODELS

In this section we present a different approach to time-series forecasting. This approach 
involves using the available data to estimate parameters of a model of the process that 
might have generated the time series. In this section we consider one widely used proce-
dure, autoregressive models, that is based on the model-building approach.

In Section 13.3 we introduced the use of lagged dependent variables in multiple re-
gression models, and that approach is the basis of the models we discuss here. Essentially, 
the idea is to regard a time series as a series of random variables. For practical purposes 
we might often be prepared to assume that these random variables all have the same 
means and variances. However, we cannot assume that they are independent of each 
other. Certainly, if we consider a series of product sales, it is very likely that sales in ad-
jacent periods are correlated with each other. Correlation patterns such as those between 
adjacent periods are sometimes referred to as autocorrelation.

In principle, any number of autocorrelation patterns are possible. However, some are 
considerably more likely to arise than others. A particularly attractive possibility arises 
when we think of a fairly strong correlation between adjacent observations in time: a less-
strong correlation between observations two time periods apart, a weaker correlation yet 
between values three time periods apart, and so on. A very simple autocorrelation pattern 
of this sort arises when the correlation between adjacent values in the time series is some 
number—say, f110 … �f1 � … 12—that between values two time periods apart is f2

 1, that 
between values three time periods apart is f3

 1, and so on. Thus, if we let xt denote the value 
of the series at time t, we have, under this model of autocorrelation,

Corr1xt, xt - j2 = f j
 1  1 j = 1, 2, 3, c2

This autocorrelation structure gives rise to a time-series model of the form

xt = g + f1xt - 1 + et

where g and f1 are fixed parameters, and the random variables et have means 0 and fixed 
variances for all t and are not correlated with each other. The purpose of the parameter g 
is to allow for the possibility that the series xt has some mean other than 0. Otherwise, this 
is the model we used in Section 13.7 to represent autocorrelation in the error terms of a 
regression equation. It is called a first-order autoregressive model.

The first-order autoregressive model expresses the current value, xt, of a series in terms of 
the previous value, xt-1, and a nonautocorrelated random variable, et. Since the random vari-
able et is not autocorrelated, it is unpredictable. For series generated by the first-order autore-
gressive model, forecasts of future values depend only on the most recent value of the series. 
However, in many applications we would want to use more than this one observation as a 
basis for forecasting. An obvious extension of the model would be to make the current value 
of the series dependent on the two most recent observations. Thus, we could use a model

xt = g + f1xt - 1 + f2xt - 2 + et

where g, f1, and f2 are fixed parameters. This is called a second-order autoregressive model.
More generally, for any positive integer p, the current value of the series can be made 

(linearly) dependent on the p previous values through the autoregressive model of order p:

xt = g + f1xt - 1 + f2xt - 2 + g + fpxt - p + et

where g, f1, f2, c , fp are fixed parameters. This equation depicts the general autore-
gressive model. In the remainder of this section we consider the fitting of such models and 
their use in forecasting future values.

Suppose that we have a series of observations x1, x2, c, xt. We want to use these to esti-
mate the unknown parameters g, f1, f2, c, fp for which the sum of squared discrepancies

SS = a
n

t=p + 1
1xt - g - f1xt - 1 - f2xt - 2 - g - fpxt - p22

is smallest. Hence, the estimation can be carried out using a multiple regression program. 
We demonstrate this procedure in Example 16.2 using the Shiller home price index data.
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Autoregressive Models and Their Estimation
Let xt 1t = 1, 2, c, n2 be a time series. A model that can often be used effec-
tively to represent that series is the autoregressive model of order p:

 xt = g + f1xt - 1 + f2xt - 2 + g + fpxt - p + et (16.9)

where g, f1, f2, c, fp are fixed parameters and the et are random variables that 
have means 0 and constant variances and are uncorrelated with one another.

The parameters of the autoregressive model are estimated through a least 
squares algorithm, as the values of g, f1, f2, c, fp, for which the sum of squares

 SS = a
n

t=p + 1
1xt - g - f1xt - 1 - f2xt - 2 - g - f0xt - p22 (16.10)

is a minimum.

Forecasting from Estimated Autoregressive Models
Suppose that we have observations x1, x2, c, xn from a time series and that 
an autoregressive model of order p has been fitted to these data. Write the es-
timated model as follows:

 xt = gn + fn 1xt - 1 + fn 2xt - 2 + g + fn pxt - p + et (16.11)

Standing at time n, we obtain forecasts of future values of the series from

 xnn+ h = gn + fn 1xnn+ h - 1 + fn 2xnn+ h - 2 + g + fn pxnn+ h - p   1h = 1, 2, 3,  c 2 (16.12)

where for h 7 0, xnn +h is the forecast of xt+h standing at time n, and for 
h … 0, xnt+h, it is simply the observed value of xt+h.

Example 16.2 Forecasting Sales Data 
(Autoregressive Model)

You have been asked to develop an autoregressive model to forecast the Shiller real 
home price index data. This index is contained in the data file Shiller House Price Cost.

Solution To use an autoregressive model to generate forecasts of future values, it 
is necessary to fix a value for p, the order of the autoregression. In making this choice 
we must choose p large enough to account for all the important autocorrelation 
behavior of the series. But, in addition, we do not want p to be so large that we are 
including irrelevant parameters and, as a result, having inefficient estimation of the 
important parameters. In general, parsimonious—simple but sufficient to accomplish 
the objective—models are preferred for good time-series forecasting.

One possibility is to fix the value of p arbitrarily, perhaps on the basis of past experi-
ence, with similar data sets. An alternative approach is to set some maximal order, K, of the 
autoregression and fit, in turn, models of order p = K, K - 1, K - 2, c. For each value 
of p, the null hypothesis that the final autoregression parameter, wp, of the model is 0 is 
tested against a two-sided alternative. The procedure terminates when we find a value of 
p for which this null hypothesis is not rejected. Our aim, then, is to test the null hypothesis

H0 : fp = 0

against the alternative

H1 : fp � 0
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Figure 16.10 presents abbreviated copies of Minitab regression output for autoregres-
sive models using the Shiller home price index data with p = 1, 2, 3, 4.

In Chapter 11 we developed procedures for testing the null hypothesis, H0. Basically, 
we know that the ratio of the coefficient estimate divided by the estimated coefficient 
standard error follows a Student's t distribution. The Minitab regression output (and 
the regression output from any statistical package) includes that Student's t calculation 
and, in addition, the probability of the null hypothesis being true (the p-value for the 
null hypothesis) given the computed Student’s t.

Figure 16.10

Autoregressive 
Models for the 
Shiller Home Price 
Index
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We apply this approach for the Shiller home price index data, using a 5% signifi-
cance level for our tests. We use the results in Figure 16.10, which include autoregressive 
regressions for p = 1, 2, 3, 4. For the regression with p = 4, we find that the coefficient 
of xt-4 has a Student’s t statistic of -1.25 and a p-value of 0.215. Thus, we cannot re-
ject the null hypothesis that the coefficient is 0, and we move on to the regression with 
p = 3. Here we see that the coefficient of xt-3 has a Student’s t statistic equal to 2.72 and 
a p-value of 0.009. We can reject the null hypothesis that this coefficient is 0. Our chosen 
model, then, is the one with three lagged values, p = 3. Note that the standard error of 
the estimate is somewhat larger for the models with p = 1 and p = 2. The final equation 
is as follows:

xnt = 9.60 + 1.77xt - 1 - 1.19xt - 2 + 0.349xt - 3

Now that we have the model, we want to apply it to obtain forecasts for the Shiller home 
price index data. We prepared a forecast for the p = 3 model using the Minitab Arima 
time-series analysis model. The results are shown in Figure 16.11. The coefficients are 
slightly different from those prepared using lagged regressions in Figure 16.10. This oc-
curs because the Arima routine uses a slightly different algorithm for the computation. 
However, the forecast results are essentially the same.

Figure 16.11

Predicted Values 
from Autoregressive 
Model for the Shiller 
Home Price Index

In Figure 16.11 we show how a forecast compares with actual data for the home price 
index. In the face of the housing bubble, we see that the the actual housing bubble data 
were substantially above the forecast interval. Thus, we see that in this situation, with 
housing prices deviating greatly from past patterns, the forecast using the autoregressive 
Arima model does not provide a good forecast. We should also note that most forecasters 
were not successful in the actual market and hence the entire economy suffered when the 
bubble collapsed.
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Graphical depiction of the forecasts for the home price index beyond 2010 are shown 
in Figure 16.12. The forecast extends the most recent data and shows a small increase in 
the index followed by some decline. Note also that the prediction interval becomes much 
wider as the forecast moves further into the future.

Figure 16.12 Forecasts of Shiller Home Price Index Using a Fitted Third-Order 
Autoregressive Model

EXERCISES

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

Application Exercises
16.24 Using the data in the data file Earnings per 

Share, estimate a first-order autoregressive 
model for the earnings per share. Use the fitted model 
to obtain forecasts for the next 4 days.

 16.25 The data file Trading Volume shows the vol-
ume of transactions (in hundreds of thousands) 

in shares of a corporation over a period of 12 weeks. 
Using these data, estimate a first-order autoregressive 
model, and use the fitted model to obtain forecasts of 
volume for the next 3 weeks.

 16.26 Using the data file Housing Starts, estimate au-
toregressive models of orders 1 through 4. Use 

the method of this section to test the hypothesis that 
the order of the autoregression is p - 1 against the 

 alternative that the order is p, with a significance level 
of 10%. Select one of these models, and calculate fore-
casts of housing starts for the next 5 years. Draw a 
time plot showing the original observations together 
with the forecasts. Would different forecasts result if a 
significance level of 5% was used for the tests of au-
toregressive order?

 16.27 From the data file Earnings per Share on corpo-
rate earnings per share, fit autoregressive mod-

els of orders 1 through 4. Use the procedure of this 
section to test the hypothesis that the order of the au-
toregression is p - 1 against the alternative that the 
true order is p, with a 10% significance level. Choose 
one of these models, and compute forecasts of earn-
ings per share for the next 5 years. Draw a graph 
showing the original data along with these forecasts. 
Would the results differ if a 5% significance level was 
used for the tests?
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16.5  AUTOREGRESSIVE INTEGRATED MOVING  
AVERAGE MODELS

In this section we briefly introduce an approach to time-series forecasting that is widely 
used in business applications. The models to be discussed include, as special cases, the 
autoregressive models discussed in Section 16.4.

In a classic book, George Box and Gwilyn Jenkins (1979) introduced a methodology 
sufficiently versatile to provide a moderately skillful user with good results for a wide 
range of forecasting problems that occur in practice. The Box-Jenkins approach requires 
that we first define a very broad class of models from which forecasts can be derived. Next 
we develop a methodology for picking, on the basis of the characteristics of the available 
data, a suitable model for any forecasting problem.

The general class of models is the class of autoregressive integrated moving average 
models, or ARIMA models. These are rather natural extensions of the autoregressive mod-
els of Section 16.4. Moreover, the simple exponential smoothing and Holt-Winters predictors 
of Section 16.3 can be derived from specific members of this general class, as can many other 
widely used forecasting algorithms. The models and the Box-Jenkins time-series analysis 
techniques can be generalized to allow for seasonality and also to deal with related time se-
ries so that future values of one series can be predicted from information not only on its own 
past, but also on the past of other relevant series. This last possibility allows an approach to 
forecasting that generalizes the regression procedures discussed in Chapters 11–13.

It is not possible in the space available to provide a full discussion of the Box-Jenkins 
methodology. (For an introduction to this methodology, see Newbold and Bos (1994) or 
Greene (2012).) In essence, it involves three stages:

 1. Based on summary statistics that are readily calculated from the available data, the 
analyst selects a specific model that might be appropriate from the general class. This 
is not simply a matter of automatically following a set of rules but rather requires a 
certain amount of judgment and experience. However, one is not forever committed 
to the model chosen at this stage but can abandon it in favor of some alternative at a 
later stage of the analysis if that appears desirable.

 2. The specific model chosen will almost invariably have some unknown coefficients. 
These must be estimated from the available data using efficient statistical techniques, 
such as least squares.

16.28 In Figure 16.10, fitted autoregressive models of or-
ders 1 through 4 are given for annual sales data. We 
then selected a model by testing the null hypothesis 
of  autoregression of order p - 1 against the alterna-
tive of autoregression of order p at the 5% significance 
level. Repeat this procedure, but test at the 10% sig-
nificance level.

a. What autoregressive model is now selected?
b. Obtain forecasts of sales for the next 3 years, based 

on this selected model.

 16.29 For a certain product it was found that annual sales vol-
ume could be well described by a third-order autore-
gressive model. The estimated model obtained was as 
follows:

xt = 202 + 1.10xt - 1 - 0.48xt - 2 + 0.17xt - 3 + et

For 1993, 1994, and 1995, sales were 867, 923, and 951, 
respectively. Calculate sales forecasts for the years 1996 
through 1998.

 16.30 For many time series, particularly prices in specula-
tive markets, the random walk model has been found to 

give a good representation of actual data. This model 
is written as follows:

xt = xt - 1 + et

Show that, if this model is appropriate, forecasts of 
xn+ h, standing at time n, are given by 

xnn+ h = xn  1h = 1, 2, 3, c 2
 16.31 Refer to the data file Hourly Earnings, showing 

earnings over 24 months. Denote the observa-
tions xt 1t = 1, 2, c, 242. Now, form the series of 
first differences:

zt = xt - xt - 1  1t = 2, 3, c, 242
Fit autoregressive models of orders 1–4 to the series zt. 
Using the approach of this section for testing the hy-
pothesis that the autoregressive order is p - 1 against 
the alternative of order p, with a 10% significance level, 
select one of these models. Using the selected model, 
find forecasts for zt, where t = 25, 26, and 27. Hence, 
obtain forecasts of earnings for the next 3 months.
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 3. Finally, checks are applied to determine whether the estimated model provides an ade-
quate representation of the available time-series data. Any inadequacies revealed at this 
stage may suggest some alternative specification, and the process of model selection, 
coefficient estimation, and model checking is iterated until a satisfactory model is found.

The Box-Jenkins approach to forecasting has the great advantage of flexibility—a 
wide range of predictors is available, and choice among them is based on data evidence. 
Moreover, when this approach to forecasting has been compared with other methods, us-
ing actual economic and business time series, it has usually been found to perform very 
well. Thus, the procedure can be said to have survived the acid test: In practice, it works!

In concluding this brief discussion, note that computer programs for performing a 
time-series analysis through the fitting to data of ARIMA models are widely available—
including a set of procedures in Minitab. However, the method does have a drawback 
compared with other simpler procedures discussed in earlier sections of this chapter. Be-
cause flexibility is allowed in choosing an appropriate model from the general class, the 
Box-Jenkins approach is more costly in terms of skilled worker time than methods that 
force a single model structure onto every time series.
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CHAPTER EXERCISES AND APPLICATIONS

Visit www.mymathlab.com/global or www.pearsonglobal
editions.com/newbold to access the data files.

16.32 Explain the statement that a time series can be viewed 
as being made up of a number of components. Provide 
examples of business and economic time series for 
which you would expect particular components to be 
important.

 16.33 In many business applications, forecasts for future val-
ues of time series, such as sales and earnings, are made 
exclusively on the basis of past information on the time 
series in question. What features of time-series behavior 
are exploited in the production of such forecasts?

 16.34 A manager in charge of inventory control requires 
sales forecasts for several products, on a monthly ba-
sis, over the next 6 months. This manager has available 

monthly sales records over the past 4 years for each of 
these products. He decides to use, as forecasts for each 
of the next 6 months, the average monthly sales over 
the previous 4 years. Do you think this is a good strat-
egy? Provide reasons.

 16.35 What is meant by the seasonal adjustment of a time 
series? Explain why government agencies expend a 
large amount of effort on the seasonal adjustment of 
economic time series.

 16.36 The data file Quarterly Earnings shows quarterly 
earnings per share of a corporation over 7 years.

a. Draw a time plot of these data. Does this graph sug-
gest the presence of a strong seasonal component?

b. Use the seasonal index method to obtain a season-
ally adjusted series.
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16.37 The data file Product Sales shows 24 annual 
 observations on sales of a product. Use simple 

exponential smoothing with smoothing constant 
a = 0.5 to obtain forecasts of sales for the next 3 years.

 16.38 Refer to the data file Quarterly Earnings. Use 
the Holt-Winters seasonal method with 

smoothing constants a = 0.6, b = 0.6, and g = 0.8 to 
obtain forecasts of this earnings-per-share series for 
the next four quarters.

 16.39 Using the data file Product Sales, estimate au-
toregressive models of orders 1–4 for product 

sales. Using the procedure of Section 16.4 for testing 
the hypothesis that the autoregressive order is p - 1
against the alternative that the order is p, with a sig-
nificance level of 10%, choose one of these models. 
Compute forecasts for the next 3 years from the cho-
sen model.

 16.40 Using the data in the file Macro2010, develop 
and autoregressive model for the prime interest 

rate. First, use the data for the period 1980, first quar-
ter, through 2000, fourth quarter, to forecast for the 
quarters in years 2001–2003. Then use the data from 
1980, first quarter, through 2007, fourth quarter, to 
forecast the quarters in the years 2008 and 2009. Dis-
cuss the differences in the accuracy of the forecasts 
compared to the actual results and indicate reasons for 
these differences.

 16.41 Using the data in the file Macro2010 develop 
an  autoregressive model for the Personal 

Consumption Expenditures. First, use the data for the 
 period 1980, first quarter, through 2000, fourth quarter, 
to forecast for the quarters in years 2001–2003. Then 
use the data from 1980, first quarter, through 2007, 
fourth quarter, to forecast the quarters in the years 
2008 and 2009. Discuss the differences in the accuracy 
of the forecasts compared to the actual results and 
 indicate reasons for these differences.

 16.42 Using the data in the file Macro2010 develop an 
autoregressive model for fixed investment. First, 

use the data for the period 1965, first quarter, through 
2000, fourth quarter, to forecast for the quarters in 
years 2001–2003. Then use the data from 1965, first 
quarter, through 2007, fourth quarter, to forecast the 
quarters in the years 2008 and 2009. 

Discuss the differences in the accuracy of the fore-
casts compared to the actual results and indicate rea-
sons for these differences.

 16.43 Using the data in the file Macro2010, develop 
an autoregressive model for imports. First, use 

the data for the period 1970, first quarter, through 
2000, fourth quarter, to forecast for the quarters in 
years 2001–2003. Then use the data from 1970, first 
quarter, through 2007, fourth quarter, to forecast the 
quarters in the years 2008 and 2009. Discuss the differ-
ences in the accuracy of the forecasts compared to the 
actual results and indicate reasons for these 
differences.
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 17.1 Stratified Sampling
Analysis of Results from Stratified Random Sampling
Allocation of Sample Effort Among Strata
Determining Sample Sizes for Stratified Random Sampling with 
Specified Degree of Precision

 17.2 Other Sampling Methods
Cluster Sampling
Two-Phase Sampling
Nonprobabilistic Sampling Methods

Introduction

In some situations it is desirable to break down the population into subgroups 
called strata, so that each individual member of the population belongs to one, 
and only one, of the strata. The basis of the stratum might be some particular 
identifiable characteristic of the population of special interest to the researcher. 
This type of sampling is called stratified sampling. In this chapter we introduce 
confidence interval estimation of a population mean, population total, and popula-
tion proportion for stratified sampling, and we consider allocation of sample size 
under proportional and optimal allocation. A brief discussion of cluster sampling, 
two-phase sampling, and nonprobabilistic sampling methods is also presented.

17
C H A P T E R 

Sampling: Stratified, 
Cluster, and Other 
Sampling Methods
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17.1 STRATIFIED SAMPLING

Suppose that you decide to investigate the views of students on your campus concerning 
some sensitive topic, and the framing of appropriately worded questions could be difficult. It 
is likely that you would want to ask several questions of every sample member and so, given 
limited resources, would be able to take only a fairly small sample. You would presumably 
select a simple random sample of, say, 100 students from a list of all students on campus. 
Suppose, however, that, on closer inspection of the records of the sample members, you find 
that only two of them are business majors, although the population proportion of business 
majors is far higher than this. Your problem at this stage is twofold. First, you may well be 
interested in comparing the views of business majors with those of the rest of the student 
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population. This is hardly feasible, given their minimal representation in your sample. Sec-
ond, you may suspect that the views of business majors on this question will differ from 
those of their fellow students. If that was the case, you would worry about the reliability of 
inference based on a sample in which this group is seriously underrepresented.

You could perhaps console yourself with the thought that, since you have taken a ran-
dom sample, any estimators derived in the usual way will be unbiased, and the resulting 
inference, in the statistical sense, will be strictly valid. However, a little reflection should 
convince you that this is scant consolation indeed! All that unbiasedness indicates is that, 
if the sampling procedure is repeated a very large number of times and the estimator is 
calculated, its average will be equal to the corresponding population value. But, in fact, 
you are not going to repeat the sampling procedure a large number of times. You have to 
base your conclusions on just a single sample, and the fact that business majors could have 
been overrepresented in other samples you might have drawn, so that things “average 
out” in the long run, is not terribly useful.

There is a second tempting possibility, one that is in many ways preferable to proceed-
ing with the original sample. You could simply discard the original sample and take another. 
If the constitution of the sample achieved at the second attempt looks more representative of 
the population at large, you may well be better off to proceed with it. The difficulty now is 
that the sampling procedure you have adopted—where the population is to be sampled un-
til you achieve a sample you like the looks of—is very difficult to formalize; consequently, 
the sample results are very hard to analyze with any statistical validity. This is no longer 
simple random sampling, and the procedures of Chapter 7 are not, therefore, strictly valid.

Fortunately, a third alternative sampling scheme exists to afford protection against just 
this type of problem. If it is suspected at the outset that particular identifiable characteristics 
of population members are germane to the subject of inquiry or if particular subgroups of 
the population are of special interest to the investigator, it is not necessary (and probably not 
desirable) to be content with simple random sampling as a means of selecting the sample 
members. Instead, the population can be broken down into subgroups, or strata, and a simple 
random sample can be taken from each stratum. The only requirement is that each individual 
member of the population be identifiable as belonging to one, and only one, of the strata.

Stratified Random Sampling
Suppose that a population of N individuals can be subdivided into K mutually 
 exclusive and collectively exhaustive groups, or strata. Stratified random sampling 
is the selection of independent simple random samples from each stratum of the 
population. If the K strata in the population contain N1, N2, c, NK members, then

N1 + N2 + g + NK = N

There is no need to take the same number of sample members from every 
stratum. Denote the numbers in the sample by n1, n2, c, nK. Then the total 
number of sample members is as follows:

n1 + n2 + g + nK = n

The population of students whose views are to be canvassed could be divided into 
two strata—business majors and nonbusiness majors. Less straightforward stratification 
is also possible. Suppose that, on some other topic, you believe that gender and class year 
(senior, junior, sophomore, or first-year) are both potentially relevant. In that case, to sat-
isfy the requirement that the strata be mutually exclusive and collectively exhaustive, 
eight strata—senior women, senior men, and so on—are needed.

Later in this section the question of how to allocate the sampling effort among the 
strata is considered. An attractive possibility, often employed in practice, is proportional 
allocation: The proportion of sample members from any stratum is the same as the propor-
tion of population members in that stratum.
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Analysis of Results from Stratified Random Sampling

The analysis of the results of a stratified random sample is relatively straightforward. Let 
m1, m2, c, mK denote the population means in the K strata and x1, x2, c, xK be the corre-
sponding sample means. Consider a particular stratum—say, the jth stratum. Then, since 
a simple random sample has been taken in this stratum, the stratum sample mean is an 
unbiased estimator of the population mean mj. Also, from an unbiased estimation proce-
dure for the variance of the stratum sample mean, the point estimate is

sn xj

2 =
s2

j

nj
*

(Nj - nj)

Nj - 1

where s2
j  is the sample variance in the jth stratum. Inference about individual strata can, 

therefore, be made in the same way as in Section 7.6.
Generally, inferences about the overall population mean m are of interest where

m =
N1m1 + N2m2 + g + NKmK

N
=

1
N a

K

j=1
Njmj

A natural point estimate is provided by the following:

xst =
1
N a

K

j=1
Njxj

An unbiased estimator of the variance of the estimator of m follows from the fact that the 
samples in each stratum are independent of one another, and the point estimate is given 
by the following:

sn xst

2 =
1

N2 a
K

j=1
N2

jsn xj

2

Inferences about the overall population mean can be based on these results.

Estimation of the Population Mean Using Stratified 
Random Samples
Suppose that random samples of nj individuals are taken from strata containing 
Nj individuals (j = 1, 2, c, K). Let

a
K

j=1
Nj = N  and  a

K

j=1
nj = n

Denote the sample means and variances in the strata by xj and s2
j  (j = 1, 2, c, K) 

and the overall population mean by m.

1. An unbiased estimation procedure for the overall population mean m 
yields the following point estimate:

 xst =
1
N a

K

j=1
Njxj (17.1)

2. An unbiased estimation procedure for the variance of our estimator of 
the overall population mean yields the point estimate

 sn xst

2 =
1

N2 a
K

j=1
N2

jsn
2
xj

 (17.2)

 where

 sn xj

2 =
s2

j

nj
*
1Nj - nj2

Nj - 1
 (17.3)
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3. Provided the sample size is large, a 100(1 - a)% confidence interval 
estimation of the population mean using stratified random samples, is 
obtained from the following:

 xst { za>2sn xst
 (17.4)

Example 17.1 Restaurant Chain (Estimation)

A restaurant chain has 60 restaurants in Illinois, 50 in Indiana, and 45 in Ohio. Manage-
ment is considering adding a new item to the menu. To test the likely demand for this 
item, it was introduced on the menus of random samples of 12 restaurants in Illinois, 
10 in Indiana, and 9 in Ohio. Using the subscripts 1, 2, and 3 to denote Illinois, Indiana, 
and Ohio, respectively, the sample means and standard deviations for numbers of  orders 
received for this item per restaurant in the three states in a week were as follows:

 x1 = 21.2 s1 = 12.8

 x2 = 13.3 s2 = 11.4

 x3 = 26.1 s3 = 9.2

Estimate the mean number of weekly orders per restaurant, m, for all restaurants in 
this chain.

Solution We know that

 N1 = 60  N2 = 50  N3 = 45  N = 155

 n1 = 12  n2 = 10  n3 = 9  n = 31

Our estimate of the population mean is as follows:

xst =
1
N a

K

j=1
Njxj =

(60)(21.2) + (50)(13.3) + (45)(26.1)
155

= 20.1

Thus, the estimated mean number of weekly orders per restaurant is 20.1.
The next step is to calculate the quantities:

 sn x1

2 =
s2

1

n1
*

(N1 - n1)
N1 - 1

=
(12.8)2

12
*

48
59

= 11.108

 sn x2

2 =
s2

2

n2
*

(N2 - n2)
N2 - 1

=
(11.4)2

10
*

40
49

= 10.609

 sn x3

2 =
s2

3

n3
*

(N3 - n3)
N3 - 1

=
(9.2)2

9
*

36
44

= 7.695

Together with the individual stratum sample means, these quantities can be used to 
compute confidence intervals for the population means of the three strata. However,  
our concentration here is on the overall population mean. To obtain confidence inter-
vals for this quantity,

 sn xst

2 =
1

N2 a
K

j=1
N2

jsxj

2

 =
(60)2(11.108) + (50)2(10.609) + (45)2(7.695)

(155)2 = 3.417
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On taking the square root,

sn xst
= 1.85

Thus, the 95% confidence interval for the mean number of orders per restaurant re-
ceived in a week is

20.1 { (1.96)(1.85)

The 95% confidence interval runs from 16.5 to 23.7 orders per restaurant.

Estimation of the Population Total Using Stratified 
Random Samples
Suppose that random samples of nj individuals from strata containing 
Nj individuals (j = 1, 2, c, K) are selected and that the quantity to be 
 estimated is the population total, Nm.

1. An unbiased estimation procedure for Nm leads to the following point 
estimate:

 Nxst = a
K

j=1
Njxj (17.5)

2. An unbiased estimation procedure for the variance of our estimator of 
the population total yields the following estimate:

 N2sn xst

2 = a
K

j=1
N2

j sn xj

2  (17.6)

3. Provided the sample size is large, a 10011 - a2% confidence interval 
estimation of the population total using stratified random samples is 
 obtained from the following:

 Nxst { za>2Nsn xst
 (17.7)

Example 17.2 Total Annual Enrollment in Business 
Statistics (Estimation)

The publisher of a business statistics text wants an estimate of the total number of stu-
dents taking business statistics courses in all U.S. colleges. Suppose that there are 1,395 
colleges in the United States, 364 have 2-year programs and 1,031 are 4-year schools. 
A simple random sample of 40 two-year schools and an independent simple random 
sample of 60 four-year schools were taken. The sample means and standard deviations 
of numbers of students enrolled in the past year in business statistics courses are given 
in the table. Estimate the total annual enrollment in business statistics courses.

2-YEAR SCHOOLS 4-YEAR SCHOOLS

Mean 154.3 411.8

Standard deviation  87.3 219.9

Since the population total is the product of the population mean and the number of 
population members, these procedures can be readily modified to allow its estimation, as 
described next.
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Next, consider the problem of estimating a population proportion based on a strati-
fied random sample. Let P1, P2, c, PK be the population proportions in the K strata and 
pn1, pn2, c, pnK be the corresponding sample proportions. If P denotes the overall popula-
tion proportion, its estimate is based on the fact that

P =
N1P1 + N2P2 + g + NKPK

N
=

1
N a

K

j=1
NjPj

Procedures to develop an estimation of the population proportion from a stratified ran-
dom sample follow.

Solution We know that

 N1 = 364  n1 = 40    x1 = 154.3    s1 = 87.3

 N2 = 1,031  n2 = 60   x2 = 411.8   s2 = 219.9

Our estimate of the population total is as follows:

Nxst = a
K

j=1
Njxj = (364)(154.3) + (1,031)(411.8) = 480,731

Next,

 sn x1

2 =
s2

1

n1
*

(N1 - n1)
N1 - 1

=
(87.3)2

40
*

324
363

= 170.06

 sn x2

2 =
s2

2

n2
*

(N2 - n2)
N2 - 1

=
(219.9)2

60
*

971
1,030

= 759.77

Finally,

N2sn xst

2 = a
K

j=1
N2

jsn xst

2 = (364)2(170.06) + (1,031)2(759.77) = 830,138,148.73

and, on taking the square root,

Nsn xst

2 = 28,812

For a 95% confidence interval,

za>2 = z0.025 = 1.96

The required 95% interval is, therefore,

480,731 { (1.96)(28,812)

Thus, our 95% confidence interval runs from 424,259 to 537,203 students enrolled.

Estimation of the Population Proportion Using Stratified 
Random Samples
Suppose that random samples of nj individuals from strata containing Nj indi-
viduals (j = 1, 2, c, K) are obtained. Let Pj be the population proportion and 
pnj be the sample proportion, in the jth stratum, of those possessing a particu-
lar characteristic. If P is the overall population proportion, then

1. An unbiased estimation procedure for P yields the following:

 pnst =
1
N a

K

j=1
Njpnj (17.8)



722 Chapter 17 Sampling: Stratified, Cluster, and Other Sampling Methods

2. An unbiased estimation procedure for the variance of our estimator of 
the overall population proportion is

 sn 2
pnst

=
1

N2 a
K

j=1
N2

jsn
2
pnj

 (17.9)

 where

 sn 2
pnj
=

pnj11 - pnj2
nj - 1

*
1Nj - nj2

Nj - 1
 (17.10)

 is the estimate of the variance of the sample proportion in the jth stratum.
3. Provided the sample size is large, a 10011 - a2% confidence inter-

val  estimation of the population proportion using stratified random 
 samples is obtained from the following:

 pnst {  za>2sn pnst
 (17.11)

Example 17.3 Statistics Taught in Economics 
Departments (Estimation)

In the study of Example 17.2, suppose that it was found that business statistics was 
taught by members of the economics department in 7 of the 2-year colleges and 13 of 
the 4-year colleges in the sample. Estimate the proportion of all colleges in which this 
course is taught in the economics department.

Solution We know that

 N1 = 364   n1 = 40   pn 1 =
7
40

= 0.175

 N2 = 1,031   n2 = 60   pn 2 =
13
60

= 0.217

Our estimate of the population proportion is as follows:

pnst =
1
N a

K

j=1
Njpnj =

1364210.1752 + 11,031210.2172
1,395

= 0.206

Thus, it is estimated that in 20.6% of all colleges, the economics department teaches 
the course.

Next,

 sn 2
p1
=

pn1(1 - pn1)

n1 - 1
*

(N1 - n1)
N1 - 1

=
(0.175)(0.825)

39
*

324
363

= 0.003304

 sn 2
p2
=

pn2(1 - pn2)

n2 - 1
*

(N2 - n2)
N2 - 1

=
(0.217)(0.783)

59
*

971
1,030

= 0.002715

Together with the individual stratum sample proportions, these values can be used to 
calculate confidence intervals for the two stratum population proportions. However, 
here, focus is given to interval estimation for the overall population proportion, 
for which

s 2
n pnst

=
1

N2 a
K

j=1
N2

j s
2

n pnj
=

(364)2(0.003304) + (1,031)2(0.002715)
(1,395)2 = 0.001708
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Allocation of Sample Effort Among Strata

The question of the allocation of the sample effort among the various strata remains to 
be discussed. Assuming that a total of n sample members is to be selected, how many of 
these sample observations should be allocated to each stratum? In fact, the survey in ques-
tion may have multiple objectives, meaning that no clear-cut answer is available. Never-
theless, it is possible to specify criteria for choice that the investigator might keep in mind. 
If little or nothing is known beforehand about the population and if there are no strong re-
quirements for the production of information about sparsely populated individual strata, 
a natural choice is proportional allocation.

so taking the square root yields the following:

sn pnst
= 0.0413

For a 90% confidence level,

za>2 = z0.05 = 1.645

and the 90% confidence interval for the population proportion from a stratified random 
sample is 

(0.206) { (1.645)(0.0413) 

This interval runs from 13.8% to 27.4% of all colleges.

Proportional Allocation: Sample Size
The proportion of sample members in any stratum is the same as the propor-
tion of population members in that stratum. Thus, for the jth stratum

 
nj

n
=

Nj

N
 (17.12)

so that the sample size for the jth stratum using proportional allocation is as 
follows:

 nj =
Nj

N
* n (17.13)

This intuitively reasonable allocation mechanism is frequently employed and gener-
ally provides a satisfactory analysis. Notice that proportional allocation was used in Ex-
ample 17.1. A total of N = 155 restaurants was divided into three strata (Illinois, Indiana, 
and Ohio). A sample of n = 31 was selected with

n1 =
60

155
* 31 = 12  n2 =

50
155

* 31 = 10  n3 =
45

155
* 31 = 9

Sometimes strict adherence to proportional allocation will produce relatively few ob-
servations in strata in which the investigator is particularly interested. In that case infer-
ence about the population parameters of these particular strata could be quite imprecise. 
In these circumstances one might prefer to allocate more observations to such strata than 
is dictated by proportional allocation. In Examples 17.2 and 17.3, 364 of the 1,395 colleges 
are 2-year schools, and a sample of 100 observations is to be taken. If proportional al-
location had been used, the number of 2-year schools in the sample would have been as 
follows:

n1 =
N1

N
* n =

364
1,395

* 100 = 26
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Since the publisher in Example 17.2 was particularly interested in acquiring information 
about this market, it was thought that a sample of only 26 observations would be inad-
equate. For this reason, 40 of the 100 sample observations were allocated to this stratum.

If the sole objective of a survey is to estimate as precisely as possible an overall popu-
lation parameter, such as the mean, total, or proportion, and if enough is known about the 
population, it is possible to derive an optimal allocation.

Optimal Allocation: Sample Size for jth Stratum, 
Overall Population Mean or Total
If it is required to estimate an overall population mean or total and if the popula-
tion variances in the individual strata are denoted s2

j , it can be shown that the 
most precise estimators are obtained with optimal allocation. The sample size for 
the jth stratum for overall mean or total using optimal allocation is as follows:

 nj =
Njsj

a
K

i=1
Nisi

* n (17.14)

Optimal Allocation: Sample Size for jth Stratum, 
Population Proportion
For estimating the overall population proportion, estimators with the smallest 
possible variance are obtained by optimal allocation. The sample size for the 
jth stratum for population proportion using optimal allocation is as follows:

 nj =
Nj2Pj11 - Pj2

a
K

i=1
Ni2Pi11 - Pi2 * n (17.15)

This formula is intuitively plausible. Compared with proportional allocation, it allocates 
relatively more sample effort to strata in which the population variance is highest. That 
is to say, a larger sample size is required where the greater population variability exists. 
Thus, in Example 17.1, where proportional allocation was used, if the differences observed 
in the sample standard deviations correctly reflect differences in the population quantities, 
it would have been preferable to take fewer observations in the third stratum and more in 
the first.

An immediate objection arises to the use of Equation 17.14. It requires knowledge of 
the population standard deviations, sj, whereas very often we do not even have worth-
while estimates of these values before the sample is taken. This point is considered in the 
final section of the chapter.

Now, consider the sample size required under optimal allocation for a population 
proportion.

Compared with the proportional allocation, Equation 17.15 allocates more sample 
observations to strata in which the true population proportions are closest to 0.50. The 
difficulty in using Equation 17.15 is that it involves the unknown proportions Pj for 
(j = 1, 2, c, K), the very quantities that the survey is designed to estimate.

Nevertheless, sometimes prior knowledge about the population can provide at least a 
rough idea as to which strata have proportions closest to 0.5. In Example 17.3 the sample 
proportions suggest that the number of 2-year colleges in the sample should have been 
less than the number resulting from proportional allocation. The same conclusion holds 
for this study when we compare the sample standard deviations of Example 17.2 with 
Equation 17.14. In spite of this, it was decided that more, rather than fewer, 2-year colleges 
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should be included in the sample. The reason for this decision was that, in this particular 
study, the publisher in Example 17.2 was eager to obtain reliable information about both 
the 2-year and the 4-year college markets.

This illustration serves as an example of an important point. Although the division of 
sample effort suggested by Equations 17.14 and 17.15 is often referred to as the optimum 
allocation, it is optimal only with regard to the narrow criterion of efficient estimation of 
overall population parameters. Frequently, surveys have broader objectives than this, in 
which case it may well be reasonable to depart from the optimum allocation.

Determining Sample Sizes for Stratified Random Sampling  
with Specified Degree of Precision

It is also possible to derive formulas for the sample size needed to yield a specified degree 
of precision when stratified random sampling is employed.

Variance of Estimator of Population Mean, Stratified 
Sampling
Let the random variable Xst denote the estimator of the population mean 
from stratified sampling and Xj ( j = 1, 2, c, K) be the sample means for 
the individual strata. It then follows, since

 Xst =
1
N a

K

j=1
NjXj (17.16)

that the variance of Xst is

 Var1Xst2 = s2

  Xst
=

1
N2 a

K

j=1
N2

j  Var1Xj2 = 1
N2 a

K

j=1
N2

j  
s2

j

nj
*
1Nj - nj)

Nj - 1
 (17.17)

where the s2
j  are the population variances for the K strata.

Total Sample Size to Estimate Overall Mean  
(Stratum Population Variances Specified),  
Stratified Random Sampling
Suppose that a population of N members is subdivided in K strata contain-
ing N1, N2, c, NK members. Let s2

j  denote the population variance in the 
jth stratum, and suppose that an estimate of the overall population mean 
is  desired. If the desired variance, sXst

2 , of the sample estimator is specified, 
the required total sample size, n, is as follows:

1. Proportional allocation

 n =
a
K

j=1
Njs

2
j

Ns2
  Xst

+
1
N a

K

j=1
Njs

2
j

 (17.18)

Now, for any choice of n1, n2, c, nK, Equation 17.17 can be used to derive the cor-
responding variance of the estimator of the population mean. However, the actual total 
sample size, n, required to achieve a particular value for this variance will depend on the 
manner in which the sample observations are allocated among the strata. We have already 
discussed two frequently used procedures, proportional allocation and optimum allocation. 
In either case, by substituting for nj in Equation 17.17, you can solve the resulting equation 
and obtain the sample size, n. The results are given in Equation 17.18 and Equation 17.19.
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2. Optimal allocation

 n =

1
N

 aaK
j=1

Njsjb2

Ns2
  Xst

+
1
N a

K

j=1
Njs

2
j

 (17.19)

Example 17.4 Restaurant in Three States 
(Sample Size)

As in Example 17.1, take a stratified random sample to estimate the mean number of 
orders per restaurant of a new food item when the numbers of restaurants in the three 
states are as follows:

N1 = 60 N2 = 50 N3 = 45

Suppose also that the experience of the restaurant chain suggests that the population 
standard deviations for the three states are likely to be approximately

s1 = 13 s2 = 11 s3 = 9

If a 95% confidence interval is required for the population mean that extends three or-
ders per restaurant on each side of the sample-point estimate, how many sample obser-
vations are needed in all?

Solution Note that

1.96sXst
= 3,    so   sXst

= 1.53

a
K

j=1
Njs

2
j = (60)(13)2 + (50)(11)2 + (45)(9)2 = 19,835

and

1
N

 aaK
j=1

Njsjb2

=
3(60)(13) + (50)(11) + (45)(9)42

155
= 19,421

For proportional allocation, the sample size needed is as follows:

n =
a
K

j=1
Njs

2
j

Ns2
  Xst

+
1
N a

K

j=1
Njs

2
j

  =
19,835

(155)(1.53)2 + 19,835>155
= 40.4

Thus, a sample of 41 observations will suffice to produce the required level of precision.
If optimal allocation is to be used, the sample size needed is

n =

1
N

 aaK
j=1

Njsjb2

Ns2
  Xst

+
1
N a

K

j=1
Njs

2
j

  =
19,421

(155)(1.53)2 + 19,835>155
= 39.6

so the same degree of reliability can be obtained with 40 observations if this method 
of allocation is used. In this particular case, since the population standard deviations 
are quite close, this represents only a very small savings compared with proportional 
allocation.
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EXERCISES

Application Exercises
 17.1 A small town contains a total of 1,800 households. The 

town is divided into three districts, containing 820, 
540, and 440 households, respectively. A stratified 
random sample of 300 households contains 120, 90, 
and 90 households, respectively, from these three dis-
tricts. Sample members were asked to estimate their 
total energy bills for the winter months. The respec-
tive sample means were $290, $352, and $427, and the 
respective sample standard deviations were $47, $61, 
and $93.

a. Use an unbiased estimation procedure to estimate 
the mean winter energy bill for all households in 
this town.

b. Use an unbiased estimation procedure to find an 
estimate of the variance of the estimator of part a.

c. Find a 95% confidence interval for the population 
mean winter energy bill for households in this town.

 17.2 A college has 152 assistant professors, 127 associate 
professors, and 208 full professors. The college ad-
ministration is investigating the amount of time these 
faculty members spend in meetings in a semester. 
Random samples of 40 assistant professors, 40 as-
sociate professors, and 50 full professors were asked 
to keep records of time spent in meetings during a 
semester. The sample means were 27.6 hours for as-
sistant professors, 39.2 hours for associate professors, 
and 43.3 hours for full professors. The sample stan-
dard deviations were 7.1 hours for assistant profes-
sors, 9.9 hours for associate professors, and 12.3 hours 
for full professors.

a. Find a 90% confidence interval for the mean time 
spent in meetings by full professors at this college 
during the semester.

b. Using an unbiased estimation procedure, estimate 
the mean time spent in meetings by all faculty 
members at this college during the semester.

c. Find 90% and 95% confidence intervals for the mean 
time spent in meetings by all faculty members at this 
college during the semester.

 17.3 A local bus company is planning a new route to serve 
four housing subdivisions. Random samples of house-
holds are taken from each subdivision, and sample 
members are asked to rate, on a scale of 1 (strongly 
opposed) to 5 (strongly in favor), their reaction to the 
proposed service. The results are summarized in the 
accompanying table.

Subdivision 1 Subdivision 2 Subdivision 3 Subdivision 4
Ni 240 190 350 280

ni  40  40  40  40

xi  2.5  3.6  3.9  2.8

si  0.8  0.9  1.2  0.7

a. Find a 90% confidence interval for the mean reac-
tion of households in subdivision 1.

b. Using an unbiased estimation procedure, estimate 
the mean reaction of all households to be served by 
the new route.

c. Find 90% and 95% confidence intervals for the 
mean reaction of all households to be served by 
the new route.

 17.4 In a stratified random sample of students on a small 
campus, sample members were asked to rate, on a 
scale from 1 (poor) to 5 (excellent), opportunities for 
extracurricular activities. The results are shown in the 
accompanying table.

Freshmen and  
Sophomores

Juniors and  
Seniors

Ni  632  529

ni   50   50

xi 3.12 3.37

si 1.04 0.86

a. Find a 95% confidence interval for the mean rating 
that would be given by all freshmen and sopho-
mores on this campus.

b. Find a 95% confidence interval for the mean rating 
that would be given by all juniors and seniors on 
this campus.

c. Find a 95% confidence interval for the mean rating 
that would be given by all undergraduate students 
on this campus.

 17.5 Refer to Exercise 17.2.

a. Find a 90% confidence interval for the total amount 
of time spent in meetings by all full professors in 
this college in the semester.

b. Find a 90% confidence interval for the total amount 
of time spent in meetings by all faculty members in 
this college in the semester.

 17.6 A company has three divisions, and auditors are at-
tempting to estimate the total amounts of the com-
pany’s accounts receivable. Random samples of 
these accounts were taken for each of the three divi-
sions, yielding the results shown in the following 
table:

Division 1 Division 2 Division 3
Ni  120  150  180

ni   40   45   50

xi $237 $198 $131

si  $93  $64  $47

a. Using an unbiased estimation procedure, find a 
point estimate of the total value of all accounts re-
ceivable for this company.

b. Find a 95% confidence interval for the total value of 
all accounts receivable for this company.

 17.7 In a region divided into three districts, there are 227 
Wi-Fi points. A new ITC operator decides to perform 
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a survey on these three districts to evaluate the instal-
lation of additional hotspots. A sampling plan will be 
implemented to carry out the survey.

Following is the table of the Wi-Fi points, together 
with the SD (miles) and their sampling cost.

District Wi-Fi points SD * miles Sampling Cost
1   68 34 10

2 143 20 14

3   16 59 18

Use the stratified sampling procedure to calculate the 
stratum sample size that minimizes costs.

 17.8 A consulting company has developed a short course 
on modern business forecasting methods for corporate 
executives. The first course was attended by 150 execu-
tives. From the information they supplied, it was con-
cluded that the technical skills of 100 course members 
were more than adequate to follow the course material, 
whereas those of the remaining 50 were judged barely 
adequate. After the completion of the course, question-
naires were sent to independent random samples of 25 
people from each of these two groups in order to ob-
tain feedback that could lead to improved presentation 
in subsequent courses. Six of the more skilled group 
and 14 of the less skilled group indicated that they be-
lieved the course had been too theoretical.

a. Find an estimate of the proportion of all course 
members with this opinion, using an unbiased esti-
mation procedure.

b. Find 90% and 95% confidence intervals for this 
population proportion.

 17.9 A college has 152 assistant professors, 127 associate 
professors, and 208 full professors. A journalist with 
the student newspaper was interested in whether 
faculty members were actually in their offices during 
posted office hours. The student journalist decided 
to investigate samples of 40 assistant professors, 40 
associate professors, and 50 full professors. Student 
volunteers were sent to knock on the doors of these 
sample members during their posted office hours. It 
was found that 31 of the assistant professors, 29 of the 
associate professors, and 34 of the full professors were 
actually in their offices at these times.

a. Using an unbiased estimation procedure, find a point 
estimate of the proportion of all faculty members 
who are in their offices during posted office hours.

b. Find 90% and 95% confidence intervals for the 
proportion of all faculty members who are in 
their offices during posted office hours.

 17.10 Refer to Exercise 17.2. If a total sample of 130 faculty 
members is to be taken, determine how many of these 
should be full professors under each of the following 
schemes.

a. Proportional allocation
b. Optimum allocation, assuming the stratum popula-

tion standard deviations are the same as the corre-
sponding sample values

 17.11 Refer to the data of Exercise 17.3. If a total sample of 
160 households is to be taken, determine how many of 
these should be from subdivision 1 under each of the 
following schemes.

a. Proportional allocation
b. Optimum allocation, assuming the stratum popula-

tion standard deviations are the same as the corre-
sponding sample values

 17.12 Refer to the data of Exercise 17.4. If a total sample of 
100 students is to be taken, determine how many of 
these should be freshmen and sophomores under each 
of the following schemes.

a. Proportional allocation
b. Optimum allocation, assuming the stratum popula-

tion standard deviations are the same as the corre-
sponding sample values

 17.13 Refer to the data of Exercise 17.6. If a total sample of 
135 accounts receivable is to be taken, determine how 
many of these should be from Division 1 under each 
of the following schemes.

a. Proportional allocation
b. Optimum allocation, assuming the stratum popula-

tion standard deviations are the same as the corre-
sponding sample values

 17.14 Refer to the data of Example 17.2. If a total sample of 
100 colleges is to be taken, determine how many of 
these should be 4-year schools under each of the fol-
lowing schemes.

a. Proportional allocation
b. Optimum allocation, assuming the stratum popula-

tion standard deviations are the same as the corre-
sponding sample values

 17.15 An auditor wants to estimate the mean value of a cor-
poration's accounts receivable. The population is di-
vided into four strata, containing 500, 400, 300, and 200 
accounts, respectively. On the basis of past experience, 
it is estimated that the standard deviations of values in 
these strata will be $150, $200, $300, and $400, respec-
tively. If a 90% confidence interval for the overall popu-
lation mean is to extend $25 on each side of the sample 
estimate, determine the total sample size needed under 
both proportional allocation and optimal allocation.

 17.16 Mean household income must be estimated for a town 
that can be divided into three districts. The relevant 
information is shown in the table.

District
Population  

Size
Estimated Standard  

Deviation ($)
1 1,150 4,000

2 2,120 6,000

3   930 8,000

If a 95% confidence interval for the population mean 
extending $500 on each side of the sample estimate is 
required, determine how many sample observations 
in total are needed under proportional allocation and 
optimal allocation.
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17.2 OTHER SAMPLING METHODS

Simple random sampling and stratified random sampling have been discussed briefly. 
These are not the only procedures used for choosing a sample. Some alternative methods 
are discussed in this section.

Cluster Sampling

Suppose that an investigator wants to survey a population spread over a wide geographical 
area, such as a large city or a state. If either a simple random sample or a stratified random 
sample is to be used, two immediate problems will arise. First, in order to draw the sample, 
the investigator will need a reasonably accurate listing of the population members. Such a list 
may not be available or could perhaps be obtained only at a prohibitively high cost. Second, 
even if the investigator does possess a list of the population, the resulting sample members 
will almost inevitably be thinly spread over a large area. In that case, having interviewers con-
tact each individual sample member would be quite costly. Of course, if a mail questionnaire 
is to be used, this latter problem does not arise. However, this means of contact may lead to an 
unacceptably high rate of nonresponse, leading the investigator to prefer personal interviews.

Faced with the dilemma of either not having a reliable population listing or wanting 
to set up personal interviews with sample members when budget resources are tight, the 
investigator may use an alternative sampling procedure known as cluster sampling. This 
approach is attractive when a population can conveniently be subdivided into relatively 
small, geographically compact units called clusters. For example, a city might be subdi-
vided into political wards or residential blocks. This can generally be achieved even when 
a complete listing of residents or households is unavailable.

In cluster sampling a simple random sample of clusters is selected from the popula-
tion, and every individual in each of the sampled clusters is contacted; that is, a complete 
census is carried out in each of the chosen clusters. In the following equations procedures 
for deriving valid inferences about the population mean and proportion from the results 
of a cluster sample are given.

Estimators for Cluster Sampling
A population is subdivided into M clusters, a simple random sample of m of 
these clusters is selected, and information is obtained from every member 
of the sampled clusters. Let n1, n2, c, nm denote the numbers of population 
members in the m sampled clusters. Denote the means of these clusters by 
x1, x2, c, xm and the proportions of cluster members possessing an attribute 
of interest by pn1, pn2, c, pnm. The objective is to estimate the overall population 
mean m and proportion pn.

1. Unbiased estimation procedures give

 xc =
a
m

i=1
nixi

a
m

i=1
ni

 (17.20)

 and

 pnc =
a
m

i=1
nipni

a
m

i=1
ni

 (17.21)
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2. Estimates of the variance of these estimators, following from unbiased 
estimation procedures, are

 sn xc

2 =
M - m
Mmn2

°ami=1
n2

i 1xi - xc22
m - 1

¢
 (17.22)

 and

 sn 2
pnc
=

M - m
Mmn2

°ami=1
n2

i 1pni - pnc22
m - 1

¢
 (17.23)

 where n = a
m

i=1
ni>m is the average number of individuals in the sampled 

clusters.

Estimation of Population Mean Using Cluster Sampling
Provided the sample size is large, a 10011 - a2% confidence interval estimation 
of the population mean using cluster sampling is as follows:

 xc { za>2sn xc
 (17.24)

Estimation of Population Proportion Using Cluster 
Sampling
Provided the sample size is large, a 100(1 - a)% confidence interval estimation 
of the population proportion using cluster sampling is as follows:

 pnc { za>2sn pnc
 (17.25)

Example 17.5 Cluster Sampling for Family Incomes 
(Estimation)

A simple random sample of 20 blocks is taken from a residential area containing a total 
of 1,000 blocks. Each household in the sampled blocks is then contacted, and informa-
tion is obtained about family incomes. The mean annual incomes and the proportion 
of families with incomes below $15,000 per year in the sampled blocks are contained in 

Based on these estimators, the confidence intervals with cluster sampling follow.

Similarly, confidence intervals for the population proportion based on cluster sam-
pling are established.

Notice that inferences can be made with relatively little prior information about 
the population. All that is required is a breakdown into identifiable clusters. It is not 
necessary to know the total number of population members. It is sufficient to know the 
numbers in each of the sampled clusters, and these can be determined during the course 
of the survey, since a full census is taken in each cluster in the sample. In addition, 
since sample members will be geographically close to one another within clusters, their 
contact by interviewers is relatively inexpensive.
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the data file Income Clusters. For this residential area estimate the mean family income 
and the proportion of families with incomes below $15,000 per year.

Solution It is known that

m = 20 and M = 1,000

The total number of households in the sample is as follows:

a
m

i=1
ni = (23 + 31 + g + 41) = 607

To obtain point estimates,

a
m

i=1
nixi = (23)(26,823) + (31)(19,197) + g + (41)(16,493) = 15,848,158

and

a
m

i=1
nipni = (23)(0.1304) + (31)(0.4516) + g + (41)(0.3659) = 153

Our point estimates are, therefore,

 xc =
a
m

i=1
nixi

a
m

i=1
ni

=
15,848,158

607
= 26,109

 pnc =
a
m

i=1
nipni

a
m

i=1
ni

=
153
607

= 0.2521

Thus, on the basis of this sample evidence it is estimated that for this residential area, 
mean annual household income is $26,109 and 25.21% of households have incomes be-
low $15,000 per year.

To obtain interval estimates of the population mean, the average cluster size is 
needed where

n =
a
m

i=1
ni

m
=

607
20

= 30.35

Also,

 
a
m

i=1
n2

i (xi - xc)2

m - 1
=

(23)2(26,283 - 26,109)2 + g + (41)2(16,493 - 26,109)2

19

 = 69,270,562,244

so

sn 2
  xc

=
M - m
Mmn2 *

a
m

i=1
n2

i (xi - xc)2

m - 1
=

(980)(69,270,562,244)
(1,000)(20)(30.35)2 = 3,684,914

and, taking the square root,

sn x = 1,920

A 95% confidence interval for the population mean is

26,109 { (1.96)(1,920) 
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A 95% confidence interval for the mean income of all families in this area, therefore, 
runs from $22,346 to $29,872.

To obtain interval estimates for the population proportion,

a
m

i=1
n2

i (pni - pnc)2

m - 1
=

(23)2(0.1304 - 0.2521)2 + g + (41)2(0.3659 - 0.2521)2

19
= 38.1547

Then,

 sn 2
pnc

=
M - m
Mmn2  

°ami=1
n2

i (pni - pnc)2

m - 1
¢

 =
(980)(38.1547)

(1,000)(20)(30.35)2 = 0.0020297

and, taking the square root,

sn pnc
= 0.0451

The 95% confidence interval for the population proportion is

(0.2521) { (1.96)(0.0451) 

Our 95% confidence interval for the percentage of households with annual incomes 
below $15,000 runs from 16.4% to 34.0%.

Cluster sampling has a superficial resemblance to stratified sampling. In both, the pop-
ulation is first divided into subgroups. However, the similarity is rather illusory. In strati-
fied random sampling, a sample is taken from every stratum of the population in an attempt 
to ensure that important segments of the population are given due weight. By contrast, in 
cluster sampling a random sample of clusters is taken, so that some clusters will have no 
members in the sample. Since, within clusters, population members will probably be fairly 
homogeneous, the danger is that important subgroups of the population may be either not 
represented at all or grossly underrepresented in the final sample. In consequence, while 
the great advantage of cluster sampling lies in its convenience, this convenience may well 
be at the cost of additional imprecision in the sample estimates. A further distinction be-
tween cluster sampling and stratified sampling is that in the former a complete census of 
cluster members is taken, while in the latter a random sample of stratum members is drawn. 
This difference, however, is not essential. Indeed, on occasions an investigator may draw a 
random sample of cluster members rather than take a full census.

Two-Phase Sampling

In many investigations the population is not surveyed in a single step. Rather, it is often 
convenient to carry out an initial pilot study in which a relatively small proportion of the 
sample members are contacted. The results obtained are then analyzed prior to conducting 
the bulk of the survey. The chief disadvantage of such a procedure is that it can be quite 
time consuming. However, this factor may be outweighed by several advantages. One 
important benefit is that the investigator is able, at modest cost, to try out the proposed 
questionnaire in order to ensure that the various questions can be thoroughly understood. 
The pilot study may also suggest additional questions whose potential importance had 
previously been overlooked. Moreover, this study should also provide an estimate of the 
likely rate of nonresponse. Should this prove unacceptably high, some modification in the 
method of soliciting responses might appear desirable.
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Conducting a survey in two stages, beginning with a pilot study, is known as two-
phase sampling. This approach has two further advantages. First, if stratified random 
sampling is employed, the pilot study can be used to provide estimates of the individual 
stratum variances. These, in turn, can be employed to estimate the optimum allocation of 
the sample among the various strata. Second, the results of the pilot study can be used to 
estimate the number of observations needed to obtain estimators of population param-
eters with a specified level of precision. The following examples serve to illustrate these 
points. Consider a straightforward situation in which a simple random sample is to be 
used to estimate a population mean. At the outset, relatively little is known about this 
population, so an initial pilot survey is to be carried out to get some idea of the sample 
size required.

Example 17.6 Mean Value of Accounts Receivable 
(Sample Size)

An auditor wishes to estimate the mean value of accounts receivable in a total popula-
tion of 1,120 accounts. He wants to produce a 95% confidence interval for the popula-
tion mean, extending approximately $4 on each side of the sample mean. To begin, he 
takes a simple random sample of 100 accounts, finding a sample standard deviation of 
$30.27. How many more accounts should be sampled?

Solution Using Equation 7.23, the required sample size is found to be

n =
Ns2

(N - 1)sX
2 + s2

where N = 1,120 is the number of population members in this case. In order for the 
95% confidence interval to be the required width,

1.96sx = 4

so that sx, the standard deviation of the sample mean, must be as follows:

sx =
4

1.96
= 2.04

The population standard deviation, s, is unknown. However, as a result of the initial 
study of 100 accounts receivable, it is estimated to be 30.27. The total number of sample 
observations needed is, therefore,

n =
Ns2

(N - 1)sx
2 + s2 =

(1,120)(30.27)2

(1,119)(2.04)2 + (30.27)2 = 184.1

Since 100 observations have already been taken, an additional 85 will suffice to satisfy 
the auditor's objective.

Example 17.7 Income (Sample Size)

An investigator intends to take a stratified random sample to estimate mean family in-
come in a town where the numbers in the three stratum districts are as follows:

N1 = 1,150 N2 = 2,120 N3 = 930

To begin, the investigator conducts a pilot study, sampling 30 households from each 
district and obtaining the sample standard deviations $3,657, $6,481, and $8,403, 
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Nonprobabilistic Sampling Methods

Various sampling schemes for which it is possible to specify the probability that any 
particular sample will be drawn from the population have been considered. Because of 
this feature of the sampling methods, valid statistical inferences based on the sample 
results can be made. Otherwise, the derivation of unbiased point estimates and con-
fidence intervals with specified probability content could not be achieved with strict 
statistical validity.

Nevertheless, in many practical applications, nonprobabilistic methods are used for 
selecting sample members, primarily as a matter of convenience. For example, suppose 
that you want to assess the reactions of students on your campus to some  issue of topi-
cal interest. One possibility would be to ask all your friends how they feel about it. This 
group would not constitute a random sample from the population of all students. Accord-
ingly, if you proceed to analyze the data as if they were obtained from a random sample, 
the resulting inference would lack proper statistical validity.

A more sophisticated version of the approach just described, called quota sampling, 
is commonly used by polling organizations. Interviewers are assigned to a particular lo-
cale and instructed to contact specified numbers of people of certain age, race, and gen-
der characteristics. These assigned quotas represent what are thought to be appropriate 
proportions for the population at large. However, once the quotas are determined, in-
terviewers are granted flexibility in the choice of sample members. Their choice is typi-
cally not random. Quota sampling can, and often does, produce quite accurate estimates 
of population parameters. The drawback is that, since the sample is not chosen using 
probabilistic methods, there is no valid way of determining the reliability of the result-
ing estimates.

 respectively. Suppose that the objective is to obtain, with as small a size as possible, 
a 95% confidence interval for the population mean extending $500 on each side of the 
sample estimate. How many additional observations should be taken in each district?

Solution The requirement that a specified degree of precision be obtained with as 
few sample observations as possible implies that optimal allocation must be used. 
Recall from Equation 17.14 that the numbers n1, n2, and n3 to be sampled in the three 
strata are as follows:

nj =
Njsj

a
K

i=1
Nisi

* n  (j = 1, 2, 3)

where the si are the stratum population standard deviations. Using our sample esti-
mates in place of these quantities,

 n1 =
(1,150)(3,657)

(1,150)(3,657) + (2,120)(6,481) + (930)(8,403)
* n = 0.163n

 n2 =
(2,120)(6,481)

(1,150)(3,657) + (2,120)(6,481) + (930)(8,403)
* n = 0.533n

 n3 =
(930)(8,403)

(1,150)(3,657) + (2,120)(6,481) + (930)(8,403)
* n = 0.303n

The properties of the total sample to be allocated to each stratum under the opti-
mal scheme are now specified. It remains to determine the total number n of sample 
observations.
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EXERCISES

Application Exercises
 17.17 A market-research organization wants to estimate 

the mean amounts of time in a week that television 
sets are in use in households in a city that contains 
65 precincts. A simple random sample of 10 precincts 
was selected, and every household in each sampled 
precinct was questioned. The following results were 
obtained:

a. Find a point estimate of the population mean amount 
of time that televisions are in use in this city.

b. Find a 90% confidence interval for the population mean.

Sampled 
Precinct

Number of  
Households

Mean Time Television  
in Use (Hours)

 1 28 29.6

 2 35 18.4

 3 18 32.7

 4 52 26.3

 5 41 22.4

 6 38 31.6

 7 36 19.7

 8 30 23.8

 9 23 25.4

10 42 24.1

 17.18 A union executive wants to estimate the mean value of 
bonus payments made to a corporation's clerical em-
ployees in the first month of a new plan. This corpora-
tion has 52 subdivisions, and a simple random sample 
of 8 of these is taken. Information is then obtained 
from the payroll records of every clerical worker in 
each of the sampled subdivisions. The results obtained 
are shown in the following table:

Sampled  
Subdivision

Number of  
Clerical Employees

Mean Bonus 
(Dollars)

1 69  83

2 75  64

3 41  42

4 36 108

5 59 136

6 82 102

7 64  95

8 71  98

a. Find a point estimate of the population mean 
 bonus per clerical employee for this month.

b. Find a 99% confidence interval for the population mean.

 17.19 In the survey of Exercise 17.17, the households were 
asked if they had cable television. The numbers hav-
ing cable are given in the accompanying table.

Precinct  1  2  3  4  5  6  7  8 9 10
Number 12 11 10 29 15 13 20 14 9 26

a. Find a point estimate of the proportion of all 
households in the city having cable television.

b. Find a 90% confidence interval for this population 
proportion.

 17.20 In the survey of Exercise 17.18, the clerical employees 
in the eight sampled subdivisions were asked if they 
were satisfied with the operation of the bonus plan. 
The results obtained are listed in the following table:

Subdivision  1  2  3  4  5  6  7  8
Number satisfied 24 25 11 21 35 44 30 34

a. Find a point estimate of the proportion of all cleri-
cal employees satisfied with the bonus plan.

b. Find a 95% confidence interval for this population 
proportion.

 17.21 A city is divided into 50 geographic subdivisions. An 
estimate was required of the proportion of households 
in the city interested in a new lawn-care service. A 
random sample of three subdivisions contained 611, 
521, and 734 households, respectively. The numbers 
expressing interest in the service were 128, 131, and 
172, respectively. Find a 90% confidence interval for 
the proportion of all households in this city interested 
in the lawn-care service.

 17.22 A bank holds 720 delinquent mortgages in residen-
tial properties. It required an estimate of the mean 
current appraised value of these properties. Initially, 
a random sample of 20 was appraised, and a sample 
standard deviation of $37,600 was found. If the bank 
requires a 90% confidence interval for the population 
mean extending $5,000 on each side of the sample 
mean, how many more properties must be appraised?

 17.23 A college has 3,200 undergraduate students and 
800 graduate students. Researchers are interested in 
the amount of money spent in a year on textbooks 
by these students. Initially, simple random samples 
of 30 undergraduate students and 30 graduate stu-
dents were taken. The sample standard deviations for 
amounts spent were $40 and $58, respectively. A 90% 
confidence interval for the overall population mean 
that extends $5 on each side of the sample point esti-
mate is required. Estimate the smallest total number 
of additional sample observations needed to achieve 
this goal.

 17.24 A corporation has a fleet of 480 company cars—100 
compact, 180 midsize, and 200 full size. To estimate the 
overall mean annual repair costs for these cars, a pre-
liminary random sample of 10 cars of each type is se-
lected. The sample standard deviations for repair costs 
are $105 for compact cars, $162 for midsize cars, and 
$183 for full-size cars. A 95% confidence interval for 
the overall population mean annual repair cost per car 
that extends $20 on each side of the sample point esti-
mate is required. Estimate the smallest total number of 
additional sample observations that must be taken.
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CHAPTER EXERCISES AND APPLICATIONS

 17.25 Carefully explain the distinction between stratified 
random sampling and cluster sampling. Provide il-
lustrations of sampling problems where each of these 
techniques might be useful.

 17.26 The U.S. Senate has 100 members. Information was 
obtained from the individuals responsible for manag-
ing correspondence in 61 senators' offices. Of these, 38 
specified a minimum number of letters that must be 
received on an issue before a form letter in response 
is created.

a. Assume these observations constitute a random 
sample from the population, and find a 90% con-
fidence interval for the proportion of all senators' 
offices with this policy.

b. In fact, information was not obtained from a ran-
dom sample of senate offices. Questionnaires were 
sent to all 100 offices, but only 61 responded. How 
does this information influence your view of the 
answer to part (a)? 

 17.27 A company has three subdivisions, employing a to-
tal of 970 managers. Independent random samples of 
managers were taken from each subdivision, and the 
number of years with the company was determined 
for each sample member. The results are summarized 
in the accompanying table.

Subdivision 1 Subdivision 2 Subdivision 3
Ni 352  287  331

ni  30   20   30

xi  9.2 12.3 13.5

si  4.9  6.4  7.6

a. Find a 99% confidence interval for the mean num-
ber of years with the company for managers in 
subdivision 1.

b. Find a 99% confidence interval for the mean num-
ber of years with the company for all managers.

 17.28 Of the 300 pages in a particular book, 180 pages are 
primarily nontechnical, while the remainder of the 
pages are technical. Independent random samples of 
technical and nontechnical pages were taken, and the 
numbers of errors per page were recorded. The results 
are summarized in the following table:

Technical Nontechnical
Ni  120  180

ni   20   20

xi  1.6 0.74

si 0.98 0.56

a. Find a 95% confidence interval for the mean num-
ber of errors per page in this book.

b. Find a 99% confidence interval for the total num-
ber of errors in the book.

 17.29 In the analysis of Exercise 17.28, it was found that 9 
of the sampled technical pages and 15 of the sampled 
nontechnical pages contained no errors. Find a 90% 
confidence interval for the proportion of all pages in 
this book that have no errors.

 17.30 Refer to the data of Exercise 17.27. If 80 managers 
were sampled, determine how many sample members 
would be from subdivision 1 under each of the follow-
ing schemes.

a. Proportional allocation
b. Optimum allocation, assuming that the stratum 

population standard deviations are the same as the 
corresponding sample quantities

 17.31 Refer to the data of Exercise 17.28. If 40 pages are to be 
sampled, determine how many sampled pages would 
be technical under each of the following schemes.

a. Proportional allocation
b. Optimum allocation, assuming that the stratum 

population standard deviations are the same as the 
corresponding sample quantities



 Chapter Exercises and Applications 737

 17.32 You intend to sample the students in your univer-
sity to assess their views on the adequacy of space in 
the library. You decide to use a stratified sample by 
year—first-year students, sophomores, and so forth. 
Discuss the factors you would take into account in 
deciding how many sample observations to take in 
each stratum.

 17.33 Suppose that you were asked by your state office of 
elections to assist in resolving an election dispute be-
tween two candidates, or perhaps you were asked to 

be a statistical expert in a lawsuit concerning the out-
come of a close election (such as the 2000 U.S. presi-
dential election). Many questions arise. Should all 
ballots in the state be recounted? Should only ballots 
in certain counties be recounted? If only certain ballots 
are recounted, which ballots? These and other similar 
questions were asked during the 2000 U.S. presiden-
tial election. Discuss the advantages and disadvan-
tages of various sampling designs that might be used 
to select ballots to be recounted.           
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Table 1 Cumulative Distribution Function, F(z), of the Standard Normal Distribution Table

F(z)

z0

 Z  0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990

3.1 0.9990 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993

3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995

3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997

Dr. William L. Carlson, prepared using Minitab 16.
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Table 2 Probability Function of the Binomial Distribution

The table shows the probability of x successes in n independent trials, each with probability of success P. For example, the probability of four 
successes in eight independent trials, each with probability of success .35, is .1875.

n x P

.05 .10 .15 .20 .25 .30 .35 .40 .45 .50

1 0 .9500 .9000 .8500 .8000 .7500 .7000 .6500 .6000 .5500 .5000
1 .0500 .1000 .1500 .2000 .2500 .3000 .3500 .4000 .4500 .5000

2 0 .9025 .8100 .7225 .6400 .5625 .4900 .4225 .3600 .3025 .2500
1 .0950 .1800 .2550 .3200 .3750 .4200 .4550 .4800 .4950 .5000
2 .0025 .0100 .0225 .0400 .0625 .0900 .1225 .1600 .2025 .2500

3 0 .8574 .7290 .6141 .5120 .4219 .3430 .2746 .2160 .1664 .1250
1 .1354 .2430 .3251 .3840 .4219 .4410 .4436 .4320 .4084 .3750
2 .0071 .0270 .0574 .0960 .1406 .1890 .2389 .2880 .3341 .3750
3 .0001 .0010 .0034 .0080 .0156 .0270 .0429 .0640 .0911 .1250

4 0 .8145 .6561 .5220 .4096 .3164 .2401 .1785 .1296 .0915 .0625
1 .1715 .2916 .3685 .4096 .4219 .4116 .3845 .3456 .2995 .2500
2 .0135 .0486 .0975 .1536 .2109 .2646 .3105 .3456 .3675 .3750
3 .0005 .0036 .0115 .0256 .0469 .0756 .1115 .1536 .2005 .2500
4 .0000 .0001 .0005 .0016 .0039 .0081 .0150 .0256 .0410 .0625

5 0 .7738 .5905 .4437 .3277 .2373 .1681 .1160 .0778 .0503 .0312
1 .2036 .3280 .3915 .4096 .3955 .3602 .3124 .2592 .2059 .1562
2 .0214 .0729 .1382 .2048 .2637 .3087 .3364 .3456 .3369 .3125
3 .0011 .0081 .0244 .0512 .0879 .1323 .1811 .2304 .2757 .3125
4 .0000 .0004 .0022 .0064 .0146 .0284 .0488 .0768 .1128 .1562
5 .0000 .0000 .0001 .0003 .0010 .0024 .0053 .0102 .0185 .0312

6 0 .7351 .5314 .3771 .2621 .1780 .1176 .0754 .0467 .0277 .0156
1 .2321 .3543 .3993 .3932 .3560 .3025 .2437 .1866 .1359 .0938
2 .0305 .0984 .1762 .2458 .2966 .3241 .3280 .3110 .2780 .2344
3 .0021 .0146 .0415 .0819 .1318 .1852 .2355 .2765 .3032 .3125

4 .0001 .0012 .0055 .0154 .0330 .0595 .0951 .1382 .1861 .2344
5 .0000 .0001 .0004 .0015 .0044 .0102 .0205 .0369 .0609 .0938
6 .0000 .0000 .0000 .0001 .0002 .0007 .0018 .0041 .0083 .0156

7 0 .6983 .4783 .3206 .2097 .1335 .0824 .0490 .0280 .0152 .0078
1 .2573 .3720 .3960 .3670 .3115 .2471 .1848 .1306 .0872 .0547
2 .0406 .1240 .2097 .2753 .3115 .3177 .2985 .2613 .2140 .1641
3 .0036 .0230 .0617 .1147 .1730 .2269 .2679 .2903 .2918 .2734
4 .0002 .0026 .0109 .0287 .0577 .0972 .1442 .1935 .2388 .2734
5 .0000 .0002 .0012 .0043 .0115 .0250 .0466 .0774 .1172 .1641
6 .0000 .0000 .0001 .0004 .0013 .0036 .0084 .0172 .0320 .0547
7 .0000 .0000 .0000 .0000 .0001 .0002 .0006 .0016 .0037 .0078

8 0 .6634 .4305 .2725 .1678 .1001 .0576 .0319 .0168 .0084 .0039
1 .2793 .3826 .3847 .3355 .2670 .1977 .1373 .0896 .0548 .0312
2 .0515 .1488 .2376 .2936 .3115 .2965 .2587 .2090 .1569 .1094
3 .0054 .0331 .0839 .1468 .2076 .2541 .2786 .2787 .2568 .2188
4 .0004 .0046 .0185 .0459 .0865 .1361 .1875 .2322 .2627 .2734
5 .0000 .0004 .0026 .0092 .0231 .0467 .0808 .1239 .1719 .2188
6 .0000 .0000 .0002 .0011 .0038 .0100 .0217 .0413 .0703 .1094
7 .0000 .0000 .0000 .0001 .0004 .0012 .0033 .0079 .0164 .0312
8 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0007 .0017 .0039

(continued)
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n x P

.05 .10 .15 .20 .25 .30 .35 .40 .45 .50

9 0 .6302 .3874 .2316 .1342 .0751 .0404 .0207 .0101 .0046 .0020
1 .2985 .3874 .3679 .3020 .2253 .1556 .1004 .0605 .0339 .0176
2 .0629 .1722 .2597 .3020 .3003 .2668 .2162 .1612 .1110 .0703
3 .0077 .0446 .1069 .1762 .2336 .2668 .2716 .2508 .2119 .1641
4 .0006 .0074 .0283 .0661 .1168 .1715 .2194 .2508 .2600 .2461
5 .0000 .0008 .0050 .0165 .0389 .0735 .1181 .1672 .2128 .2461
6 .0000 .0001 .0006 .0028 .0087 .0210 .0424 .0743 .1160 .1641
7 .0000 .0000 .0000 .0003 .0012 .0039 .0098 .0212 .0407 .0703
8 .0000 .0000 .0000 .0000 .0001 .0004 .0013 .0035 .0083 .0176
9 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0008 .0020

10 0 .5987 .3487 .1969 .1074 .0563 .0282 .0135 .0060 .0025 .0010
1 .3151 .3874 .3474 .2684 .1877 .1211 .0725 .0403 .0207 .0098
2 .0746 .1937 .2759 .3020 .2816 .2335 .1757 .1209 .0763 .0439
3 .0105 .0574 .1298 .2013 .2503 .2668 .2522 .2150 .1665 .1172
4 .0010 .0112 .0401 .0881 .1460 .2001 .2377 .2508 .2384 .2051
5 .0001 .0015 .0085 .0264 .0584 .1029 .1536 .2007 .2340 .2461
6 .0000 .0001 .0012 .0055 .0162 .0368 .0689 .1115 .1596 .2051
7 .0000 .0000 .0001 .0008 .0031 .0090 .0212 .0425 .0746 .1172
8 .0000 .0000 .0000 .0001 .0004 .0014 .0043 .0106 .0226 .0439
9 .0000 .0000 .0000 .0000 .0000 .0001 .0004 .0016 .0042 .0098

10 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010

11 0 .5688 .3138 .1673 .0859 .0422 .0198 .0088 .0036 .0014 .0005
1 .3293 .3835 .3248 .2362 .1549 .0932 .0518 .0266 .0125 .0054
2 .0867 .2131 .2866 .2953 .2581 .1998 .1395 .0887 .0513 .0269
3 .0137 .0710 .1517 .2215 .2581 .2568 .2254 .1774 .1259 .0806
4 .0014 .0158 .0536 .1107 .1721 .2201 .2428 .2365 .2060 .1611
5 .0001 .0025 .0132 .0388 .0803 .1321 .1830 .2207 .2360 .2256
6 .0000 .0003 .0023 .0097 .0268 .0566 .0985 .1471 .1931 .2256
7 .0000 .0000 .0003 .0017 .0064 .0173 .0379 .0701 .1128 .1611
8 .0000 .0000 .0000 .0002 .0011 .0037 .0102 .0234 .0462 .0806
9 .0000 .0000 .0000 .0000 .0001 .0005 .0018 .0052 .0126 .0269

10 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0007 .0021 .0054
11 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0005

12 0 .5404 .2824 .1422 .0687 .0317 .0138 .0057 .0022 .0008 .0002
1 .3413 .3766 .3012 .2062 .1267 .0712 .0368 .0174 .0075 .0029
2 .0988 .2301 .2924 .2835 .2323 .1678 .1088 .0639 .0339 .0161
3 .0173 .0852 .1720 .2362 .2581 .2397 .1954 .1419 .0923 .0537
4 .0021 .0213 .0683 .1329 .1936 .2311 .2367 .2128 .1700 .1208
5 .0002 .0038 .0193 .0532 .1032 .1585 .2039 .2270 .2225 .1934
6 .0000 .0005 .0040 .0155 .0401 .0792 .1281 .1766 .2124 .2256
7 .0000 .0000 .0006 .0033 .0015 .0291 .0591 .1009 .1489 .1934
8 .0000 .0000 .0001 .0005 .0024 .0078 .0199 .0420 .0762 .1208
9 .0000 .0000 .0000 .0001 .0004 .0015 .0048 .0125 .0277 .0537

10 .0000 .0000 .0000 .0000 .0000 .0002 .0008 .0025 .0068 .0161
11 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010 .0029
12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002

Table 2 Probability Function of the Binomial Distribution (Continued )
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n x P

.05 .10 .15 .20 .25 .30 .35 .40 .45 .50

13 0 .5133 .2542 .1209 .0550 .0238 .0097 .0037 .0013 .0004 .0001
1 .3512 .3672 .2774 .1787 .1029 .0540 .0259 .0113 .0045 .0016
2 .1109 .2448 .2937 .2680 .2059 .1388 .0836 .0453 .0220 .0095
3 .0214 .0997 .1900 .2457 .2517 .2181 .1651 .1107 .0660 .0349
4 .0028 .0277 .0838 .1535 .2097 .2337 .2222 .1845 .1350 .0873
5 .0003 .0055 .0266 .0691 .1258 .1803 .2154 .2214 .1989 .1571
6 .0000 .0008 .0063 .0230 .0559 .1030 .1546 .1968 .2169 .2095
7 .0000 .0001 .0011 .0058 .0186 .0442 .0833 .1312 .1775 .2095
8 .0000 .0000 .0001 .0011 .0047 .0142 .0336 .0656 .1089 .1571
9 .0000 .0000 .0000 .0001 .0009 .0034 .0101 .0243 .0495 .0873

10 .0000 .0000 .0000 .0000 .0001 .0006 .0022 .0065 .0162 .0349
11 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0012 .0036 .0095
12 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0016
13 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

14 0 .4877 .2288 .1028 .0440 .0178 .0068 .0024 .0008 .0002 .0001
1 .3593 .3559 .2539 .1539 .0832 .0407 .0181 .0073 .0027 .0009
2 .1229 .2570 .2912 .2501 .1802 .1134 .0634 .0317 .0141 .0056
3 .0259 .1142 .2056 .2501 .2402 .1943 .1366 .0845 .0462 .0222
4 .0037 .0348 .0998 .1720 .2202 .2290 .2022 .1549 .1040 .0611
5 .0004 .0078 .0352 .0860 .1468 .1963 .2178 .2066 .1701 .1222
6 .0000 .0013 .0093 .0322 .0734 .1262 .1759 .2066 .2088 .1833
7 .0000 .0002 .0019 .0092 .0280 .0618 .1082 .1574 .1952 .2095
8 .0000 .0000 .0003 .0020 .0082 .0232 .0510 .0918 .1398 .1833
9 .0000 .0000 .0000 .0003 .0018 .0066 .0183 .0408 .0762 .1222

10 .0000 .0000 .0000 .0000 .0003 .0014 .0049 .0136 .0312 .0611
11 .0000 .0000 .0000 .0000 .0000 .0002 .0010 .0033 .0093 .0222
12 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0019 .0056
13 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002 .0009
14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001

15 0 .4633 .2059 .0874 .0352 .0134 .0047 .0016 .0005 .0001 .0000
1 .3658 .3432 .2312 .1319 .0668 .0305 .0126 .0047 .0016 .0005
2 .1348 .2669 .2856 .2309 .1559 .0916 .0476 .0219 .0090 .0032
3 .0307 .1285 .2184 .2501 .2252 .1700 .1110 .0634 .0318 .0139
4 .0049 .0428 .1156 .1876 .2252 .2186 .1792 .1268 .0780 .0417
5 .0006 .0105 .0449 .1032 .1651 .2061 .2123 .1859 .1404 .0916
6 .0000 .0019 .0132 .0430 .0917 .1472 .1906 .2066 .1914 .1527
7 .0000 .0003 .0030 .0138 .0393 .0811 .1319 .1771 .2013 .1964
8 .0000 .0000 .0005 .0035 .0131 .0348 .0710 .1181 .1647 .1964
9 .0000 .0000 .0001 .0007 .0034 .0116 .0298 .0612 .1048 .1527

10 .0000 .0000 .0000 .0001 .0007 .0030 .0096 .0245 .0515 .0916
11 .0000 .0000 .0000 .0000 .0001 .0006 .0024 .0074 .0191 .0417
12 .0000 .0000 .0000 .0000 .0000 .0001 .0004 .0016 .0052 .0139
13 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010 .0032
14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005
15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

16 0 .4401 .1853 .0743 .0281 .0100 .0033 .0010 .0003 .0001 .0000
1 .3706 .3294 .2097 .1126 .0535 .0228 .0087 .0030 .0009 .0002
2 .1463 .2745 .2775 .2111 .1336 .0732 .0353 .0150 .0056 .0018

Table 2 Probability Function of the Binomial Distribution (Continued )

(continued)
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n x P

.05 .10 .15 .20 .25 .30 .35 .40 .45 .50

3 .0359 .1423 .2285 .2463 .2079 .1465 .0888 .0468 .0215 .0085
4 .0061 .0514 .1311 .2001 .2552 .2040 .1553 .1014 .0572 .0278
5 .0008 .0137 .0555 .1201 .1802 .2099 .2008 .1623 .1123 .0667
6 .0001 .0028 .0180 .0550 .1101 .1649 .1982 .1983 .1684 .1222
7 .0000 .0004 .0045 .0197 .0524 .1010 .1524 .1889 .1969 .1746
8 .0000 .0001 .0009 .0055 .0197 .0487 .0923 .1417 .1812 .1964
9 .0000 .0000 .0001 .0012 .0058 .0185 .0442 .0840 .1318 .1746

10 .0000 .0000 .0000 .0002 .0014 .0056 .0167 .0392 .0755 .1222
11 .0000 .0000 .0000 .0000 .0002 .0013 .0049 .0142 .0337 .0667
12 .0000 .0000 .0000 .0000 .0000 .0002 .0011 .0040 .0115 .0278
13 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0008 .0029 .0085
14 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0018
15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0002
16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

17 0 .4181 .1668 .0631 .0225 .0075 .0023 .0007 .0002 .0000 .0000
1 .3741 .3150 .1893 .0957 .0426 .0169 .0060 .0019 .0005 .0001
2 .1575 .2800 .2673 .1914 .1136 .0581 .0260 .0102 .0035 .0010
3 .0415 .1556 .2359 .2393 .1893 .1245 .0701 .0341 .0144 .0052
4 .0076 .0605 .1457 .2093 .2209 .1868 .1320 .0796 .0411 .0182
5 .0010 .0175 .0068 .1361 .1914 .2081 .1849 .1379 .0875 .0472
6 .0001 .0039 .0236 .0680 .1276 .1784 .1991 .1839 .1432 .0944
7 .0000 .0007 .0065 .0267 .0668 .1201 .1685 .1927 .1841 .1484
8 .0000 .0001 .0014 .0084 .0279 .0644 .1134 .1606 .1883 .1855
9 .0000 .0000 .0003 .0021 .0093 .0276 .0611 .1070 .1540 .1855

10 .0000 .0000 .0000 .0004 .0025 .0095 .0263 .0571 .1008 .1484
11 .0000 .0000 .0000 .0001 .0005 .0026 .0090 .0242 .0525 .0944
12 .0000 .0000 .0000 .0000 .0001 .0006 .0024 .0081 .0215 .0472
13 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0021 .0068 .0182
14 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0004 .0016 .0052
15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003 .0010
16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001
17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

18 0 .3972 .1501 .0536 .0180 .0056 .0016 .0004 .0001 .0000 .0000
1 .3763 .3002 .1704 .0811 .0338 .0126 .0042 .0012 .0003 .0001
2 .1683 .2835 .2556 .1723 .0958 .0458 .0190 .0069 .0022 .0006
3 .0473 .1680 .2406 .2297 .1704 .1046 .0547 .0246 .0095 .0031
4 .0093 .0700 .1592 .2153 .2130 .1681 .1104 .0614 .0291 .0117
5 .0014 .0218 .0787 .1507 .1988 .2017 .1664 .1146 .0666 .0327
6 .0002 .0052 .0301 .0816 .1436 .1873 .1941 .1655 .1181 .0708
7 .0000 .0010 .0091 .0350 .0820 .1376 .1792 .1892 .1657 .1214
8 .0000 .0002 .0022 .0120 .0376 .0811 .1327 .1734 .1864 .1669
9 .0000 .0000 .0004 .0033 .0139 .0386 .0794 .1284 .1694 .1855

10 .0000 .0000 .0001 .0008 .0042 .0149 .0385 .0771 .1248 .1669
11 .0000 .0000 .0000 .0001 .0010 .0046 .0151 .0374 .0742 .1214
12 .0000 .0000 .0000 .0000 .0002 .0012 .0047 .0145 .0354 .0708
13 .0000 .0000 .0000 .0000 .0000 .0002 .0012 .0044 .0134 .0327
14 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0011 .0039 .0117
15 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0009 .0031

Table 2 Probability Function of the Binomial Distribution (Continued )
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n x P

.05 .10 .15 .20 .25 .30 .35 .40 .45 .50

16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0006
17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001
18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

19 0 .3774 .1351 .0456 .0144 .0042 .0011 .0003 .0001 .0000 .0000
1 .3774 .2852 .1529 .0685 .0268 .0093 .0029 .0008 .0002 .0000
2 .1787 .2852 .2428 .1540 .0803 .0358 .0138 .0046 .0013 .0003
3 .0533 .1796 .2428 .2182 .1517 .0869 .0422 .0175 .0062 .0018
4 .0112 .0798 .1714 .2182 .2023 .1419 .0909 .0467 .0203 .0074
5 .0018 .0266 .0907 .1636 .2023 .1916 .1468 .0933 .0497 .0222
6 .0002 .0069 .0374 .0955 .1574 .1916 .1844 .1451 .0949 .0518
7 .0000 .0014 .0122 .0443 .0974 .1525 .1844 .1797 .1443 .0961
8 .0000 .0002 .0032 .0166 .0487 .0981 .1489 .1797 .1771 .1442
9 .0000 .0000 .0007 .0051 .0198 .0514 .0980 .1464 .1771 .1762

10 .0000 .0000 .0001 .0013 .0066 .0220 .0528 .0976 .1449 .1762
11 .0000 .0000 .0000 .0003 .0018 .0077 .0233 .0532 .0970 .1442
12 .0000 .0000 .0000 .0000 .0004 .0022 .0083 .0237 .0529 .0961
13 .0000 .0000 .0000 .0000 .0001 .0005 .0024 .0085 .0233 .0518
14 .0000 .0000 .0000 .0000 .0000 .0001 .0006 .0024 .0082 .0222
15 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0022 .0074
16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0005 .0018
17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0001 .0003
18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
19 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

20 0 .3585 .1216 .0388 .0115 .0032 .0008 .0002 .0000 .0000 .0000
1 .3774 .2702 .1368 .0576 .0211 .0068 .0020 .0005 .0001 .0000
2 .1887 .2852 .2293 .1369 .0669 .0278 .0100 .0031 .0008 .0002
3 .0596 .1901 .2428 .2054 .1339 .0716 .0323 .0123 .0040 .0011
4 .0133 .0898 .1821 .2182 .1897 .1304 .0738 .0350 .0139 .0046
5 .0022 .0319 .1028 .1746 .2023 .1789 .1272 .0746 .0365 .0148
6 .0003 .0089 .0454 .1091 .1686 .1916 .1712 .1244 .0746 .0370
7 .0000 .0020 .0160 .0545 .1124 .1643 .1844 .1659 .1221 .0739
8 .0000 .0004 .0046 .0222 .0609 .1144 .1614 .1797 .1623 .1201
9 .0000 .0001 .0011 .0074 .0271 .0654 .1158 .1597 .1771 .1602

10 .0000 .0000 .0002 .0020 .0099 .0308 .0686 .1171 .1593 .1762
11 .0000 .0000 .0000 .0005 .0030 .0120 .0336 .0710 .1185 .1602
12 .0000 .0000 .0000 .0001 .0008 .0039 .0136 .0355 .0727 .1201
13 .0000 .0000 .0000 .0000 .0002 .0010 .0045 .0146 .0366 .0739
14 .0000 .0000 .0000 .0000 .0000 .0002 .0012 .0049 .0150 .0370
15 .0000 .0000 .0000 .0000 .0000 .0000 .0003 .0013 .0049 .0148
16 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0003 .0013 .0046
17 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002 .0011
18 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0002
19 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
20 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000

Reproduced with permission from National Bureau of Standards, Tables of the Binomial Probability Distribution, 
United States Department of Commerce (1950).

Table 2 Probability Function of the Binomial Distribution (Continued )
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n x  P

.05 .10 .15 .20 .25 .30 .35 .40 .45 .500

2 0 .902 .81 .722 .64 .562 .49 .422 .36 .302 .25
1 .998 .99 .978 .96 .937 .91 .877 .84 .797 .75
2 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

3 0 .857 .729 .614 .512 .422 .343 .275 .216 .166 .125
1 .993 .972 .939 .896 .844 .784 .718 .648 .575 .500
2 1.00 .999 .997 .992 .984 .973 .957 .936 .909 .875
3 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

4 0 .815 .656 .522 .41 .316 .24 .179 .13 .092 .062
1 .986 .948 .89 .819 .738 .652 .563 .475 .391 .312
2 1.00 .996 .988 .973 .949 .916 .874 .821 .759 .687
3 1.00 1.00 .999 .998 .996 .992 .985 .974 .959 .937
4 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

5 0 .774 .59 .444 .328 .237 .168 .116 .078 .05 .031
1 .977 .919 .835 .737 .633 .528 .428 .337 .256 .187
2 .999 .991 .973 .942 .896 .837 .765 .683 .593 .500
3 1.00 1.00 .998 .993 .984 .969 .946 .913 .869 .812
4 1.00 1.00 1.00 1.00 .999 .998 .995 .99 .982 .969
5 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

6 0 .735 .531 .377 .262 .178 .118 .075 .047 .028 .016
1 .967 .886 .776 .655 .534 .42 .319 .233 .164 .109
2 .998 .984 .953 .901 .831 .744 .647 .544 .442 .344
3 1.00 .999 .994 .983 .962 .93 .883 .821 .745 .656
4 1.00 1.00 1.00 .998 .995 .989 .978 .959 .931 .891
5 1.00 1.00 1.00 1.00 1.00 .999 .998 .996 .992 .984
6 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

7 0 .698 .478 .321 .21 .133 .082 .049 .028 .015 .008
1 .956 .85 .717 .577 .445 .329 .234 .159 .102 .062
2 .996 .974 .926 .852 .756 .647 .532 .42 .316 .227
3 1.00 .997 .988 .967 .929 .874 .80 .71 .608 .500
4 1.00 1.00 .999 .995 .987 .971 .944 .904 .847 .773
5 1.00 1.00 1.00 1.00 .999 .996 .991 .981 .964 .937
6 1.00 1.00 1.00 1.00 1.00 1.00 .999 .998 .996 .992
7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

8 0 .663 .43 .272 .168 .10 .058 .032 .017 .008 .004
1 .943 .813 .657 .503 .367 .255 .169 .106 .063 .035
2 .994 .962 .895 .797 .679 .552 .428 .315 .22 .145
3 1.00 .995 .979 .944 .886 .806 .706 .594 .477 .363
4 1.00 1.00 .997 .99 .973 .942 .894 .826 .74 .637
5 1.00 1.00 1.00 .999 .996 .989 .975 .95 .912 .855
6 1.00 1.00 1.00 1.00 1.00 .999 .996 .991 .982 .965
7 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 .998 .996
8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

9 0 .63 .387 .232 .134 .075 .04 .021 .01 .005 .002
1 .929 .775 .599 .436 .30 .196 .121 .071 .039 .020
2 .992 .947 .859 .738 .601 .463 .337 .232 .15 .090

Table 3 Cumulative Binomial Probabilities

The table shows the probability of x or fewer successes in n independent trials each with probability of success P. For example, the probability 
of two or less successes in four independent trials, each with probability of success 0.35, is 0.874.
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n x  P

.05 .10 .15 .20 .25 .30 .35 .40 .45 .500

3 .999 .992 .966 .914 .834 .73 .609 .483 .361 .254
4 1.00 .999 .994 .98 .951 .901 .828 .733 .621 .500
5 1.00 1.00 .999 .997 .99 .975 .946 .901 .834 .746
6 1.00 1.00 1.00 1.00 .999 .996 .989 .975 .95 .910
7 1.00 1.00 1.00 1.00 1.00 1.00 .999 .996 .991 .980
8 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 .998
9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

10 0 .599 .349 .197 .107 .056 .028 .013 .006 .003 .001
1 .914 .736 .544 .376 .244 .149 .086 .046 .023 .011
2 .988 .93 .82 .678 .526 .383 .262 .167 .10 .055
3 .999 .987 .95 .879 .776 .65 .514 .382 .266 .172
4 1.00 .998 .99 .967 .922 .85 .751 .633 .504 .377
5 1.00 1.00 .999 .994 .98 .953 .905 .834 .738 .623
6 1.00 1.00 1.00 .999 .996 .989 .974 .945 .898 .828
7 1.00 1.00 1.00 1.00 1.00 .998 .995 .988 .973 .945
8 1.00 1.00 1.00 1.00 1.00 1.00 .999 .998 .995 .989
9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999

10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

11 0 .569 .314 .167 .086 .042 .02 .009 .004 .001 .000
1 .898 .697 .492 .322 .197 .113 .061 .03 .014 .006
2 .985 .91 .779 .617 .455 .313 .20 .119 .065 .033
3 .998 .981 .931 .839 .713 .57 .426 .296 .191 .113
4 1.00 .997 .984 .95 .885 .79 .668 .533 .397 .274
5 1.00 1.00 .997 .988 .966 .922 .851 .753 .633 .500
6 1.00 1.00 1.00 .998 .992 .978 .95 .901 .826 .726
7 1.00 1.00 1.00 1.00 .999 .996 .988 .971 .939 .887
8 1.00 1.00 1.00 1.00 1.00 .999 .998 .994 .985 .967
9 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 .998 .994

10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000
11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

12 0 .54 .282 .142 .069 .032 .014 .006 .002 .001 .000
1 .882 .659 .443 .275 .158 .085 .042 .02 .008 .003
2 .98 .889 .736 .558 .391 .253 .151 .083 .042 .019
3 .998 .974 .908 .795 .649 .493 .347 .225 .134 .073
4 1.00 .996 .976 .927 .842 .724 .583 .438 .304 .194
5 1.00 .999 .995 .981 .946 .882 .787 .665 .527 .387
6 1.00 1.00 .999 .996 .986 .961 .915 .842 .739 .613
7 1.00 1.00 1.00 .999 .997 .991 .974 .943 .888 .806
8 1.00 1.00 1.00 1.00 1.00 .998 .994 .985 .964 .927
9 1.00 1.00 1.00 1.00 1.00 1.00 .999 .997 .992 .981

10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 .997
11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000
12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

13 0 .513 .254 .121 .055 .024 .01 .004 .001 .00 .000
1 .865 .621 .398 .234 .127 .064 .03 .013 .005 .002
2 .975 .866 .692 .502 .333 .202 .113 .058 .027 .011
3 .997 .966 .882 .747 .584 .421 .278 .169 .093 .046
4 1.00 .994 .966 .901 .794 .654 .501 .353 .228 .133

Table 3 Cumulative Binomial Probabilities (Continued )

(continued)
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n x  P

.05 .10 .15 .20 .25 .30 .35 .40 .45 .500

5 1.00 .999 .992 .97 .92 .835 .716 .574 .427 .291
6 1.00 1.00 .999 .993 .976 .938 .871 .771 .644 .50
7 1.00 1.00 1.00 .999 .994 .982 .954 .902 .821 .709
8 1.00 1.00 1.00 1.00 .999 .996 .987 .968 .93 .867
9 1.00 1.00 1.00 1.00 1.00 .999 .997 .992 .98 .954

10 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 .996 .989
11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 .998
12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

14 0 .488 .229 .103 .044 .018 .007 .002 .001 .00 .000
1 .847 .585 .357 .198 .101 .047 .021 .008 .003 .001
2 .97 .842 .648 .448 .281 .161 .084 .04 .017 .006
3 .996 .956 .853 .698 .521 .355 .22 .124 .063 .029
4 1.00 .991 .953 .87 .742 .584 .423 .279 .167 .090
5 1.00 .999 .988 .956 .888 .781 .641 .486 .337 .212
6 1.00 1.00 .998 .988 .962 .907 .816 .692 .546 .395
7 1.00 1.00 1.00 .998 .99 .969 .925 .85 .741 .605
8 1.00 1.00 1.00 1.00 .998 .992 .976 .942 .881 .788
9 1.00 1.00 1.00 1.00 1.00 .998 .994 .982 .957 .910

10 1.00 1.00 1.00 1.00 1.00 1.00 .999 .996 .989 .971
11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 .998 .994
12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999
13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

15 0 .463 .206 .087 .035 .013 .005 .002 .00 .00 .000
1 .829 .549 .319 .167 .08 .035 .014 .005 .002 .000
2 .964 .816 .604 .398 .236 .127 .062 .027 .011 .004
3 .995 .944 .823 .648 .461 .297 .173 .091 .042 .018
4 .999 .987 .938 .836 .686 .515 .352 .217 .12 .059
5 1.00 .998 .983 .939 .852 .722 .564 .403 .261 .151
6 1.00 1.00 .996 .982 .943 .869 .755 .61 .452 .304
7 1.00 1.00 .999 .996 .983 .95 .887 .787 .654 .500
8 1.00 1.00 1.00 .999 .996 .985 .958 .905 .818 .696
9 1.00 1.00 1.00 1.00 .999 .996 .988 .966 .923 .849

10 1.00 1.00 1.00 1.00 1.00 .999 .997 .991 .975 .941
11 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .998 .994 .982
12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 .996
13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

16 0 .44 .185 .074 .028 .01 .003 .001 .00 .00 .000
1 .811 .515 .284 .141 .063 .026 .01 .003 .001 .000
2 .957 .789 .561 .352 .197 .099 .045 .018 .007 .002
3 .993 .932 .79 .598 .405 .246 .134 .065 .028 .011
4 .999 .983 .921 .798 .63 .45 .289 .167 .085 .038
5 1.00 .997 .976 .918 .81 .66 .49 .329 .198 .105
6 1.00 .999 .994 .973 .92 .825 .688 .527 .366 .227
7 1.00 1.00 .999 .993 .973 .926 .841 .716 .563 .402
8 1.00 1.00 1.00 .999 .993 .974 .933 .858 .744 .598
9 1.00 1.00 1.00 1.00 .998 .993 .977 .942 .876 .773

10 1.00 1.00 1.00 1.00 1.00 .998 .994 .981 .951 .895
11 1.00 1.00 1.00 1.00 1.00 1.00 .999 .995 .985 .962

Table 3 Cumulative Binomial Probabilities (Continued )
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n x  P

.05 .10 .15 .20 .25 .30 .35 .40 .45 .500

12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 .997 .989
13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 .998
14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

17 0 .418 .167 .063 .023 .008 .002 .001 .00 .00 .000
1 .792 .482 .252 .118 .05 .019 .007 .002 .001 .000
2 .95 .762 .52 .31 .164 .077 .033 .012 .004 .001
3 .991 .917 .756 .549 .353 .202 .103 .046 .018 .006
4 .999 .978 .901 .758 .574 .389 .235 .126 .06 .025
5 1.00 .995 .968 .894 .765 .597 .42 .264 .147 .072
6 1.00 .999 .992 .962 .893 .775 .619 .448 .29 .166
7 1.00 1.00 .998 .989 .96 .895 .787 .641 .474 .315
8 1.00 1.00 1.00 .997 .988 .96 .901 .801 .663 .500
9 1.00 1.00 1.00 1.00 .997 .987 .962 .908 .817 .685

10 1.00 1.00 1.00 1.00 .999 .997 .988 .965 .917 .834
11 1.00 1.00 1.00 1.00 1.00 .999 .997 .989 .97 .928
12 1.00 1.00 1.00 1.00 1.00 1.00 .999 .997 .991 .975
13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .998 .994
14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999
15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

18 0 .397 .15 .054 .018 .006 .002 .00 .00 .00 .000
1 .774 .45 .224 .099 .039 .014 .005 .001 .00 .000
2 .942 .734 .48 .271 .135 .06 .024 .008 .003 .001
3 .989 .902 .72 .501 .306 .165 .078 .033 .012 .004
4 .998 .972 .879 .716 .519 .333 .189 .094 .041 .015
5 1.00 .994 .958 .867 .717 .534 .355 .209 .108 .048
6 1.00 .999 .988 .949 .861 .722 .549 .374 .226 .119
7 1.00 1.00 .997 .984 .943 .859 .728 .563 .391 .240
8 1.00 1.00 .999 .996 .981 .94 .861 .737 .578 .407
9 1.00 1.00 1.00 .999 .995 .979 .94 .865 .747 .593

10 1.00 1.00 1.00 1.00 .999 .994 .979 .942 .872 .760
11 1.00 1.00 1.00 1.00 1.00 .999 .994 .98 .946 .881
12 1.00 1.00 1.00 1.00 1.00 1.00 .999 .994 .982 .952
13 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 .995 .985
14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 .996
15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999
16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

19 0 .377 .135 .046 .014 .004 .001 .00 .00 .00 .000
1 .755 .42 .198 .083 .031 .01 .003 .001 .00 .000
2 .933 .705 .441 .237 .111 .046 .017 .005 .002 .000
3 .987 .885 .684 .455 .263 .133 .059 .023 .008 .002
4 .998 .965 .856 .673 .465 .282 .15 .07 .028 .010
5 1.00 .991 .946 .837 .668 .474 .297 .163 .078 .032
6 1.00 .998 .984 .932 .825 .666 .481 .308 .173 .084
7 1.00 1.00 .996 .977 .923 .818 .666 .488 .317 .180
8 1.00 1.00 .999 .993 .971 .916 .815 .667 .494 .324
9 1.00 1.00 1.00 .998 .991 .967 .913 .814 .671 .500

10 1.00 1.00 1.00 1.00 .998 .989 .965 .912 .816 .676
11 1.00 1.00 1.00 1.00 1.00 .997 .989 .965 .913 .820

Table 3 Cumulative Binomial Probabilities (Continued )

(continued)
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n x  P

.05 .10 .15 .20 .25 .30 .35 .40 .45 .500

12 1.00 1.00 1.00 1.00 1.00 .999 .997 .988 .966 .916
13 1.00 1.00 1.00 1.00 1.00 1.00 .999 .997 .989 .968
14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 .997 .990
15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999 .998
16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

20 0 .358 .122 .039 .012 .003 .001 .00 .00 .00 .000
1 .736 .392 .176 .069 .024 .008 .002 .001 .00 .000
2 .925 .677 .405 .206 .091 .035 .012 .004 .001 .000
3 .984 .867 .648 .411 .225 .107 .044 .016 .005 .001
4 .997 .957 .83 .63 .415 .238 .118 .051 .019 .006
5 1.00 .989 .933 .804 .617 .416 .245 .126 .055 .021
6 1.00 .998 .978 .913 .786 .608 .417 .25 .13 .058
7 1.00 1.00 .994 .968 .898 .772 .601 .416 .252 .132
8 1.00 1.00 .999 .99 .959 .887 .762 .596 .414 .252
9 1.00 1.00 1.00 .997 .986 .952 .878 .755 .591 .412

10 1.00 1.00 1.00 .999 .996 .983 .947 .872 .751 .588
11 1.00 1.00 1.00 1.00 .999 .995 .98 .943 .869 .748
12 1.00 1.00 1.00 1.00 1.00 .999 .994 .979 .942 .868
13 1.00 1.00 1.00 1.00 1.00 1.00 .998 .994 .979 .942
14 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .998 .994 .979
15 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .998 .994
16 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 .999
17 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.000

Reproduced with permission from National Bureau of Standards, Tables of the Binomial Probability Distribution, 
United States Department of Commerce (1950).

Table 3 Cumulative Binomial Probabilities (Continued )
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Table 4 Values of e -l

l e -l l e -l l e -l l e -l

0.00 1.000000 2.60 .074274 5.10 .006097 7.60 .000501

0.10 .904837 2.70 .067206 5.20 .005517 7.70 .000453

0.20 .818731 2.80 .060810 5.30 .004992 7.80 .000410

0.30 .740818 2.90 .055023 5.40 .004517 7.90 .000371

0.40 .670320 3.00 .049787 5.50 .004087 8.00 .000336

0.50 .606531 3.10 .045049 5.60 .003698 8.10 .000304

0.60 .548812 3.20 .040762 5.70 .003346 8.20 .000275 

0.70 .496585 3.30 .036883 5.80 .003028 8.30 .000249

0.80 .449329 3.40 .033373 5.90 .002739 8.40 .000225

0.90 .406570 3.50 .030197 6.00 .002479 8.50 .000204

1.00 .367879 3.60 .027324 6.10 .002243 8.60 .000184

1.10 .332871 3.70 .024724 6.20 .002029 8.70 .000167

1.20 .301194 3.80 .022371 6.30 .001836 8.80 .000151

1.30 .272532 3.90 .020242 6.40 .001661 8.90 .000136

1.40 .246597 4.00 .018316 6.50 .001503 9.00 .000123

1.50 .223130 4.10 .016573 6.60 .001360 9.10 .000112

1.60 .201897 4.20 .014996 6.70 .001231 9.20 .000101

1.70 .182684 4.30 .013569 6.80 .001114 9.30 .000091

1.80 .165299 4.40 .012277 6.90 .001008 9.40 .000083

1.90 .149569 4.50 .011109 7.00 .000912 9.50 .000075

2.00 .135335 4.60 .010052 7.10 .000825 9.60 .000068

2.10 .122456 4.70 .009095 7.20 .000747 9.70 .000061

2.20 .110803 4.80 .008230 7.30 .000676 9.80 .000056

2.30 .100259 4.90 .007447 7.40 .000611 9.90 .000050

2.40 .090718 5.00 .006738 7.50 .000553 10.00 .000045

2.50 .082085
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Table 5 Individual Poisson Probabilities

Mean Arrival Rate l

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 .9048 .8187 .7408 .6703 .6065 .5488 .4966 .4493 .4066 .3679
1 .0905 .1637 .2222 .2681 .3033 .3293 .3476 .3595 .3659 .3679
2 .0045 .0164 .0333 .0536 .0758 .0988 .1217 .1438 .1647 .1839
3 .0002 .0011 .0033 .0072 .0126 .0198 .0284 .0383 .0494 .0613
4 .0 .0001 .0003 .0007 .0016 .0030 .0050 .0077 .0111 .0153
5 .0 .0 .0 .0001 .0002 .0004 .0007 .0012 .0020 .0031
6 .0 .0 .0 .0 .0 .0 .0001 .0002 .0003 .0005
7 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0001

Mean Arrival Rate l

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0 .3329 .3012 .2725 .2466 .2231 .2019 .1827 .1653 .1496 .1353
1 .3662 .3614 .3543 .3452 .3347 .3230 .3106 .2975 .2842 .2707
2 .2014 .2169 .2303 .2417 .2510 .2584 .2640 .2678 .2700 .2707
3 .0738 .0867 .0998 .1128 .1255 .1378 .1496 .1607 .1710 .1804
4 .0203 .0260 .0324 .0395 .0471 .0551 .0636 .0723 .0812 .0902
5 .0045 .0062 .0084 .0111 .0141 .0176 .0216 .0260 .0309 .0361
6 .0008 .0012 .0018 .0026 .0035 .0047 .0061 .0078 .0098 .0120
7 .0001 .0002 .0003 .0005 .0008 .0011 .0015 .0020 .0027 .0034
8 .0 .0 .0001 .0001 .0001 .0002 .0003 .0005 .0006 .0009
9 .0 .0 .0 .0 .0 .0 .0001 .0001 .0001 .0002

Mean Arrival Rate l

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

0 .1225 .1108 .1003 .0907 .0821 .0743 .0672 .0608 .0550 .0498
1 .2572 .2438 .2306 .2177 .2052 .1931 .1815 .1703 .1596 .1494
2 .2700 .2681 .2652 .2613 .2565 .2510 .2450 .2384 .2314 .2240
3 .1890 .1966 .2033 .2090 .2138 .2176 .2205 .2225 .2237 .2240
4 .0992 .1082 .1169 .1254 .1336 .1414 .1488 .1557 .1622 .1680
5 .0417 .0476 .0538 .0602 .0668 .0735 .0804 .0872 .0940 .1008
6 .0146 .0174 .0206 .0241 .0278 .0319 .0362 .0407 .0455 .0504
7 .0044 .0055 .0068 .0083 .0099 .0118 .0139 .0163 .0188 .0216
8 .0011 .0015 .0019 .0025 .0031 .0038 .0047 .0057 .0068 .0081
9 .0003 .0004 .0005 .0007 .0009 .0011 .0014 .0018 .0022 .0027

10 .0001 .0001 .0001 .0002 .0002 .0003 .0004 .0005 .0006 .0008
11 .0 .0 .0 .0 .0 .0001 .0001 .0001 .0002 .0002
12 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0001

Mean Arrival Rate l

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

0 .0450 .0408 .0369 .0334 .0302 .0273 .0247 .0224 .0202 .0183
1 .1397 .1304 .1217 .1135 .1057 .0984 .0915 .0850 .0789 .0733
2 .2165 .2087 .2008 .1929 .1850 .1771 .1692 .1615 .1539 .1465
3 .2237 .2226 .2209 .2186 .2158 .2125 .2087 .2046 .2001 .1954
4 .1733 .1781 .1823 .1858 .1888 .1912 .1931 .1944 .1951 .1954
5 .1075 .1140 .1203 .1264 .1322 .1377 .1429 .1477 .1522 .1563
6 .0555 .0608 .0662 .0716 .0771 .0826 .0881 .0936 .0989 .1042
7 .0246 .0278 .0312 .0348 .0385 .0425 .0466 .0508 .0551 .0595
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Mean Arrival Rate l

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

8 .0095 .0111 .0129 .0148 .0169 .0191 .0215 .0241 .0269 .0298
9 .0033 .0040 .0047 .0056 .0066 .0076 .0089 .0102 .0116 .0132

10 .0010 .0013 .0016 .0019 .0023 .0028 .0033 .0039 .0045 .0053
11 .0003 .0004 .0005 .0006 .0007 .0009 .0011 .0013 .0016 .0019
12 .0001 .0001 .0001 .0002 .0002 .0003 .0003 .0004 .0005 .0006
13 .0 .0 .0 .0 .0001 .0001 .0001 .0001 .0002 .0002
14 .0 .0 .0 .0 .0 .0 .0 .0 .0 .0001

Mean Arrival Rate l

4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0

0 .0166 .0150 .0136 .0123 .0111 .0101 .0091 .0082 .0074 .0067
1 .0679 .0630 .0583 .0540 .0500 .0462 .0427 .0395 .0365 .0337
2 .1393 .1323 .1254 .1188 .1125 .1063 .1005 .0948 .0894 .0842
3 .1904 .1852 .1798 .1743 .1687 .1631 .1574 .1517 .1460 .1404
4 .1951 .1944 .1933 .1917 .1898 .1875 .1849 .1820 .1789 .1755
5 .1600 .1633 .1662 .1687 .1708 .1725 .1738 .1747 .1753 .1755
6 .1093 .1143 .1191 .1237 .1281 .1323 .1362 .1398 .1432 .1462
7 .0640 .0686 .0732 .0778 .0824 .0869 .0914 .0959 .1002 .1044
8 .0328 .0360 .0393 .0428 .0463 .0500 .0537 .0575 .0614 .0653
9 .0150 .0168 .0188 .0209 .0232 .0255 .0281 .0307 .0334 .0363

10 .0061 .0071 .0081 .0092 .0104 .0118 .0132 .0147 .0164 .0181
11 .0023 .0027 .0032 .0037 .0043 .0049 .0056 .0064 .0073 .0082
12 .0008 .0009 .0011 .0013 .0016 .0019 .0022 .0026 .0030 .0034
13 .0002 .0003 .0004 .0005 .0006 .0007 .0008 .0009 .0011 .0013
14 .0001 .0001 .0001 .0001 .0002 .0002 .0003 .0003 .0004 .0005

Mean Arrival Rate l

5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0

0 .0061 .0055 .0050 .0045 .0041 .0037 .0033 .0030 .0027 .0025
1 .0311 .0287 .0265 .0244 .0225 .0207 .0191 .0176 .0162 .0149
2 .0793 .0746 .0701 .0659 .0618 .0580 .0544 .0509 .0477 .0446
3 .1348 .1293 .1239 .1185 .1133 .1082 .1033 .0985 .0938 .0892
4 .1719 .1681 .1641 .1600 .1558 .1515 .1472 .1428 .1383 .1339
5 .1753 .1748 .1740 .1728 .1714 .1697 .1678 .1656 .1632 .1606
6 .1490 .1515 .1537 .1555 .1571 .1584 .1594 .1601 .1605 .1606
7 .1086 .1125 .1163 .1200 .1234 .1267 .1298 .1326 .1353 .1377
8 .0692 .0731 .0771 .0810 .0849 .0887 .0925 .0962 .0998 .1033
9 .0392 .0423 .0454 .0486 .0519 .0552 .0586 .0620 .0654 .0688

10 .0200 .0220 .0241 .0262 .0285 .0309 .0334 .0359 .0386 .0413
11 .0093 .0104 .0116 .0129 .0143 .0157 .0173 .0190 .0207 .0225
12 .0039 .0045 .0051 .0058 .0065 .0073 .0082 .0092 .0102 .0113
13 .0015 .0018 .0021 .0024 .0028 .0032 .0036 .0041 .0046 .0052
14 .0006 .0007 .0008 .0009 .0011 .0013 .0015 .0017 .0019 .0022

Mean Arrival Rate l

6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0

0 .0022 .0020 .0018 .0017 .0015 .0014 .0012 .0011 .0010 .0009
1 .0137 .0126 .0116 .0106 .0098 .0090 .0082 .0076 .0070 .0064
2 .0417 .0390 .0364 .0340 .0318 .0296 .0276 .0258 .0240 .0223

Table 5 Individual Poisson Probabilities (Continued )

(continued)
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Mean Arrival Rate l

6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0

3 .0848 .0806 .0765 .0726 .0688 .0652 .0617 .0584 .0552 .0521
4 .1294 .1249 .1205 .1162 .1118 .1076 .1034 .0992 .0952 .0912
5 .1579 .1549 .1519 .1487 .1454 .1420 .1385 .1349 .1314 .1277
6 .1605 .1601 .1595 .1586 .1575 .1562 .1546 .1529 .1511 .1490
7 .1399 .1418 .1435 .1450 .1462 .1472 .1480 .1486 .1489 .1490
8 .1066 .1099 .1130 .1160 .1188 .1215 .1240 .1263 .1284 .1304
9 .0723 .0757 .0791 .0825 .0858 .0891 .0923 .0954 .0985 .1014

10 .0441 .0469 .0498 .0528 .0558 .0588 .0618 .0649 .0679 .0710
11 .0244 .0265 .0285 .0307 .0330 .0353 .0377 .0401 .0426 .0452
12 .0124 .0137 .0150 .0164 .0179 .0194 .0210 .0227 .0245 .0263
13 .0058 .0065 .0073 .0081 .0089 .0099 .0108 .0119 .0130 .0142
14 .0025 .0029 .0033 .0037 .0041 .0046 .0052 .0058 .0064 .0071

Mean Arrival Rate l

7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0

0 .0008 .0007 .0007 .0006 .0006 .0005 .0005 .0004 .0004 .0003
1 .0059 .0054 .0049 .0045 .0041 .0038 .0035 .0032 .0029 .0027
2 .0208 .0194 .0180 .0167 .0156 .0145 .0134 .0125 .0116 .0107
3 .0492 .0464 .0438 .0413 .0389 .0366 .0345 .0324 .0305 .0286
4 .0874 .0836 .0799 .0764 .0729 .0696 .0663 .0632 .0602 .0573
5 .1241 .1204 .1167 .1130 .1094 .1057 .1021 .0986 .0951 .0916
6 .1468 .1445 .1420 .1394 .1367 .1339 .1311 .1282 .1252 .1221
7 .1489 .1486 .1481 .1474 .1465 .1454 .1442 .1428 .1413 .1396
8 .1321 .1337 .1351 .1363 .1373 .1381 .1388 .1392 .1395 .1396
9 .1042 .1070 .1096 .1121 .1144 .1167 .1187 .1207 .1224 .1241

10 .0740 .0770 .08 .0829 .0858 .0887 .0914 .0941 .0967 .0993
11 .0478 .0504 .0531 .0558 .0585 .0613 .0640 .0667 .0695 .0722
12 .0283 .0303 .0323 .0344 .0366 .0388 .0411 .0434 .0457 .0481
13 .0154 .0168 .0181 .0196 .0211 .0227 .0243 .0260 .0278 .0296
14 .0078 .0086 .0095 .0104 .0113 .0123 .0134 .0145 .0157 .0169
15 .0037 .0041 .0046 .0051 .0057 .0062 .0069 .0075 .0083 .0090
16 .0016 .0019 .0021 .0024 .0026 .0030 .0033 .0037 .0041 .0045
17 .0007 .0008 .0009 .0010 .0012 .0013 .0015 .0017 .0019 .0021
18 .0003 .0003 .0004 .0004 .0005 .0006 .0006 .0007 .0008 .0009
19 .0001 .0001 .0001 .0002 .0002 .0002 .0003 .0003 .0003 .0004

Mean Arrival Rate l

8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0

0 .0003 .0003 .0002 .0002 .0002 .0002 .0002 .0002 .0001 .0001
1 .0025 .0023 .0021 .0019 .0017 .0016 .0014 .0013 .0012 .0011
2 .01 .0092 .0086 .0079 .0074 .0068 .0063 .0058 .0054 .0050
3 .0269 .0252 .0237 .0222 .0208 .0195 .0183 .0171 .0160 .0150
4 .0544 .0517 .0491 .0466 .0443 .0420 .0398 .0377 .0357 .0337
5 .0882 .0849 .0816 .0784 .0752 .0722 .0692 .0663 .0635 .0607
6 .1191 .1160 .1128 .1097 .1066 .1034 .1003 .0972 .0941 .0911
7 .1378 .1358 .1338 .1317 .1294 .1271 .1247 .1222 .1197 .1171
8 .1395 .1392 .1388 .1382 .1375 .1366 .1356 .1344 .1332 .1318
9 .1256 .1269 .1280 .1290 .1299 .1306 .1311 .1315 .1317 .1318

10 .1017 .1040 .1063 .1084 .1104 .1123 .1140 .1157 .1172 .1186
11 .0749 .0776 .0802 .0828 .0853 .0878 .0902 .0925 .0948 .0970

Table 5 Individual Poisson Probabilities (Continued )
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Mean Arrival Rate l

8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0

12 .0505 .0530 .0555 .0579 .0604 .0629 .0654 .0679 .0703 .0728
13 .0315 .0334 .0354 .0374 .0395 .0416 .0438 .0459 .0481 .0504
14 .0182 .0196 .0210 .0225 .0240 .0256 .0272 .0289 .0306 .0324
15 .0098 .0107 .0116 .0126 .0136 .0147 .0158 .0169 .0182 .0194
16 .0050 .0055 .0060 .0066 .0072 .0079 .0086 .0093 .0101 .0109
17 .0024 .0026 .0029 .0033 .0036 .0040 .0044 .0048 .0053 .0058
18 .0011 .0012 .0014 .0015 .0017 .0019 .0021 .0024 .0026 .0029
19 .0005 .0005 .0006 .0007 .0008 .0009 .0010 .0011 .0012 .0014

Mean Arrival Rate l

9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0

0 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0000
1 .0010 .0009 .0009 .0008 .0007 .0007 .0006 .0005 .0005 .0005
2 .0046 .0043 .0040 .0037 .0034 .0031 .0029 .0027 .0025 .0023
3 .0140 .0131 .0123 .0115 .0107 .01 .0093 .0087 .0081 .0076
4 .0319 .0302 .0285 .0269 .0254 .0240 .0226 .0213 .0201 .0189
5 .0581 .0555 .0530 .0506 .0483 .0460 .0439 .0418 .0398 .0378
6 .0881 .0851 .0822 .0793 .0764 .0736 .0709 .0682 .0656 .0631
7 .1145 .1118 .1091 .1064 .1037 .1010 .0982 .0955 .0928 .0901
8 .1302 .1286 .1269 .1251 .1232 .1212 .1191 .1170 .1148 .1126
9 .1317 .1315 .1311 .1306 .13 .1293 .1284 .1274 .1263 .1251

10 .1198 .1210 .1219 .1228 .1235 .1241 .1245 .1249 .1250 .1251
11 .0991 .1012 .1031 .1049 .1067 .1083 .1098 .1112 .1125 .1137
12 .0752 .0776 .0799 .0822 .0844 .0866 .0888 .0908 .0928 .0948
13 .0526 .0549 .0572 .0594 .0617 .0640 .0662 .0685 .0707 .0729
14 .0342 .0361 .0380 .0399 .0419 .0439 .0459 .0479 .05 .0521
15 .0208 .0221 .0235 .0250 .0265 .0281 .0297 .0313 .0330 .0347
16 .0118 .0127 .0137 .0147 .0157 .0168 .0180 .0192 .0204 .0217
17 .0063 .0069 .0075 .0081 .0088 .0095 .0103 .0111 .0119 .0128
18 .0032 .0035 .0039 .0042 .0046 .0051 .0055 .0060 .0065 .0071
19 .0015 .0017 .0019 .0021 .0023 .0026 .0028 .0031 .0034 .0037

Mean Arrival Rate l

10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 11.0

0 .00 .00 .00 .00 .00 .00 .00 .00 .00 .0000
1 .0004 .0004 .0003 .0003 .0003 .0003 .0002 .0002 .0002 .0002
2 .0021 .0019 .0018 .0016 .0015 .0014 .0013 .0012 .0011 .0010
3 .0071 .0066 .0061 .0057 .0053 .0049 .0046 .0043 .0040 .0037
4 .0178 .0168 .0158 .0148 .0139 .0131 .0123 .0116 .0109 .0102
5 .0360 .0342 .0325 .0309 .0293 .0278 .0264 .0250 .0237 .0224
6 .0606 .0581 .0558 .0535 .0513 .0491 .0470 .0450 .0430 .0411
7 .0874 .0847 .0821 .0795 .0769 .0743 .0718 .0694 .0669 .0646
8 .1103 .1080 .1057 .1033 .1009 .0985 .0961 .0936 .0912 .0888
9 .1238 .1224 .1209 .1194 .1177 .1160 .1142 .1124 .1105 .1085

10 .1250 .1249 .1246 .1241 .1236 .1230 .1222 .1214 .1204 .1194
11 .1148 .1158 .1166 .1174 .1180 .1185 .1189 .1192 .1193 .1194
12 .0966 .0984 .1001 .1017 .1032 .1047 .1060 .1072 .1084 .1094
13 .0751 .0772 .0793 .0814 .0834 .0853 .0872 .0891 .0909 .0926
14 .0542 .0563 .0584 .0604 .0625 .0646 .0667 .0687 .0708 .0728

Table 5 Individual Poisson Probabilities (Continued )

(continued)
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Mean Arrival Rate l

10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 11.0

15 .0365 .0383 .0401 .0419 .0438 .0457 .0476 .0495 .0514 .0534
16 .0230 .0244 .0258 .0272 .0287 .0303 .0318 .0334 .0350 .0367
17 .0137 .0146 .0156 .0167 .0177 .0189 .0200 .0212 .0225 .0237
18 .0077 .0083 .0089 .0096 .0104 .0111 .0119 .0127 .0136 .0145
19 .0041 .0045 .0048 .0053 .0057 .0062 .0067 .0072 .0078 .0084
20 .0021 .0023 .0025 .0027 .0030 .0033 .0036 .0039 .0043 .0046

Mean Arrival Rate l

11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 12.0

0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
1 .0002 .0002 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001
2 .0009 .0009 .0008 .0007 .0007 .0006 .0006 .0005 .0005 .0004
3 .0034 .0032 .0030 .0028 .0026 .0024 .0022 .0021 .0019 .0018
4 .0096 .0090 .0084 .0079 .0074 .0069 .0065 .0061 .0057 .0053
5 .0212 .0201 .0190 .0180 .0170 .0160 .0152 .0143 .0135 .0127
6 .0393 .0375 .0358 .0341 .0325 .0310 .0295 .0281 .0268 .0255
7 .0623 .0600 .0578 .0556 .0535 .0514 .0494 .0474 .0455 .0437
8 .0864 .0840 .0816 .0792 .0769 .0745 .0722 .0700 .0677 .0655
9 .1065 .1045 .1024 .1003 .0982 .0961 .0939 .0917 .0895 .0874

10 .1182 .1170 .1157 .1144 .1129 .1114 .1099 .1082 .1066 .1048
11 .1193 .1192 .1189 .1185 .1181 .1175 .1169 .1161 .1153 .1144
12 .1104 .1112 .1120 .1126 .1131 .1136 .1139 .1142 .1143 .1144
13 .0942 .0958 .0973 .0987 .1001 .1014 .1025 .1036 .1046 .1056
14 .0747 .0767 .0786 .0804 .0822 .0840 .0857 .0874 .0889 .0905
15 .0553 .0572 .0592 .0611 .0630 .0649 .0668 .0687 .0706 .0724
16 .0384 .0401 .0418 .0435 .0453 .0471 .0489 .0507 .0525 .0543
17 .0250 .0264 .0278 .0292 .0306 .0321 .0336 .0352 .0367 .0383
18 .0154 .0164 .0174 .0185 .0196 .0207 .0219 .0231 .0243 .0255
19 .0090 .0097 .0104 .0111 .0119 .0126 .0135 .0143 .0152 .0161
20 .0050 .0054 .0059 .0063 .0068 .0073 .0079 .0084 .0091 .0097

Mean Arrival Rate l

12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 13.0

4 .0050 .0046 .0043 .0041 .0038 .0035 .0033 .0031 .0029 .0027
5 .0120 .0113 .0107 .0101 .0095 .0089 .0084 .0079 .0074 .0070
6 .0242 .0230 .0219 .0208 .0197 .0187 .0178 .0169 .0160 .0152
7 .0419 .0402 .0385 .0368 .0353 .0337 .0323 .0308 .0295 .0281
8 .0634 .0612 .0591 .0571 .0551 .0531 .0512 .0493 .0475 .0457
9 .0852 .0830 .0808 .0787 .0765 .0744 .0723 .0702 .0681 .0661

10 .1031 .1013 .0994 .0975 .0956 .0937 .0918 .0898 .0878 .0859
11 .1134 .1123 .1112 .1100 .1087 .1074 .1060 .1045 .1030 .1015
12 .1143 .1142 .1139 .1136 .1132 .1127 .1121 .1115 .1107 .1099
13 .1064 .1072 .1078 .1084 .1089 .1093 .1096 .1098 .1099 .1099
14 .0920 .0934 .0947 .0960 .0972 .0983 .0994 .1004 .1013 .1021
15 .0742 .0759 .0777 .0794 .0810 .0826 .0841 .0856 .0871 .0885
16 .0561 .0579 .0597 .0615 .0633 .0650 .0668 .0685 .0702 .0719
17 .0399 .0416 .0432 .0449 .0465 .0482 .0499 .0516 .0533 .0550
18 .0268 .0282 .0295 .0309 .0323 .0337 .0352 .0367 .0382 .0397
19 .0171 .0181 .0191 .0202 .0213 .0224 .0235 .0247 .0259 .0272
20 .0103 .0110 .0118 .0125 .0133 .0141 .0149 .0158 .0167 .0177

Table 5 Individual Poisson Probabilities (Continued )
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Mean Arrival Rate l

13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 14.0

5 .0066 .0062 .0058 .0055 .0051 .0048 .0045 .0042 .0040 .0037
6 .0144 .0136 .0129 .0122 .0115 .0109 .0103 .0097 .0092 .0087
7 .0269 .0256 .0245 .0233 .0222 .0212 .0202 .0192 .0183 .0174
8 .0440 .0423 .0407 .0391 .0375 .0360 .0345 .0331 .0318 .0304
9 .0640 .0620 .0601 .0582 .0563 .0544 .0526 .0508 .0491 .0473

10 .0839 .0819 .0799 .0779 .0760 .0740 .0720 .0701 .0682 .0663
11 .0999 .0983 .0966 .0949 .0932 .0915 .0897 .0880 .0862 .0844
12 .1091 .1081 .1071 .1060 .1049 .1037 .1024 .1011 .0998 .0984
13 .1099 .1098 .1096 .1093 .1089 .1085 .1080 .1074 .1067 .1060
14 .1028 .1035 .1041 .1046 .1050 .1054 .1056 .1058 .1060 .1060
15 .0898 .0911 .0923 .0934 .0945 .0955 .0965 .0974 .0982 .0989
16 .0735 .0751 .0767 .0783 .0798 .0812 .0826 .0840 .0853 .0866
17 .0567 .0583 .0600 .0617 .0633 .0650 .0666 .0682 .0697 .0713
18 .0412 .0428 .0443 .0459 .0475 .0491 .0507 .0523 .0539 .0554
19 .0284 .0297 .0310 .0324 .0337 .0351 .0365 .0380 .0394 .0409
20 .0186 .0196 .0206 .0217 .0228 .0239 .0250 .0262 .0274 .0286

Mean Arrival Rate l

14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 15.0

6 .0082 .0078 .0073 .0069 .0065 .0061 .0058 .0055 .0051 .0048
7 .0165 .0157 .0149 .0142 .0135 .0128 .0122 .0115 .0109 .0104
8 .0292 .0279 .0267 .0256 .0244 .0234 .0223 .0213 .0204 .0194
9 .0457 .0440 .0424 .0409 .0394 .0379 .0365 .0351 .0337 .0324

10 .0644 .0625 .0607 .0589 .0571 .0553 .0536 .0519 .0502 .0486
11 .0825 .0807 .0789 .0771 .0753 .0735 .0716 .0698 .0681 .0663
12 .0970 .0955 .0940 .0925 .0910 .0894 .0878 .0861 .0845 .0829
13 .1052 .1043 .1034 .1025 .1014 .1004 .0992 .0981 .0969 .0956
14 .1060 .1058 .1057 .1054 .1051 .1047 .1042 .1037 .1031 .1024
15 .0996 .1002 .1007 .1012 .1016 .1019 .1021 .1023 .1024 .1024
16 .0878 .0889 .0900 .0911 .0920 .0930 .0938 .0946 .0954 .0960
17 .0728 .0743 .0757 .0771 .0785 .0798 .0811 .0824 .0836 .0847
18 .0570 .0586 .0602 .0617 .0632 .0648 .0663 .0677 .0692 .0706
19 .0423 .0438 .0453 .0468 .0483 .0498 .0513 .0528 .0543 .0557
20 .0298 .0311 .0324 .0337 .0350 .0363 .0377 .0390 .0404 .0418
21 .0200 .0210 .0220 .0231 .0242 .0253 .0264 .0275 .0287 .0299
22 .0128 .0136 .0143 .0151 .0159 .0168 .0176 .0185 .0194 .0204
23 .0079 .0084 .0089 .0095 .0100 .0106 .0113 .0119 .0126 .0133
24 .0046 .0050 .0053 .0057 .0061 .0065 .0069 .0073 .0078 .0083

Mean Arrival Rate l

15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16.0

7 .0098 .0093 .0088 .0084 .0079 .0075 .0071 .0067 .0063 .0060
8 .0186 .0177 .0169 .0161 .0153 .0146 .0139 .0132 .0126 .0120
9 .0311 .0299 .0287 .0275 .0264 .0253 .0243 .0232 .0223 .0213

10 .0470 .0454 .0439 .0424 .0409 .0395 .0381 .0367 .0354 .0341
11 .0645 .0628 .0611 .0594 .0577 .0560 .0544 .0527 .0512 .0496
12 .0812 .0795 .0778 .0762 .0745 .0728 .0711 .0695 .0678 .0661
13 .0943 .0930 .0916 .0902 .0888 .0874 .0859 .0844 .0829 .0814
14 .1017 .1010 .1001 .0993 .0983 .0974 .0963 .0953 .0942 .0930
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Mean Arrival Rate l

15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16.0

15 .1024 .1023 .1021 .1019 .1016 .1012 .1008 .1003 .0998 .0992
16 .0966 .0972 .0977 .0981 .0984 .0987 .0989 .0991 .0992 .0992
17 .0858 .0869 .0879 .0888 .0897 .0906 .0914 .0921 .0928 .0934
18 .0720 .0734 .0747 .0760 .0773 .0785 .0797 .0808 .0819 .0830
19 .0572 .0587 .0602 .0616 .0630 .0645 .0659 .0672 .0686 .0699
20 .0432 .0446 .0460 .0474 .0489 .0503 .0517 .0531 .0545 .0559
21 .0311 .0323 .0335 .0348 .0361 .0373 .0386 .0400 .0413 .0426
22 .0213 .0223 .0233 .0244 .0254 .0265 .0276 .0287 .0298 .0310
23 .0140 .0147 .0155 .0163 .0171 .0180 .0188 .0197 .0206 .0216
24 .0088 .0093 .0099 .0105 .0111 .0117 .0123 .0130 .0137 .0144
25 .0053 .0057 .0061 .0064 .0069 .0073 .0077 .0082 .0087 .0092

Mean Arrival Rate l

16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 17.0

7 .0057 .0054 .0051 .0048 .0045 .0043 .0040 .0038 .0036 .0034
8 .0114 .0108 .0103 .0098 .0093 .0088 .0084 .0080 .0076 .0072
9 .0204 .0195 .0187 .0178 .0171 .0163 .0156 .0149 .0142 .0135

10 .0328 .0316 .0304 .0293 .0281 .0270 .0260 .0250 .0240 .0230
11 .0481 .0466 .0451 .0436 .0422 .0408 .0394 .0381 .0368 .0355
12 .0645 .0628 .0612 .0596 .0580 .0565 .0549 .0534 .0518 .0504
13 .0799 .0783 .0768 .0752 .0736 .0721 .0705 .0690 .0674 .0658
14 .0918 .0906 .0894 .0881 .0868 .0855 .0841 .0828 .0814 .0800
15 .0986 .0979 .0971 .0963 .0955 .0946 .0937 .0927 .0917 .0906
16 .0992 .0991 .0989 .0987 .0985 .0981 .0978 .0973 .0968 .0963
17 .0939 .0944 .0949 .0952 .0956 .0958 .0960 .0962 .0963 .0963
18 .0840 .0850 .0859 .0868 .0876 .0884 .0891 .0898 .0904 .0909
19 .0712 .0725 .0737 .0749 .0761 .0772 .0783 .0794 .0804 .0814
20 .0573 .0587 .0601 .0614 .0628 .0641 .0654 .0667 .0679 .0692
21 .0439 .0453 .0466 .0480 .0493 .0507 .0520 .0533 .0547 .0560
22 .0322 .0333 .0345 .0358 .0370 .0382 .0395 .0407 .0420 .0433
23 .0225 .0235 .0245 .0255 .0265 .0276 .0287 .0297 .0309 .0320
24 .0151 .0159 .0166 .0174 .0182 .0191 .0199 .0208 .0217 .0226
25 .0097 .0103 .0108 .0114 .0120 .0127 .0133 .0140 .0147 .0154

Mean Arrival Rate l

17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8 17.9 18.0

8 .0068 .0064 .0061 .0058 .0055 .0052 .0049 .0046 .0044 .0042
9 .0129 .0123 .0117 .0112 .0107 .0101 .0097 .0092 .0088 .0083

10 .0221 .0212 .0203 .0195 .0186 .0179 .0171 .0164 .0157 .0150
11 .0343 .0331 .0319 .0308 .0297 .0286 .0275 .0265 .0255 .0245
12 .0489 .0474 .0460 .0446 .0432 .0419 .0406 .0393 .0380 .0368
13 .0643 .0628 .0612 .0597 .0582 .0567 .0553 .0538 .0524 .0509
14 .0785 .0771 .0757 .0742 .0728 .0713 .0699 .0684 .0669 .0655
15 .0895 .0884 .0873 .0861 .0849 .0837 .0824 .0812 .0799 .0786
16 .0957 .0951 .0944 .0936 .0929 .0920 .0912 .0903 .0894 .0884
17 .0963 .0962 .0960 .0958 .0956 .0953 .0949 .0945 .0941 .0936
18 .0914 .0919 .0923 .0926 .0929 .0932 .0934 .0935 .0936 .0936
19 .0823 .0832 .0840 .0848 .0856 .0863 .0870 .0876 .0882 .0887
20 .0704 .0715 .0727 .0738 .0749 .0760 .0770 .0780 .0789 .0798
21 .0573 .0586 .0599 .0612 .0624 .0637 .0649 .0661 .0673 .0684
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Mean Arrival Rate l

17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8 17.9 18.0

22 .0445 .0458 .0471 .0484 .0496 .0509 .0522 .0535 .0547 .0560
23 .0331 .0343 .0354 .0366 .0378 .0390 .0402 .0414 .0426 .0438
24 .0236 .0246 .0255 .0265 .0275 .0286 .0296 .0307 .0318 .0328
25 .0161 .0169 .0177 .0185 .0193 .0201 .0210 .0218 .0227 .0237

Mean Arrival Rate l

18.1 18.2 18.3 18.4 18.5 18.6 18.7 18.8 18.9 19.0

9 .0079 .0075 .0072 .0068 .0065 .0061 .0058 .0055 .0053 .0050
10 .0143 .0137 .0131 .0125 .0120 .0114 .0109 .0104 .0099 .0095
11 .0236 .0227 .0218 .0209 .0201 .0193 .0185 .0178 .0171 .0164
12 .0356 .0344 .0332 .0321 .0310 .0299 .0289 .0278 .0269 .0259
13 .0495 .0481 .0468 .0454 .0441 .0428 .0415 .0403 .0390 .0378
14 .0640 .0626 .0611 .0597 .0583 .0569 .0555 .0541 .0527 .0514
15 .0773 .0759 .0746 .0732 .0719 .0705 .0692 .0678 .0664 .0650
16 .0874 .0864 .0853 .0842 .0831 .0820 .0808 .0796 .0785 .0772
17 .0931 .0925 .0918 .0912 .0904 .0897 .0889 .0881 .0872 .0863
18 .0936 .0935 .0934 .0932 .0930 .0927 .0924 .0920 .0916 .0911
19 .0891 .0896 .0899 .0902 .0905 .0907 .0909 .0910 .0911 .0911
20 .0807 .0815 .0823 .0830 .0837 .0844 .0850 .0856 .0861 .0866
21 .0695 .0706 .0717 .0727 .0738 .0747 .0757 .0766 .0775 .0783
22 .0572 .0584 .0596 .0608 .0620 .0632 .0643 .0655 .0666 .0676
23 .0450 .0462 .0475 .0487 .0499 .0511 .0523 .0535 .0547 .0559
24 .0340 .0351 .0362 .0373 .0385 .0396 .0408 .0419 .0431 .0442
25 .0246 .0255 .0265 .0275 .0285 .0295 .0305 .0315 .0326 .0336

Mean Arrival Rate l

19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 20.0

10 .0090 .0086 .0082 .0078 .0074 .0071 .0067 .0064 .0061 .0058
11 .0157 .0150 .0144 .0138 .0132 .0126 .0121 .0116 .0111 .0106
12 .0249 .0240 .0231 .0223 .0214 .0206 .0198 .0191 .0183 .0176
13 .0367 .0355 .0344 .0333 .0322 .0311 .0301 .0291 .0281 .0271
14 .0500 .0487 .0474 .0461 .0448 .0436 .0423 .0411 .0399 .0387
15 .0637 .0623 .0610 .0596 .0582 .0569 .0556 .0543 .0529 .0516
16 .0760 .0748 .0735 .0723 .0710 .0697 .0684 .0671 .0659 .0646
17 .0854 .0844 .0835 .0825 .0814 .0804 .0793 .0782 .0771 .0760
18 .0906 .0901 .0895 .0889 .0882 .0875 .0868 .0860 .0852 .0844
19 .0911 .0910 .0909 .0907 .0905 .0903 .0900 .0896 .0893 .0888
20 .0870 .0874 .0877 .0880 .0883 .0885 .0886 .0887 .0888 .0888
21 .0791 .0799 .0806 .0813 .0820 .0826 .0831 .0837 .0842 .0846
22 .0687 .0697 .0707 .0717 .0727 .0736 .0745 .0753 .0761 .0769
23 .0570 .0582 .0594 .0605 .0616 .0627 .0638 .0648 .0659 .0669
24 .0454 .0466 .0477 .0489 .0500 .0512 .0523 .0535 .0546 .0557
25 .0347 .0358 .0368 .0379 .0390 .0401 .0412 .0424 .0435 .0446

Mean Arrival Rate l

20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 21.0

10 .0055 .0053 .0050 .0048 .0045 .0043 .0041 .0039 .0037 .0035
11 .0101 .0097 .0092 .0088 .0084 .0080 .0077 .0073 .0070 .0067
12 .0169 .0163 .0156 .0150 .0144 .0138 .0132 .0127 .0122 .0116
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Mean Arrival Rate l

20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 21.0

13 .0262 .0253 .0244 .0235 .0227 .0219 .0211 .0203 .0195 .0188
14 .0376 .0365 .0353 .0343 .0332 .0322 .0311 .0301 .0292 .0282
15 .0504 .0491 .0478 .0466 .0454 .0442 .0430 .0418 .0406 .0395
16 .0633 .0620 .0607 .0594 .0581 .0569 .0556 .0543 .0531 .0518
17 .0748 .0736 .0725 .0713 .0701 .0689 .0677 .0665 .0653 .0640
18 .0835 .0826 .0817 .0808 .0798 .0789 .0778 .0768 .0758 .0747
19 .0884 .0879 .0873 .0868 .0861 .0855 .0848 .0841 .0834 .0826
20 .0888 .0887 .0886 .0885 .0883 .0881 .0878 .0875 .0871 .0867
21 .0850 .0854 .0857 .0860 .0862 .0864 .0865 .0866 .0867 .0867
22 .0777 .0784 .0791 .0797 .0803 .0809 .0814 .0819 .0824 .0828
23 .0679 .0688 .0698 .0707 .0716 .0724 .0733 .0741 .0748 .0756
24 .0568 .0579 .0590 .0601 .0611 .0622 .0632 .0642 .0652 .0661
25 .0457 .0468 .0479 .0490 .0501 .0512 .0523 .0534 .0545 .0555
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Table 6 Cumulative Poisson Probabilities

Mean Arrival Rate l

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

0 .9048 .8187 .7408 .6703 .6065 .5488 .4966 .4493 .4066 .3679
1 .9953 .9825 .9631 .9384 .9098 .8781 .8442 .8088 .7725 .7358
2 .9998 .9989 .9964 .9921 .9856 .9769 .9659 .9526 .9371 .9197
3 1.0000 .9999 .9997 .9992 .9982 .9966 .9942 .9909 .9865 .9810
4 1.0000 1.0000 1.0000 .9999 .9998 .9996 .9992 .9986 .9977 .9963
5 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9998 .9997 .9994
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Mean Arrival Rate l

1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2.0

0 .3329 .3012 .2725 .2466 .2231 .2019 .1827 .1653 .1496 .1353
1 .6990 .6626 .6268 .5918 .5578 .5249 .4932 .4628 .4337 .4060
2 .9004 .8795 .8571 .8335 .8088 .7834 .7572 .7306 .7037 .6767
3 .9743 .9662 .9569 .9463 .9344 .9212 .9068 .8913 .8747 .8571
4 .9946 .9923 .9893 .9857 .9814 .9763 .9704 .9636 .9559 .9473
5 .9990 .9985 .9978 .9968 .9955 .9940 .9920 .9896 .9868 .9834
6 .9999 .9997 .9996 .9994 .9991 .9987 .9981 .9974 .9966 .9955
7 1.0000 1.0000 .9999 .9999 .9998 .9997 .9996 .9994 .9992 .9989
8 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9998 .9998
9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Mean Arrival Rate l

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 3.0

0 .1225 .1108 .1003 .0907 .0821 .0743 .0672 .0608 .0550 .0498
1 .3796 .3546 .3309 .3084 .2873 .2674 .2487 .2311 .2146 .1991
2 .6496 .6227 .5960 .5697 .5438 .5184 .4936 .4695 .4460 .4232
3 .8386 .8194 .7993 .7787 .7576 .7360 .7141 .6919 .6696 .6472
4 .9379 .9275 .9162 .9041 .8912 .8774 .8629 .8477 .8318 .8153
5 .9796 .9751 .9700 .9643 .9580 .9510 .9433 .9349 .9258 .9161
6 .9941 .9925 .9906 .9884 .9858 .9828 .9794 .9756 .9713 .9665
7 .9985 .9980 .9974 .9967 .9958 .9947 .9934 .9919 .9901 .9881
8 .9997 .9995 .9994 .9991 .9989 .9985 .9981 .9976 .9969 .9962
9 .9999 .9999 .9999 .9998 .9997 .9996 .9995 .9993 .9991 .9989

10 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9999 .9998 .9998 .9997
11 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999
12 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Mean Arrival Rate l

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

0 .0450 .0408 .0369 .0334 .0302 .0273 .0247 .0224 .0202 .0183
1 .1847 .1712 .1586 .1468 .1359 .1257 .1162 .1074 .0992 .0916
2 .4012 .3799 .3594 .3397 .3208 .3027 .2854 .2689 .2531 .2381
3 .6248 .6025 .5803 .5584 .5366 .5152 .4942 .4735 .4532 .4335
4 .7982 .7806 .7626 .7442 .7254 .7064 .6872 .6678 .6484 .6288
5 .9057 .8946 .8829 .8705 .8576 .8441 .8301 .8156 .8006 .7851
6 .9612 .9554 .9490 .9421 .9347 .9267 .9182 .9091 .8995 .8893
7 .9858 .9832 .9802 .9769 .9733 .9692 .9648 .9599 .9546 .9489
8 .9953 .9943 .9931 .9917 .9901 .9883 .9863 .9840 .9815 .9786

(continued)



760 Appendix Tables    

Mean Arrival Rate l

3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 3.9 4.0

9 .9986 .9982 .9978 .9973 .9967 .9960 .9952 .9942 .9931 .9919
10 .9996 .9995 .9994 .9992 .9990 .9987 .9984 .9981 .9977 .9972
11 .9999 .9999 .9998 .9998 .9997 .9996 .9995 .9994 .9993 .9991
12 1.0000 1.0000 1.0000 .9999 .9999 .9999 .9999 .9998 .9998 .9997
13 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999
14 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Mean Arrival Rate l

4.1 4.2 4.3 4.4 4.5 4.6 4.7 4.8 4.9 5.0

0 .0166 .0150 .0136 .0123 .0111 .0101 .0091 .0082 .0074 .0067
1 .0845 .0780 .0719 .0663 .0611 .0563 .0518 .0477 .0439 .0404
2 .2238 .2102 .1974 .1851 .1736 .1626 .1523 .1425 .1333 .1247
3 .4142 .3954 .3772 .3594 .3423 .3257 .3097 .2942 .2793 .2650
4 .6093 .5898 .5704 .5512 .5321 .5132 .4946 .4763 .4582 .4405
5 .7693 .7531 .7367 .7199 .7029 .6858 .6684 .6510 .6335 .6160
6 .8786 .8675 .8558 .8436 .8311 .8180 .8046 .7908 .7767 .7622
7 .9427 .9361 .9290 .9214 .9134 .9049 .8960 .8867 .8769 .8666
8 .9755 .9721 .9683 .9642 .9597 .9549 .9497 .9442 .9382 .9319
9 .9905 .9889 .9871 .9851 .9829 .9805 .9778 .9749 .9717 .9682

10 .9966 .9959 .9952 .9943 .9933 .9922 .9910 .9896 .9880 .9863
11 .9989 .9986 .9983 .9980 .9976 .9971 .9966 .9960 .9953 .9945
12 .9997 .9996 .9995 .9993 .9992 .9990 .9988 .9986 .9983 .9980
13 .9999 .9999 .9998 .9998 .9997 .9997 .9996 .9995 .9994 .9993
14 1.0000 1.0000 1.0000 .9999 .9999 .9999 .9999 .9999 .9998 .9998

Mean Arrival Rate l

5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9 6.0

0 .0061 .0055 .0050 .0045 .0041 .0037 .0033 .0030 .0027 .0025
1 .0372 .0342 .0314 .0289 .0266 .0244 .0224 .0206 .0189 .0174
2 .1165 .1088 .1016 .0948 .0884 .0824 .0768 .0715 .0666 .0620
3 .2513 .2381 .2254 .2133 .2017 .1906 .1800 .1700 .1604 .1512
4 .4231 .4061 .3895 .3733 .3575 .3422 .3272 .3127 .2987 .2851
5 .5984 .5809 .5635 .5461 .5289 .5119 .4950 .4783 .4619 .4457
6 .7474 .7324 .7171 .7017 .6860 .6703 .6544 .6384 .6224 .6063
7 .8560 .8449 .8335 .8217 .8095 .7970 .7841 .7710 .7576 .7440
8 .9252 .9181 .9106 .9027 .8944 .8857 .8766 .8672 .8574 .8472
9 .9644 .9603 .9559 .9512 .9462 .9409 .9352 .9292 .9228 .9161

10 .9844 .9823 .9800 .9775 .9747 .9718 .9686 .9651 .9614 .9574
11 .9937 .9927 .9916 .9904 .9890 .9875 .9859 .9841 .9821 .9799
12 .9976 .9972 .9967 .9962 .9955 .9949 .9941 .9932 .9922 .9912
13 .9992 .9990 .9988 .9986 .9983 .9980 .9977 .9973 .9969 .9964
14 .9997 .9997 .9996 .9995 .9994 .9993 .9991 .9990 .9988 .9986

Mean Arrival Rate l

6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0

0 .0022 .0020 .0018 .0017 .0015 .0014 .0012 .0011 .0010 .0009
1 .0159 .0146 .0134 .0123 .0113 .0103 .0095 .0087 .0080 .0073
2 .0577 .0536 .0498 .0463 .0430 .0400 .0371 .0344 .0320 .0296
3 .1425 .1342 .1264 .1189 .1118 .1052 .0988 .0928 .0871 .0818
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Mean Arrival Rate l

6.1 6.2 6.3 6.4 6.5 6.6 6.7 6.8 6.9 7.0

4 .2719 .2592 .2469 .2351 .2237 .2127 .2022 .1920 .1823 .1730
5 .4298 .4141 .3988 .3837 .3690 .3547 .3406 .3270 .3137 .3007
6 .5902 .5742 .5582 .5423 .5265 .5108 .4953 .4799 .4647 .4497
7 .7301 .7160 .7017 .6873 .6728 .6581 .6433 .6285 .6136 .5987
8 .8367 .8259 .8148 .8033 .7916 .7796 .7673 .7548 .7420 .7291
9 .9090 .9016 .8939 .8858 .8774 .8686 .8596 .8502 .8405 .8305

10 .9531 .9486 .9437 .9386 .9332 .9274 .9214 .9151 .9084 .9015
11 .9776 .9750 .9723 .9693 .9661 .9627 .9591 .9552 .9510 .9467
12 .9900 .9887 .9873 .9857 .9840 .9821 .9801 .9779 .9755 .9730
13 .9958 .9952 .9945 .9937 .9929 .9920 .9909 .9898 .9885 .9872
14 .9984 .9981 .9978 .9974 .9970 .9966 .9961 .9956 .9950 .9943

Mean Arrival Rate l

7.1 7.2 7.3 7.4 7.5 7.6 7.7 7.8 7.9 8.0

0 .0008 .0007 .0007 .0006 .0006 .0005 .0005 .0004 .0004 .0003
1 .0067 .0061 .0056 .0051 .0047 .0043 .0039 .0036 .0033 .0030
2 .0275 .0255 .0236 .0219 .0203 .0188 .0174 .0161 .0149 .0138
3 .0767 .0719 .0674 .0632 .0591 .0554 .0518 .0485 .0453 .0424
4 .1641 .1555 .1473 .1395 .1321 .1249 .1181 .1117 .1055 .0996
5 .2881 .2759 .2640 .2526 .2414 .2307 .2203 .2103 .2006 .1912
6 .4349 .4204 .4060 .3920 .3782 .3646 .3514 .3384 .3257 .3134
7 .5838 .5689 .5541 .5393 .5246 .5100 .4956 .4812 .4670 .4530
8 .7160 .7027 .6892 .6757 .6620 .6482 .6343 .6204 .6065 .5925
9 .8202 .8096 .7988 .7877 .7764 .7649 .7531 .7411 .7290 .7166

10 .8942 .8867 .8788 .8707 .8622 .8535 .8445 .8352 .8257 .8159
11 .9420 .9371 .9319 .9265 .9208 .9148 .9085 .9020 .8952 .8881
12 .9703 .9673 .9642 .9609 .9573 .9536 .9496 .9454 .9409 .9362
13 .9857 .9841 .9824 .9805 .9784 .9762 .9739 .9714 .9687 .9658
14 .9935 .9927 .9918 .9908 .9897 .9886 .9873 .9859 .9844 .9827
15 .9972 .9969 .9964 .9959 .9954 .9948 .9941 .9934 .9926 .9918
16 .9989 .9987 .9985 .9983 .9980 .9978 .9974 .9971 .9967 .9963
17 .9996 .9995 .9994 .9993 .9992 .9991 .9989 .9988 .9986 .9984
18 .9998 .9998 .9998 .9997 .9997 .9996 .9996 .9995 .9994 .9993
19 .9999 .9999 .9999 .9999 .9999 .9999 .9998 .9998 .9998 .9997
20 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 .9999 .9999 .9999 .9999

Mean Arrival Rate l

8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0

0 .0003 .0003 .0002 .0002 .0002 .0002 .0002 .0002 .0001 .0001
1 .0028 .0025 .0023 .0021 .0019 .0018 .0016 .0015 .0014 .0012
2 .0127 .0118 .0109 .0100 .0093 .0086 .0079 .0073 .0068 .0062
3 .0396 .0370 .0346 .0323 .0301 .0281 .0262 .0244 .0228 .0212
4 .0940 .0887 .0837 .0789 .0744 .0701 .0660 .0621 .0584 .0550
5 .1822 .1736 .1653 .1573 .1496 .1422 .1352 .1284 .1219 .1157
6 .3013 .2896 .2781 .2670 .2562 .2457 .2355 .2256 .2160 .2068
7 .4391 .4254 .4119 .3987 .3856 .3728 .3602 .3478 .3357 .3239
8 .5786 .5647 .5507 .5369 .5231 .5094 .4958 .4823 .4689 .4557
9 .7041 .6915 .6788 .6659 .6530 .6400 .6269 .6137 .6006 .5874

10 .8058 .7955 .7850 .7743 .7634 .7522 .7409 .7294 .7178 .7060
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Mean Arrival Rate l

8.1 8.2 8.3 8.4 8.5 8.6 8.7 8.8 8.9 9.0

11 .8807 .8731 .8652 .8571 .8487 .8400 .8311 .8220 .8126 .8030
12 .9313 .9261 .9207 .9150 .9091 .9029 .8965 .8898 .8829 .8758
13 .9628 .9595 .9561 .9524 .9486 .9445 .9403 .9358 .9311 .9261
14 .9810 .9791 .9771 .9749 .9726 .9701 .9675 .9647 .9617 .9585
15 .9908 .9898 .9887 .9875 .9862 .9848 .9832 .9816 .9798 .9780
16 .9958 .9953 .9947 .9941 .9934 .9926 .9918 .9909 .9899 .9889
17 .9982 .9979 .9977 .9973 .9970 .9966 .9962 .9957 .9952 .9947
18 .9992 .9991 .9990 .9989 .9987 .9985 .9983 .9981 .9978 .9976
19 .9997 .9997 .9996 .9995 .9995 .9994 .9993 .9992 .9991 .9989
20 .9999 .9999 .9998 .9998 .9998 .9998 .9997 .9997 .9996 .9996

Mean Arrival Rate l

9.1 9.2 9.3 9.4 9.5 9.6 9.7 9.8 9.9 10.0

0 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0000
1 .0011 .0010 .0009 .0009 .0008 .0007 .0007 .0006 .0005 .0005
2 .0058 .0053 .0049 .0045 .0042 .0038 .0035 .0033 .0030 .0028
3 .0198 .0184 .0172 .0160 .0149 .0138 .0129 .0120 .0111 .0103
4 .0517 .0486 .0456 .0429 .0403 .0378 .0355 .0333 .0312 .0293
5 .1098 .1041 .0986 .0935 .0885 .0838 .0793 .0750 .0710 .0671
6 .1978 .1892 .1808 .1727 .1649 .1574 .1502 .1433 .1366 .1301
7 .3123 .3010 .2900 .2792 .2687 .2584 .2485 .2388 .2294 .2202
8 .4426 .4296 .4168 .4042 .3918 .3796 .3676 .3558 .3442 .3328
9 .5742 .5611 .5479 .5349 .5218 .5089 .4960 .4832 .4705 .4579

10 .6941 .6820 .6699 .6576 .6453 .6329 .6205 .6080 .5955 .5830
11 .7932 .7832 .7730 .7626 .7520 .7412 .7303 .7193 .7081 .6968
12 .8684 .8607 .8529 .8448 .8364 .8279 .8191 .8101 .8009 .7916
13 .9210 .9156 .9100 .9042 .8981 .8919 .8853 .8786 .8716 .8645
14 .9552 .9517 .9480 .9441 .9400 .9357 .9312 .9265 .9216 .9165
15 .9760 .9738 .9715 .9691 .9665 .9638 .9609 .9579 .9546 .9513
16 .9878 .9865 .9852 .9838 .9823 .9806 .9789 .9770 .9751 .9730
17 .9941 .9934 .9927 .9919 .9911 .9902 .9892 .9881 .9870 .9857
18 .9973 .9969 .9966 .9962 .9957 .9952 .9947 .9941 .9935 .9928
19 .9988 .9986 .9985 .9983 .9980 .9978 .9975 .9972 .9969 .9965
20 .9995 .9994 .9993 .9992 .9991 .9990 .9989 .9987 .9986 .9984

Mean Arrival Rate l

10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 11.0

0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
1 .0005 .0004 .0004 .0003 .0003 .0003 .0003 .0002 .0002 .0002
2 .0026 .0023 .0022 .0020 .0018 .0017 .0016 .0014 .0013 .0012
3 .0096 .0089 .0083 .0077 .0071 .0066 .0062 .0057 .0053 .0049
4 .0274 .0257 .0241 .0225 .0211 .0197 .0185 .0173 .0162 .0151
5 .0634 .0599 .0566 .0534 .0504 .0475 .0448 .0423 .0398 .0375
6 .1240 .1180 .1123 .1069 .1016 .0966 .0918 .0872 .0828 .0786
7 .2113 .2027 .1944 .1863 .1785 .1710 .1636 .1566 .1498 .1432
8 .3217 .3108 .3001 .2896 .2794 .2694 .2597 .2502 .2410 .2320
9 .4455 .4332 .4210 .4090 .3971 .3854 .3739 .3626 .3515 .3405

10 .5705 .5580 .5456 .5331 .5207 .5084 .4961 .4840 .4719 .4599
11 .6853 .6738 .6622 .6505 .6387 .6269 .6150 .6031 .5912 .5793
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Mean Arrival Rate l

10.1 10.2 10.3 10.4 10.5 10.6 10.7 10.8 10.9 11.0

12 .7820 .7722 .7623 .7522 .7420 .7316 .7210 .7104 .6996 .6887
13 .8571 .8494 .8416 .8336 .8253 .8169 .8083 .7995 .7905 .7813
14 .9112 .9057 .9 .8940 .8879 .8815 .8750 .8682 .8612 .8540
15 .9477 .9440 .9400 .9359 .9317 .9272 .9225 .9177 .9126 .9074
16 .9707 .9684 .9658 .9632 .9604 .9574 .9543 .9511 .9477 .9441
17 .9844 .9830 .9815 .9799 .9781 .9763 .9744 .9723 .9701 .9678
18 .9921 .9913 .9904 .9895 .9885 .9874 .9863 .9850 .9837 .9823
19 .9962 .9957 .9953 .9948 .9942 .9936 .9930 .9923 .9915 .9907
20 .9982 .9980 .9978 .9975 .9972 .9969 .9966 .9962 .9958 .9953

Mean Arrival Rate l
11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 11.9 12.0

0 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
1 .0002 .0002 .0002 .0001 .0001 .0001 .0001 .0001 .0001 .0001
2 .0011 .0010 .0009 .0009 .0008 .0007 .0007 .0006 .0006 .0005
3 .0046 .0042 .0039 .0036 .0034 .0031 .0029 .0027 .0025 .0023
4 .0141 .0132 .0123 .0115 .0107 .0100 .0094 .0087 .0081 .0076
5 .0353 .0333 .0313 .0295 .0277 .0261 .0245 .0230 .0217 .0203
6 .0746 .0708 .0671 .0636 .0603 .0571 .0541 .0512 .0484 .0458
7 .1369 .1307 .1249 .1192 .1137 .1085 .1035 .0986 .0940 .0895
8 .2232 .2147 .2064 .1984 .1906 .1830 .1757 .1686 .1617 .1550
9 .3298 .3192 .3089 .2987 .2888 .2791 .2696 .2603 .2512 .2424

10 .4480 .4362 .4246 .4131 .4017 .3905 .3794 .3685 .3578 .3472
11 .5673 .5554 .5435 .5316 .5198 .5080 .4963 .4847 .4731 .4616
12 .6777 .6666 .6555 .6442 .6329 .6216 .6102 .5988 .5874 .5760
13 .7719 .7624 .7528 .7430 .7330 .7230 .7128 .7025 .6920 .6815
14 .8467 .8391 .8313 .8234 .8153 .8069 .7985 .7898 .7810 .7720
15 .9020 .8963 .8905 .8845 .8783 .8719 .8653 .8585 .8516 .8444
16 .9403 .9364 .9323 .9280 .9236 .9190 .9142 .9092 .9040 .8987
17 .9654 .9628 .9601 .9572 .9542 .9511 .9478 .9444 .9408 .9370
18 .9808 .9792 .9775 .9757 .9738 .9718 .9697 .9674 .9651 .9626
19 .9898 .9889 .9879 .9868 .9857 .9845 .9832 .9818 .9803 .9787
20 .9948 .9943 .9938 .9932 .9925 .9918 .9910 .9902 .9893 .9884

Mean Arrival Rate l

12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 13.0

5 .0191 .0179 .0168 .0158 .0148 .0139 .0130 .0122 .0115 .0107
6 .0433 .0410 .0387 .0366 .0346 .0326 .0308 .0291 .0274 .0259
7 .0852 .0811 .0772 .0734 .0698 .0664 .0631 .0599 .0569 .0540
8 .1486 .1424 .1363 .1305 .1249 .1195 .1143 .1093 .1044 .0998
9 .2338 .2254 .2172 .2092 .2014 .1939 .1866 .1794 .1725 .1658

10 .3368 .3266 .3166 .3067 .2971 .2876 .2783 .2693 .2604 .2517
11 .4502 .4389 .4278 .4167 .4058 .3950 .3843 .3738 .3634 .3532
12 .5645 .5531 .5417 .5303 .5190 .5077 .4964 .4853 .4741 .4631
13 .6709 .6603 .6495 .6387 .6278 .6169 .6060 .5950 .5840 .5730
14 .7629 .7536 .7442 .7347 .7250 .7153 .7054 .6954 .6853 .6751
15 .8371 .8296 .8219 .8140 .8060 .7978 .7895 .7810 .7724 .7636
16 .8932 .8875 .8816 .8755 .8693 .8629 .8563 .8495 .8426 .8355
17 .9331 .9290 .9248 .9204 .9158 .9111 .9062 .9011 .8959 .8905
18 .9600 .9572 .9543 .9513 .9481 .9448 .9414 .9378 .9341 .9302
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Mean Arrival Rate l

12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 13.0

19 .9771 .9753 .9734 .9715 .9694 .9672 .9649 .9625 .9600 .9573
20 .9874 .9863 .9852 .9840 .9827 .9813 .9799 .9783 .9767 .9750
21 .9934 .9927 .9921 .9914 .9906 .9898 .9889 .9880 .9870 .9859
22 .9966 .9963 .9959 .9955 .9951 .9946 .9941 .9936 .9930 .9924
23 .9984 .9982 .9980 .9978 .9975 .9973 .9970 .9967 .9964 .9960

Mean Arrival Rate l
13.1 13.2 13.3 13.4 13.5 13.6 13.7 13.8 13.9 14.0

5 .0101 .0094 .0088 .0083 .0077 .0072 .0068 .0063 .0059 .0055
6 .0244 .0230 .0217 .0204 .0193 .0181 .0171 .0161 .0151 .0142
7 .0513 .0487 .0461 .0438 .0415 .0393 .0372 .0353 .0334 .0316
8 .0953 .0910 .0868 .0828 .0790 .0753 .0718 .0684 .0652 .0621
9 .1593 .1530 .1469 .1410 .1353 .1297 .1244 .1192 .1142 .1094

10 .2432 .2349 .2268 .2189 .2112 .2037 .1964 .1893 .1824 .1757
11 .3431 .3332 .3234 .3139 .3045 .2952 .2862 .2773 .2686 .2600
12 .4522 .4413 .4305 .4199 .4093 .3989 .3886 .3784 .3684 .3585
13 .5621 .5511 .5401 .5292 .5182 .5074 .4966 .4858 .4751 .4644
14 .6649 .6546 .6442 .6338 .6233 .6128 .6022 .5916 .5810 .5704
15 .7547 .7456 .7365 .7272 .7178 .7083 .6987 .6890 .6792 .6694
16 .8282 .8208 .8132 .8054 .7975 .7895 .7813 .7730 .7645 .7559
17 .8849 .8791 .8732 .8671 .8609 .8545 .8479 .8411 .8343 .8272
18 .9261 .9219 .9176 .9130 .9084 .9035 .8986 .8934 .8881 .8826
19 .9546 .9516 .9486 .9454 .9421 .9387 .9351 .9314 .9275 .9235
20 .9732 .9713 .9692 .9671 .9649 .9626 .9601 .9576 .9549 .9521
21 .9848 .9836 .9823 .9810 .9796 .9780 .9765 .9748 .9730 .9712
22 .9917 .9910 .9902 .9894 .9885 .9876 .9866 .9856 .9845 .9833
23 .9956 .9952 .9948 .9943 .9938 .9933 .9927 .9921 .9914 .9907

Mean Arrival Rate l

14.1 14.2 14.3 14.4 14.5 14.6 14.7 14.8 14.9 15.0

6 .0134 .0126 .0118 .0111 .0105 .0098 .0092 .0087 .0081 .0076
7 .0299 .0283 .0268 .0253 .0239 .0226 .0214 .0202 .0191 .0180
8 .0591 .0562 .0535 .0509 .0484 .0460 .0437 .0415 .0394 .0374
9 .1047 .1003 .0959 .0918 .0878 .0839 .0802 .0766 .0732 .0699

10 .1691 .1628 .1566 .1507 .1449 .1392 .1338 .1285 .1234 .1185
11 .2517 .2435 .2355 .2277 .2201 .2127 .2054 .1984 .1915 .1848
12 .3487 .3391 .3296 .3203 .3111 .3021 .2932 .2845 .2760 .2676
13 .4539 .4434 .4330 .4227 .4125 .4024 .3925 .3826 .3728 .3632
14 .5598 .5492 .5387 .5281 .5176 .5071 .4967 .4863 .4759 .4657
15 .6594 .6494 .6394 .6293 .6192 .6090 .5988 .5886 .5783 .5681
16 .7472 .7384 .7294 .7204 .7112 .7020 .6926 .6832 .6737 .6641
17 .8200 .8126 .8051 .7975 .7897 .7818 .7737 .7656 .7573 .7489
18 .8770 .8712 .8653 .8592 .8530 .8466 .8400 .8333 .8265 .8195
19 .9193 .9150 .9106 .9060 .9012 .8963 .8913 .8861 .8807 .8752
20 .9492 .9461 .9430 .9396 .9362 .9326 .9289 .9251 .9211 .9170
21 .9692 .9671 .9650 .9627 .9604 .9579 .9553 .9526 .9498 .9469
22 .9820 .9807 .9793 .9779 .9763 .9747 .9729 .9711 .9692 .9673
23 .9899 .9891 .9882 .9873 .9863 .9853 .9842 .9831 .9818 .9805
24 .9945 .9941 .9935 .9930 .9924 .9918 .9911 .9904 .9896 .9888
25 .9971 .9969 .9966 .9963 .9959 .9956 .9952 .9947 .9943 .9938
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Mean Arrival Rate l

15.1 15.2 15.3 15.4 15.5 15.6 15.7 15.8 15.9 16.0

7 .0170 .0160 .0151 .0143 .0135 .0127 .0120 .0113 .0106 .0100
8 .0355 .0337 .0320 .0304 .0288 .0273 .0259 .0245 .0232 .0220
9 .0667 .0636 .0607 .0579 .0552 .0526 .0501 .0478 .0455 .0433

10 .1137 .1091 .1046 .1003 .0961 .0921 .0882 .0845 .0809 .0774
11 .1782 .1718 .1657 .1596 .1538 .1481 .1426 .1372 .1320 .1270
12 .2594 .2514 .2435 .2358 .2283 .2209 .2137 .2067 .1998 .1931
13 .3537 .3444 .3351 .3260 .3171 .3083 .2996 .2911 .2827 .2745
14 .4554 .4453 .4353 .4253 .4154 .4056 .3959 .3864 .3769 .3675
15 .5578 .5476 .5374 .5272 .5170 .5069 .4968 .4867 .4767 .4667
16 .6545 .6448 .6351 .6253 .6154 .6056 .5957 .5858 .5759 .5660
17 .7403 .7317 .7230 .7141 .7052 .6962 .6871 .6779 .6687 .6593
18 .8123 .8051 .7977 .7901 .7825 .7747 .7668 .7587 .7506 .7423
19 .8696 .8638 .8578 .8517 .8455 .8391 .8326 .8260 .8192 .8122
20 .9128 .9084 .9039 .8992 .8944 .8894 .8843 .8791 .8737 .8682
21 .9438 .9407 .9374 .9340 .9304 .9268 .9230 .9190 .9150 .9108
22 .9652 .9630 .9607 .9583 .9558 .9532 .9505 .9477 .9448 .9418
23 .9792 .9777 .9762 .9746 .9730 .9712 .9694 .9674 .9654 .9633
24 .9880 .9871 .9861 .9851 .9840 .9829 .9817 .9804 .9791 .9777
25 .9933 .9928 .9922 .9915 .9909 .9902 .9894 .9886 .9878 .9869

Mean Arrival Rate l

16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 17.0

8 .0208 .0197 .0186 .0176 .0167 .0158 .0149 .0141 .0133 .0126
9 .0412 .0392 .0373 .0355 .0337 .0321 .0305 .0290 .0275 .0261

10 .0740 .0708 .0677 .0647 .0619 .0591 .0565 .0539 .0515 .0491
11 .1221 .1174 .1128 .1084 .1041 .0999 .0959 .0920 .0883 .0847
12 .1866 .1802 .1740 .1680 .1621 .1564 .1508 .1454 .1401 .1350
13 .2664 .2585 .2508 .2432 .2357 .2285 .2213 .2144 .2075 .2009
14 .3583 .3492 .3402 .3313 .3225 .3139 .3054 .2971 .2889 .2808
15 .4569 .4470 .4373 .4276 .4180 .4085 .3991 .3898 .3806 .3715
16 .5560 .5461 .5362 .5263 .5165 .5067 .4969 .4871 .4774 .4677
17 .6500 .6406 .6311 .6216 .6120 .6025 .5929 .5833 .5737 .5640
18 .7340 .7255 .7170 .7084 .6996 .6908 .6820 .6730 .6640 .6550
19 .8052 .7980 .7907 .7833 .7757 .7681 .7603 .7524 .7444 .7363
20 .8625 .8567 .8508 .8447 .8385 .8321 .8257 .8191 .8123 .8055
21 .9064 .9020 .8974 .8927 .8878 .8828 .8777 .8724 .8670 .8615
22 .9386 .9353 .9319 .9284 .9248 .9210 .9171 .9131 .9090 .9047
23 .9611 .9588 .9564 .9539 .9513 .9486 .9458 .9429 .9398 .9367
24 .9762 .9747 .9730 .9713 .9696 .9677 .9657 .9637 .9616 .9594
25 .9859 .9849 .9839 .9828 .9816 .9804 .9791 .9777 .9763 .9748
26 .9920 .9913 .9907 .9900 .9892 .9884 .9876 .9867 .9858 .9848

Mean Arrival Rate l

17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8 17.9 18.0

8 .0119 .0112 .0106 .0100 .0095 .0089 .0084 .0079 .0075 .0071
9 .0248 .0235 .0223 .0212 .0201 .0191 .0181 .0171 .0162 .0154

10 .0469 .0447 .0426 .0406 .0387 .0369 .0352 .0335 .0319 .0304
11 .0812 .0778 .0746 .0714 .0684 .0655 .0627 .0600 .0574 .0549
12 .1301 .1252 .1206 .1160 .1116 .1074 .1033 .0993 .0954 .0917
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Mean Arrival Rate l

17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8 17.9 18.0

13 .1944 .1880 .1818 .1758 .1699 .1641 .1585 .1531 .1478 .1426
14 .2729 .2651 .2575 .2500 .2426 .2354 .2284 .2215 .2147 .2081
15 .3624 .3535 .3448 .3361 .3275 .3191 .3108 .3026 .2946 .2867
16 .4581 .4486 .4391 .4297 .4204 .4112 .4020 .3929 .3839 .3751
17 .5544 .5448 .5352 .5256 .5160 .5065 .4969 .4875 .4780 .4686
18 .6458 .6367 .6275 .6182 .6089 .5996 .5903 .5810 .5716 .5622
19 .7281 .7199 .7115 .7031 .6945 .6859 .6773 .6685 .6598 .6509
20 .7985 .7914 .7842 .7769 .7694 .7619 .7542 .7465 .7387 .7307
21 .8558 .8500 .8441 .8380 .8319 .8255 .8191 .8126 .8059 .7991
22 .9003 .8958 .8912 .8864 .8815 .8765 .8713 .8660 .8606 .8551
23 .9334 .9301 .9266 .9230 .9193 .9154 .9115 .9074 .9032 .8989
24 .9570 .9546 .9521 .9495 .9468 .9440 .9411 .9381 .9350 .9317
25 .9732 .9715 .9698 .9680 .9661 .9641 .9621 .9599 .9577 .9554
26 .9838 .9827 .9816 .9804 .9791 .9778 .9764 .9749 .9734 .9718
27 .9905 .9898 .9891 .9883 .9875 .9866 .9857 .9848 .9837 .9827

Mean Arrival Rate l

18.1 18.2 18.3 18.4 18.5 18.6 18.7 18.8 18.9 19.0

9 .0146 .0138 .0131 .0124 .0117 .0111 .0105 .0099 .0094 .0089
10 .0289 .0275 .0262 .0249 .0237 .0225 .0214 .0203 .0193 .0183
11 .0525 .0502 .0479 .0458 .0438 .0418 .0399 .0381 .0363 .0347
12 .0881 .0846 .0812 .0779 .0748 .0717 .0688 .0659 .0632 .0606
13 .1376 .1327 .1279 .1233 .1189 .1145 .1103 .1062 .1022 .0984
14 .2016 .1953 .1891 .1830 .1771 .1714 .1658 .1603 .1550 .1497
15 .2789 .2712 .2637 .2563 .2490 .2419 .2349 .2281 .2214 .2148
16 .3663 .3576 .3490 .3405 .3321 .3239 .3157 .3077 .2998 .2920
17 .4593 .4500 .4408 .4317 .4226 .4136 .4047 .3958 .3870 .3784
18 .5529 .5435 .5342 .5249 .5156 .5063 .4970 .4878 .4786 .4695
19 .6420 .6331 .6241 .6151 .6061 .5970 .5879 .5788 .5697 .5606
20 .7227 .7146 .7064 .6981 .6898 .6814 .6729 .6644 .6558 .6472
21 .7922 .7852 .7781 .7709 .7636 .7561 .7486 .7410 .7333 .7255
22 .8494 .8436 .8377 .8317 .8256 .8193 .8129 .8065 .7998 .7931
23 .8944 .8899 .8852 .8804 .8755 .8704 .8652 .8600 .8545 .8490
24 .9284 .9249 .9214 .9177 .9139 .9100 .9060 .9019 .8976 .8933
25 .9530 .9505 .9479 .9452 .9424 .9395 .9365 .9334 .9302 .9269
26 .9701 .9683 .9665 .9646 .9626 .9606 .9584 .9562 .9539 .9514
27 .9816 .9804 .9792 .9779 .9765 .9751 .9736 .9720 .9704 .9687

Mean Arrival Rate l

19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 20.0

10 .0174 .0165 .0157 .0149 .0141 .0134 .0127 .0120 .0114 .0108
11 .0331 .0315 .0301 .0287 .0273 .0260 .0248 .0236 .0225 .0214
12 .0580 .0556 .0532 .0509 .0488 .0467 .0446 .0427 .0408 .0390
13 .0947 .0911 .0876 .0842 .0809 .0778 .0747 .0717 .0689 .0661
14 .1447 .1397 .1349 .1303 .1257 .1213 .1170 .1128 .1088 .1049
15 .2084 .2021 .1959 .1899 .1840 .1782 .1726 .1671 .1617 .1565
16 .2844 .2768 .2694 .2621 .2550 .2479 .2410 .2342 .2276 .2211
17 .3698 .3613 .3529 .3446 .3364 .3283 .3203 .3124 .3047 .2970
18 .4604 .4514 .4424 .4335 .4246 .4158 .4071 .3985 .3899 .3814

Table 6 Cumulative Poisson Probabilities (Continued )
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Mean Arrival Rate l

19.1 19.2 19.3 19.4 19.5 19.6 19.7 19.8 19.9 20.0

19 .5515 .5424 .5333 .5242 .5151 .5061 .4971 .4881 .4792 .4703
20 .6385 .6298 .6210 .6122 .6034 .5946 .5857 .5769 .5680 .5591
21 .7176 .7097 .7016 .6935 .6854 .6772 .6689 .6605 .6521 .6437
22 .7863 .7794 .7724 .7653 .7580 .7507 .7433 .7358 .7283 .7206
23 .8434 .8376 .8317 .8257 .8196 .8134 .8071 .8007 .7941 .7875
24 .8888 .8842 .8795 .8746 .8697 .8646 .8594 .8541 .8487 .8432
25 .9235 .9199 .9163 .9126 .9087 .9048 .9007 .8965 .8922 .8878
26 .9489 .9463 .9437 .9409 .9380 .9350 .9319 .9288 .9255 .9221
27 .9670 .9651 .9632 .9612 .9591 .9570 .9547 .9524 .9500 .9475

Mean Arrival Rate l

20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 21.0

10 .0102 .0097 .0092 .0087 .0082 .0078 .0074 .0070 .0066 .0063
11 .0204 .0194 .0184 .0175 .0167 .0158 .0150 .0143 .0136 .0129
12 .0373 .0356 .0340 .0325 .0310 .0296 .0283 .0270 .0257 .0245
13 .0635 .0609 .0584 .0560 .0537 .0515 .0493 .0473 .0453 .0434
14 .1010 .0973 .0938 .0903 .0869 .0836 .0805 .0774 .0744 .0716
15 .1514 .1464 .1416 .1369 .1323 .1278 .1234 .1192 .1151 .1111
16 .2147 .2084 .2023 .1963 .1904 .1847 .1790 .1735 .1682 .1629
17 .2895 .2821 .2748 .2676 .2605 .2536 .2467 .2400 .2334 .2270
18 .3730 .3647 .3565 .3484 .3403 .3324 .3246 .3168 .3092 .3017
19 .4614 .4526 .4438 .4351 .4265 .4179 .4094 .4009 .3926 .3843
20 .5502 .5413 .5325 .5236 .5148 .5059 .4972 .4884 .4797 .4710
21 .6352 .6267 .6181 .6096 .6010 .5923 .5837 .5750 .5664 .5577
22 .7129 .7051 .6972 .6893 .6813 .6732 .6651 .6569 .6487 .6405
23 .7808 .7739 .7670 .7600 .7528 .7456 .7384 .7310 .7235 .7160
24 .8376 .8319 .8260 .8201 .8140 .8078 .8016 .7952 .7887 .7822
25 .8833 .8787 .8739 .8691 .8641 .8591 .8539 .8486 .8432 .8377
26 .9186 .9150 .9114 .9076 .9037 .8997 .8955 .8913 .8870 .8826
27 .9449 .9423 .9395 .9366 .9337 .9306 .9275 .9242 .9209 .9175

Mean Arrival Rate l

21.1 21.2 21.3 21.4 21.5 21.6 21.7 21.8 21.9 22.0

11 .0123 .0116 .0110 .0105 .0099 .0094 .0090 .0085 .0080 .0076
12 .0234 .0223 .0213 .0203 .0193 .0184 .0175 .0167 .0159 .0151
13 .0415 .0397 .0380 .0364 .0348 .0333 .0318 .0304 .0291 .0278
14 .0688 .0661 .0635 .0610 .0586 .0563 .0540 .0518 .0497 .0477
15 .1072 .1034 .0997 .0962 .0927 .0893 .0861 .0829 .0799 .0769
16 .1578 .1528 .1479 .1432 .1385 .1340 .1296 .1253 .1211 .1170
17 .2206 .2144 .2083 .2023 .1965 .1907 .1851 .1796 .1743 .1690
18 .2943 .2870 .2798 .2727 .2657 .2588 .2521 .2454 .2389 .2325
19 .3760 .3679 .3599 .3519 .3440 .3362 .3285 .3209 .3134 .3060
20 .4623 .4537 .4452 .4367 .4282 .4198 .4115 .4032 .3950 .3869
21 .5490 .5403 .5317 .5230 .5144 .5058 .4972 .4887 .4801 .4716
22 .6322 .6238 .6155 .6071 .5987 .5902 .5818 .5733 .5648 .5564
23 .7084 .7008 .6930 .6853 .6774 .6695 .6616 .6536 .6455 .6374
24 .7755 .7687 .7619 .7550 .7480 .7409 .7337 .7264 .7191 .7117
25 .8321 .8264 .8206 .8146 .8086 .8025 .7963 .7900 .7836 .7771
26 .8780 .8734 .8686 .8638 .8588 .8537 .8486 .8433 .8379 .8324
27 .9139 .9103 .9065 .9027 .8988 .8947 .8906 .8863 .8820 .8775

Table 6 Cumulative Poisson Probabilities (Continued )
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Table 7a Upper Critical Values of Chi-Square Distribution with n Degrees of Freedom

0 2
v,

Probability of Exceeding the Critical Value

  n  0.10  0.05  0.025  0.01  0.001

    1     2.706     3.841     5.024     6.635   10.828
    2     4.605     5.991     7.378     9.210   13.816
    3     6.251     7.815     9.348   11.345   16.266
    4     7.779     9.488   11.143   13.277   18.467
    5     9.236   11.070   12.833   15.086   20.515
    6   10.645   12.592   14.449   16.812   22.458
    7   12.017   14.067   16.013   18.475   24.322
    8   13.362   15.507   17.535   20.090   26.125
    9   14.684   16.919   19.023   21.666   27.877
  10   15.987   18.307   20.483   23.209   29.588
  11   17.275   19.675   21.920   24.725   31.264
  12   18.549   21.026   23.337   26.217   32.910
  13   19.812   22.362   24.736   27.688   34.528
  14   21.064   23.685   26.119   29.141   36.123
  15   22.307   24.996   27.488   30.578   37.697
  16   23.542   26.296   28.845   32.000   39.252
  17   24.769   27.587   30.191   33.409   40.790
  18   25.989   28.869   31.526   34.805   42.312
  19   27.204   30.144   32.852   36.191   43.820
  20   28.412   31.410   34.170   37.566   45.315
  21   29.615   32.671   35.479   38.932   46.797
  22   30.813   33.924   36.781   40.289   48.268
  23   32.007   35.172   38.076   41.638   49.728
  24   33.196   36.415   39.364   42.980   51.179
  25   34.382   37.652   40.646   44.314   52.620
  26   35.563   38.885   41.923   45.642   54.052
  27   36.741   40.113   43.195   46.963   55.476
  28   37.916   41.337   44.461   48.278   56.892
  29   39.087   42.557   45.722   49.588   58.301
  30   40.256   43.773   46.979   50.892   59.703
  40   51.805   55.758   59.342   63.691   73.402
  50   63.167   67.505   71.420   76.154   86.661
  60   74.397   79.082   83.298   88.379   99.607
  70   85.527   90.531   95.023 100.425 112.317
  80   96.578 101.879 106.629 112.329 124.839
  90 107.565 113.145 118.136 124.116 137.208
100 118.498 124.342 129.561 135.807 149.449

NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, September 2011.

For selected probabilities a, the table shows the values xv,a
2  such that P1xv

2 7 x2
v,a2 = a, where x2

v is a chi-square random variable with v 
degress of freedom. For example, the probability is .100 that a chi-square random variable with 10 degrees of freedom is greater than 15.987.
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0 2
v,

Table 7b Lower Critical Values of Chi-Square Distribution with n Degrees of Freedom

For selected probabilities a, the table shows the values xv,a
2  such that P1xv

2 7 x2
v,a2 = a, where x2

v is a chi-square random variable with v de-
gress of freedom. For example, the probability is 0.90 that a chi-square variable with 10 degrees of freedom is greater than 4.865.

Probability of Exceeding the Critical Value

 n   0.90   0.95  0.975   0.99  0.999

    1     .016     .004     .001     .000     .000
    2     .211     .103     .051     .020     .002
    3     .584     .352     .216     .115     .024
    4   1.064     .711     .484     .297     .091
    5   1.610   1.145     .831     .554     .210
    6   2.204   1.635   1.237     .872     .381
    7   2.833   2.167   1.690   1.239     .598
    8   3.490   2.733   2.180   1.646     .857
    9   4.168   3.325   2.700   2.088   1.152
  10   4.865   3.940   3.247   2.558   1.479
  11   5.578   4.575   3.816   3.053   1.834
  12   6.304   5.226   4.404   3.571   2.214
  13   7.042   5.892   5.009   4.107   2.617
  14   7.790   6.571   5.629   4.660   3.041
  15   8.547   7.261   6.262   5.229   3.483
  16   9.312   7.962   6.908   5.812   3.942
  17 10.085   8.672   7.564   6.408   4.416
  18 10.865   9.390   8.231   7.015   4.905
  19 11.651 10.117   8.907   7.633   5.407
  20 12.443 10.851   9.591   8.260   5.921
  21 13.240 11.591 10.283   8.897   6.447
  22 14.041 12.338 10.982   9.542   6.983
  23 14.848 13.091 11.689 10.196   7.529
  24 15.659 13.848 12.401 10.856   8.085
  25 16.473 14.611 13.120 11.524   8.649
  26 17.292 15.379 13.844 12.198   9.222
  27 18.114 16.151 14.573 12.879   9.803
  28 18.939 16.928 15.308 13.565 10.391
  29 19.768 17.708 16.047 14.256 10.986
  30 20.599 18.493 16.791 14.953 11.588
  40 29.051 26.509 24.433 22.164 17.916
  50 37.689 34.764 32.357 29.707 24.674
  60 46.459 43.188 40.482 37.485 31.738
  70 55.329 51.739 48.758 45.442 39.036
  80 64.278 60.391 57.153 53.540 46.520
  90 73.291 69.126 65.647 61.754 54.155
100 82.358 77.929 74.222 70.065 61.918

NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, September 2011.
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Table 8 Upper Critical Values of Student’s t Distribution with n Degrees of Freedom

t0 ,

For selected probabilities, a, the table shows the values tn,a such that P1tn 7 tn,a2 = a, where tn is a Student’s t random variable with n degress 
of freedom. For example, the probability is .10 that a Student’s t random variable with 10 degrees of freedom exceeds 1.372.

Probability of Exceeding the Critical Value

n  0.10 0.05 0.025 0.01 0.005 0.001
    1 3.078 6.314 12.706 31.821 63.657 318.313

    2 1.886 2.920   4.303   6.965   9.925   22.327

    3 1.638 2.353   3.182   4.541   5.841   10.215

    4 1.533 2.132   2.776   3.747   4.604     7.173

    5 1.476 2.015   2.571   3.365   4.032     5.893

    6 1.440 1.943   2.447   3.143   3.707     5.208

    7 1.415 1.895   2.365   2.998   3.499     4.782

    8 1.397 1.860   2.306   2.896   3.355     4.499

    9 1.383 1.833   2.262   2.821   3.250     4.296

  10 1.372 1.812   2.228   2.764   3.169     4.143

  11 1.363 1.796   2.201   2.718   3.106     4.024

  12 1.356 1.782   2.179   2.681   3.055     3.929

  13 1.350 1.771   2.160   2.650   3.012     3.852

  14 1.345 1.761   2.145   2.624   2.977     3.787

  15 1.341 1.753   2.131   2.602   2.947     3.733

  16 1.337 1.746   2.120   2.583   2.921     3.686

  17 1.333 1.740   2.110   2.567   2.898     3.646

  18 1.330 1.734   2.101   2.552   2.878     3.610

  19 1.328 1.729   2.093   2.539   2.861     3.579

  20 1.325 1.725   2.086   2.528   2.845     3.552

  21 1.323 1.721   2.080   2.518   2.831     3.527

  22 1.321 1.717   2.074   2.508   2.819     3.505

  23 1.319 1.714   2.069   2.500   2.807     3.485

  24 1.318 1.711   2.064   2.492   2.797     3.467

  25 1.316 1.708   2.060   2.485   2.787     3.450

  26 1.315 1.706   2.056   2.479   2.779     3.435

  27 1.314 1.703   2.052   2.473   2.771     3.421

  28 1.313 1.701   2.048   2.467   2.763     3.408

  29 1.311 1.699   2.045   2.462   2.756     3.396

  30 1.310 1.697   2.042   2.457   2.750     3.385

  40 1.303 1.684   2.021   2.423   2.704     3.307

  60 1.296 1.671   2.000   2.390   2.660     3.232

100 1.290 1.660   1.984   2.364   2.626     3.174

` 1.282 1.645   1.960   2.326   2.576     3.090

NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, September 2011.
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Table 9a Upper Critical Values of the F Distribution 

For probabilities a = 0.5 and a = .01, the tables show the values Fn1,n2,a such that P1Fn1,n2
7 Fn1,n2,a2 = a, where Fn1,n2

 is an F random variable, 
with numerator degrees of freedom n1 and denominator degrees of freedom n2. For example, the probability is .05 that an F3,7 random vari-
ables exceeds 4.347.

For n1 Numerator Degrees of Freedom and n2 Denominator Degrees of Freedom 5% Significance Level F.051n1, n22
n2>n1  1  2  3  4  5  6  7  8  9  10

    1 161.448 199.500 215.707 224.583 230.162 233.986 236.768 238.882 240.543 241.882

    2   18.513   19.000   19.164   19.247   19.296   19.330   19.353   19.371   19.385   19.396 

    3   10.128     9.552     9.277     9.117     9.013     8.941     8.887     8.845     8.812     8.786

    4     7.709     6.944     6.591     6.388     6.256     6.163     6.094     6.041     5.999     5.964

    5     6.608     5.786     5.409     5.192     5.050     4.950     4.876     4.818     4.772     4.735

    6     5.987     5.143     4.757     4.534     4.387     4.284     4.207     4.147     4.099     4.060

    7     5.591     4.737     4.347     4.120     3.972     3.866     3.787     3.726     3.677     3.637

    8     5.318     4.459     4.066     3.838     3.687     3.581     3.500     3.438     3.388     3.347

    9     5.117     4.256     3.863     3.633     3.482     3.374     3.293     3.230     3.179     3.137

  10     4.965     4.103     3.708     3.478     3.326     3.217     3.135     3.072     3.020     2.978

  11     4.844     3.982     3.587     3.357     3.204     3.095     3.012     2.948     2.896     2.854

  12     4.747     3.885     3.490     3.259     3.106     2.996     2.913     2.849     2.796     2.753

  13     4.667     3.806     3.411     3.179     3.025     2.915     2.832     2.767     2.714     2.671

  14     4.600     3.739     3.344     3.112     2.958     2.848     2.764     2.699     2.646     2.602

  15     4.543     3.682     3.287     3.056     2.901     2.790     2.707     2.641     2.588     2.544

  16     4.494     3.634     3.239     3.007     2.852     2.741     2.657     2.591     2.538     2.494

  17     4.451     3.592     3.197     2.965     2.810     2.699     2.614     2.548     2.494     2.450

  18     4.414     3.555     3.160     2.928     2.773     2.661     2.577     2.510     2.456     2.412

  19     4.381     3.522     3.127     2.895     2.740     2.628     2.544     2.477     2.423     2.378

  20     4.351     3.493     3.098     2.866     2.711     2.599     2.514     2.447     2.393     2.348

  21     4.325     3.467     3.072     2.840     2.685     2.573     2.488     2.420     2.366     2.321

  22     4.301     3.443     3.049     2.817     2.661     2.549     2.464     2.397     2.342     2.297

  23     4.279     3.422     3.028     2.796     2.640     2.528     2.442     2.375     2.320     2.275

  24     4.260     3.403     3.009     2.776     2.621     2.508     2.423     2.355     2.300     2.255

  25     4.242     3.385     2.991     2.759     2.603     2.490     2.405     2.337     2.282     2.236

  26     4.225     3.369     2.975     2.743     2.587     2.474     2.388     2.321     2.265     2.220

  27     4.210     3.354     2.960     2.728     2.572     2.459     2.373     2.305     2.250     2.204

  28     4.196     3.340     2.947     2.714     2.558     2.445     2.359     2.291     2.236     2.190

  29     4.183     3.328     2.934     2.701     2.545     2.432     2.346     2.278     2.223     2.177

  30     4.171     3.316     2.922     2.690     2.534     2.421     2.334     2.266     2.211     2.165

  40     4.085     3.232     2.839     2.606     2.449     2.336     2.249     2.180     2.124     2.077

  60     4.001     3.150     2.758     2.525     2.368     2.254     2.167     2.097     2.040     1.993

100     3.936     3.087     2.696     2.463     2.305     2.191     2.103     2.032     1.975     1.927

0 F
1 2,,

(continued)
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Table 9a Upper Critical Values of the F Distribution (Continued )

For n1 Numerator Degrees of Freedom and n2 Denominator Degrees of Freedom 5% Significance Level F.051n1, n22
n2>n1  11  12  13  14  15  16  17  18  19  20

    1 242.983 243.906 244.690 245.364 245.950 246.464 246.918 247.323 247.686 248.013

    2   19.405   19.413   19.419   19.424   19.429   19.433   19.437   19.440   19.443   19.446

    3     8.763     8.745     8.729     8.715     8.703     8.692     8.683     8.675     8.667     8.660

    4     5.936     5.912     5.891     5.873     5.858     5.844     5.832     5.821     5.811     5.803

    5     4.704     4.678     4.655     4.636     4.619     4.604     4.590     4.579     4.568     4.558

    6     4.027     4.000     3.976     3.956     3.938     3.922     3.908     3.896     3.884     3.874

    7     3.603     3.575     3.550     3.529     3.511     3.494     3.480     3.467     3.455     3.445

    8     3.313     3.284     3.259     3.237     3.218     3.202     3.187     3.173     3.161     3.150

    9     3.102     3.073     3.048     3.025     3.006     2.989     2.974     2.960     2.948     2.936

  10     2.943     2.913     2.887     2.865     2.845     2.828     2.812     2.798     2.785     2.774

  11     2.818     2.788     2.761     2.739     2.719     2.701     2.685     2.671     2.658     2.646

  12     2.717     2.687     2.660     2.637     2.617     2.599     2.583     2.568     2.555     2.544

  13     2.635     2.604     2.577     2.554     2.533     2.515     2.499     2.484     2.471     2.459

  14     2.565     2.534     2.507     2.484     2.463     2.445     2.428     2.413     2.400     2.388

  15     2.507     2.475     2.448     2.424     2.403     2.385     2.368     2.353     2.340     2.328

  16     2.456     2.425     2.397     2.373     2.352     2.333     2.317     2.302     2.288     2.276

  17     2.413     2.381     2.353     2.329     2.308     2.289     2.272     2.257     2.243     2.230

  18     2.374     2.342     2.314     2.290     2.269     2.250     2.233     2.217     2.203     2.191

  19     2.340     2.308     2.280     2.256     2.234     2.215     2.198     2.182     2.168     2.155

  20     2.310     2.278     2.250     2.225     2.203     2.184     2.167     2.151     2.137     2.124

  21     2.283     2.250     2.222     2.197     2.176     2.156     2.139     2.123     2.109     2.096

  22     2.259     2.226     2.198     2.173     2.151     2.131     2.114     2.098     2.084     2.071

  23     2.236     2.204     2.175     2.150     2.128     2.109     2.091     2.075     2.061     2.048

  24     2.216     2.183     2.155     2.130     2.108     2.088     2.070     2.054     2.040     2.027

  25     2.198     2.165     2.136     2.111     2.089     2.069     2.051     2.035     2.021     2.007

  26     2.181     2.148     2.119     2.094     2.072     2.052     2.034     2.018     2.003     1.990

  27     2.166     2.132     2.103     2.078     2.056     2.036     2.018     2.002     1.987     1.974

  28     2.151     2.118     2.089     2.064     2.041     2.021     2.003     1.987     1.972     1.959

  29     2.138     2.104     2.075     2.050     2.027     2.007     1.989     1.973     1.958     1.945

  30     2.126     2.092     2.063     2.037     2.015     1.995     1.976     1.960     1.945     1.932

  40     2.038     2.003     1.974     1.948     1.924     1.904     1.885     1.868     1.853     1.839

  60     1.952     1.917     1.887     1.860     1.836     1.815     1.796     1.778     1.763     1.748

100     1.886     1.850     1.819     1.792     1.768     1.746     1.726     1.708     1.691     1.676

NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, September 2011.
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Table 9b Upper Critical Values of the F Distribution 

For n1 Numerator Degrees of Freedom and n2 Denominator Degrees of Freedom 1% Significance Level F.01(n1, n2)

n2>n1  1  2  3  4  5  6  7  8  9  10

    1 4052.19 4999.52 5403.34 5624.62 5763.65 5858.97 5928.33 5981.10 6022.50 6055.85

    2     98.502     99.000     99.166     99.249     99.300     99.333     99.356     99.374     99.388     99.399

    3     34.116     30.816     29.457     28.710     28.237     27.911     27.672     27.489     27.345     27.229

    4     21.198     18.000     16.694     15.977     15.522     15.207     14.976     14.799     14.659     14.546

    5     16.258     13.274     12.060     11.392     10.967     10.672     10.456     10.289     10.158     10.051

    6     13.745     10.925       9.780       9.148       8.746       8.466       8.260       8.102       7.976       7.874

    7     12.246       9.547       8.451       7.847       7.460       7.191       6.993       6.840       6.719       6.620 

    8     11.259       8.649       7.591       7.006       6.632       6.371       6.178       6.029       5.911       5.814

    9     10.561       8.022       6.992       6.422       6.057       5.802       5.613       5.467       5.351       5.257

  10     10.044       7.559       6.552       5.994       5.636       5.386       5.200       5.057       4.942       4.849

  11       9.646       7.206       6.217       5.668       5.316       5.069       4.886       4.744       4.632       4.539

  12       9.330       6.927       5.953       5.412       5.064       4.821       4.640       4.499       4.388       4.296

  13       9.074       6.701       5.739       5.205       4.862       4.620       4.441       4.302       4.191       4.100

  14       8.862       6.515       5.564       5.035       4.695       4.456       4.278       4.140       4.030       3.939

  15       8.683       6.359       5.417       4.893       4.556       4.318       4.142       4.004       3.895       3.805

  16       8.531       6.226       5.292       4.773       4.437       4.202       4.026       3.890       3.780       3.691

  17       8.400       6.112       5.185       4.669       4.336       4.102       3.927       3.791       3.682       3.593

  18       8.285       6.013       5.092       4.579       4.248       4.015       3.841       3.705       3.597       3.508

  19       8.185       5.926       5.010       4.500       4.171       3.939       3.765       3.631       3.523       3.434

  20       8.096       5.849       4.938       4.431       4.103       3.871       3.699       3.564       3.457        3.368  

  21       8.017       5.780       4.874       4.369       4.042       3.812       3.640       3.506       3.398       3.310

  22       7.945       5.719       4.817       4.313       3.988       3.758       3.587       3.453       3.346       3.258

  23       7.881       5.664       4.765       4.264       3.939       3.710       3.539       3.406       3.299       3.211

  24       7.823       5.614       4.718       4.218       3.895       3.667       3.496       3.363       3.256       3.168

  25       7.770       5.568       4.675       4.177       3.855       3.627       3.457       3.324       3.217       3.129

  26       7.721       5.526       4.637       4.140       3.818       3.591       3.421       3.288       3.182       3.094

  27       7.677       5.488       4.601       4.106       3.785       3.558       3.388       3.256       3.149       3.062

  28       7.636       5.453       4.568       4.074       3.754       3.528       3.358       3.226       3.120       3.032

  29       7.598       5.420       4.538       4.045       3.725       3.499       3.330       3.198       3.092       3.005

  30       7.562       5.390       4.510       4.018       3.699       3.473       3.305       3.173       3.067       2.979

  40       7.314       5.179       4.313       3.828       3.514       3.291       3.124       2.993       2.888       2.801

  60       7.077       4.977       4.126       3.649       3.339       3.119       2.953       2.823       2.718       2.632

100       6.895       4.824       3.984       3.513       3.206       2.988       2.823       2.694       2.590       2.503

(continued)
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Table 9b Upper Critical Values of the F Distribution (Continued)

For n1 Numerator Degrees of Freedom and n2 Denominator Degrees of Freedom 1% Significance Level F.01(n1, n2)

n2>n  11  12  13  14  15  16  17  18  19  20

    1 6083.35 6106.35 6125.86 6142.70 6157.28 6170.12 6181.42 6191.52 6200.58 6208.74

    2     99.408     99.416     99.422     99.428     99.432     99.437 99.440     99.444     99.447     99.449

    3     27.133     27.052     26.983     26.924     26.872     26.827 26.787     26.751     26.719     26.690

    4     14.452     14.374     14.307     14.249     14.198     14.154 14.115     14.080     14.048     14.020

    5       9.963       9.888       9.825       9.770       9.722       9.680 9.643       9.610       9.580       9.553

    6        7.790       7.718       7.657       7.605       7.559       7.519 7.483       7.451       7.422       7.396

    7       6.538       6.469       6.410       6.359       6.314       6.275 6.240       6.209       6.181       6.155

    8       5.734       5.667       5.609       5.559       5.515       5.477 5.442       5.412       5.384       5.359

    9       5.178       5.111       5.055       5.005       4.962       4.924 4.890       4.860       4.833       4.808

  10       4.772       4.706       4.650       4.601       4.558       4.520 4.487       4.457       4.430       4.405

  11       4.462       4.397       4.342       4.293       4.251       4.213 4.180       4.150       4.123       4.099

  12       4.220       4.155       4.100       4.052       4.010       3.972 3.939       3.909       3.883       3.858

  13       4.025       3.960       3.905       3.857       3.815       3.778 3.745       3.716       3.689       3.665

  14       3.864       3.800       3.745       3.698       3.656       3.619 3.586       3.556       3.529       3.505

  15       3.730       3.666       3.612       3.564       3.522       3.485 3.452       3.423       3.396       3.372

  16       3.616       3.553       3.498       3.451       3.409       3.372 3.339       3.310       3.283       3.259

  17       3.519       3.455       3.401       3.353       3.312       3.275 3.242       3.212       3.186       3.162

  18       3.434       3.371       3.316       3.269       3.227       3.190 3.158       3.128       3.101       3.077

  19       3.360       3.297       3.242       3.195       3.153       3.116 3.084       3.054       3.027       3.003

  20       3.294       3.231       3.177       3.130       3.088       3.051 3.018       2.989       2.962       2.938

  21       3.236       3.173       3.119       3.072       3.030       2.993 2.960       2.931       2.904       2.880

  22       3.184       3.121       3.067       3.019       2.978       2.941 2.908       2.879       2.852       2.827

  23       3.137       3.074       3.020       2.973       2.931       2.894 2.861       2.832       2.805       2.781

  24       3.094       3.032       2.977       2.930       2.889       2.852 2.819       2.789       2.762       2.738

  25       3.056       2.993       2.939       2.892       2.850       2.813 2.780       2.751       2.724       2.699

  26       3.021       2.958       2.904       2.857       2.815       2.778 2.745       2.715       2.688       2.664

  27       2.988       2.926       2.871       2.824       2.783       2.746 2.713       2.683       2.656       2.632

  28       2.959       2.896       2.842       2.795       2.753       2.716 2.683       2.653       2.626       2.602

  29       2.931       2.868       2.814       2.767       2.726       2.689 2.656       2.626       2.599       2.574

  30       2.906       2.843       2.789       2.742       2.700       2.663 2.630       2.600       2.573       2.549

  40       2.727       2.665       2.611       2.563       2.522       2.484 2.451       2.421       2.394       2.369

  60       2.559       2.496       2.442       2.394       2.352       2.315 2.281       2.251       2.223       2.198

100       2.430       2.368       2.313       2.265       2.223       2.185 2.151       2.120       2.092       2.067

NIST/SEMATECH e-Handbook of Statistical Methods, http://www.itl.nist.gov/div898/handbook/, September 2011.
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Table 10 Cutoff Points for the Distribution of the Wilcoxon Test Statistic

For sample size n, the table shows, for selected probabilities a, the numbers Ta such that 
P1T 6 Ta2 = a, where the distribution of the random variable T is that of the Wilcoxon test 
statistic under the null hypothesis.

n  a

.005 .010 .025 .050 .100

4 0 0 0 0 1

5 0 0 0 1 3

6 0 0 1 3 4

7 0 1 3 4 6

8 1 2 4 6 9

9 2 4 6 9 11

10 4 6 9 11 15

11 6 8 11 14 18

12 8 10 14 18 22

13 10 13 18 22 27

14 13 16 22 26 32

15 16 20 26 31 37

16 20 24 30 36 43

17 24 28 35 42 49

18 28 33 41 48 56

19 33 38 47 54 63

20 38 44 53 61 70

Reproduced with permission from R. L. McCormack, “Extended tables of the Wilcoxon 
matched pairs signed rank statistics,” Journal of the American Statistical Association 60 
(1965).
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Table 11 Cutoff Points for the Distribution of Spearman Rank 
Correlation Coefficient

For sample size n, the table shows, for selected probabilities a, the numbers rs,a such 
that P1rs 7 rs, a2 = a, where the distribution of the random variable rs is that of 
Spearman rank correlation coefficient under the null hypothesis of no association.

n  a

.050 .025 .010 .005

5 .900 — — —

6 .829 .886 .943 —

7 .714 .786 .893 —

8 .643 .738 .833 .881

9 .600 .683 .783 .833

10 .564 .648 .745 .794

11 .523 .623 .736 .818

12 .497 .591 .703 .780

13 .475 .566 .673 .745

14 .457 .545 .646 .716

15 .441 .525 .623 .689

16 .425 .507 .601 .666

17 .412 .490 .582 .645

18 .399 .476 .564 .625

19 .388 .462 .549 .608

20 .377 .450 .534 .591

21 .368 .438 .521 .576

22 .359 .428 .508 .562

23 .351 .418 .496 .549

24 .343 .409 .485 .537

25 .336 .400 .475 .526

26 .329 .392 .465 .515

27 .323 .385 .456 .505

28 .317 .377 .448 .496

29 .311 .370 .440 .487

30 .305 .364 .432 .478

Reproduced with permission from E. G. Olds, “Distribution of sums of squares of 
rank differences for small samples,” Annals of Mathematical Statistics 9 (1938).
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Table 12 Cutoff Points for the Distribution of the Durbin-Watson Test Statistic

Let da be the number such that P1d 6 da2 = a, where the random variable d has the distribution of the Durbin-Watson statistic under the null 
hypothesis of no autocorrelation in the regression errors. For probabilities a = .05 and a = .01, the tables show, for numbers of independent 
variables, K, values dL and dU such that dL 6 da 6 dU, for numbers n of observations.

a = 0.05

  n K

 1  2  3  4  5

 dL  dU  dL  dU  dL  dU  dL  dU  dL  dU

  15 1.08 1.36 0.95 1.54 0.82 1.75 0.69 1.97 0.56 2.21

  16 1.10 1.37 0.98 1.54 0.86 1.73 0.74 1.93 0.62 2.15

  17 1.13 1.38 1.02 1.54 0.90 1.71 0.78 1.90 0.67 2.10

  18 1.16 1.39 1.05 1.53 0.93 1.69 1.82 1.87 0.71 2.06

  19 1.18 1.40 1.08 1.53 0.97 1.68 0.86 1.85 0.75 2.02

  20 1.20 1.41 1.10 1.54 1.00 1.68 0.90 1.83 0.79 1.99

  21 1.22 1.42 1.13 1.54 1.03 1.67 0.93 1.81 0.83 1.96

  22 1.24 1.43 1.15 1.54 1.05 1.66 0.96 1.80 0.86 1.94

  23 1.26 1.44 1.17 1.54 1.08 1.66 0.99 1.79 0.90 1.92

  24 1.27 1.45 1.19 1.55 1.10 1.66 1.01 1.78 0.93 1.90

  25 1.29 1.45 1.21 1.55 1.12 1.66 1.04 1.77 0.95 1.89

  26 1.30 1.46 1.22 1.55 1.14 1.65 1.06 1.76 0.98 1.88

  27 1.32 1.47 1.24 1.56 1.16 1.65 1.08 1.76 1.01 1.86

  28 1.33 1.48 1.26 1.56 1.18 1.65 1.10 1.75 1.03 1.85

  29 1.34 1.48 1.27 1.56 1.20 1.65 1.12 1.74 1.05 1.84

  30 1.35 1.49 1.28 1.57 1.21 1.65 1.14 1.74 1.07 1.83

  31 1.36 1.50 1.30 1.57 1.23 1.65 1.16 1.74 1.09 1.83

  32 1.37 1.50 1.31 1.57 1.24 1.65 1.18 1.73 1.11 1.82

  33 1.38 1.51 1.32 1.58 1.26 1.65 1.19 1.73 1.13 1.81

  34 1.39 1.51 1.33 1.58 1.27 1.65 1.21 1.73 1.15 1.81

  35 1.40 1.52 1.34 1.58 1.28 1.65 1.22 1.73 1.16 1.80

  36 1.41 1.52 1.35 1.59 1.29 1.65 1.24 1.73 1.18 1.80

  37 1.42 1.53 1.36 1.59 1.31 1.66 1.25 1.72 1.19 1.80

  38 1.43 1.54 1.37 1.59 1.32 1.66 1.26 1.72 1.21 1.79

  39 1.43 1.54 1.38 1.60 1.33 1.66 1.27 1.72 1.22 1.79

  40 1.44 1.54 1.39 1.60 1.34 1.66 1.29 1.72 1.23 1.79

  45 1.48 1.57 1.43 1.62 1.38 1.67 1.34 1.72 1.29 1.78

  50 1.50 1.59 1.46 1.63 1.42 1.67 1.38 1.72 1.34 1.77

  55 1.53 1.60 1.49 1.64 1.45 1.68 1.41 1.72 1.38 1.77

  60 1.55 1.62 1.51 1.65 1.48 1.69 1.44 1.73 1.41 1.77

  65 1.57 1.63 1.54 1.66 1.50 1.70 1.47 1.73 1.44 1.77

  70 1.58 1.64 1.55 1.67 1.52 1.70 1.49 1.74 1.46 1.77

  75 1.60 1.65 1.57 1.68 1.54 1.71 1.51 1.74 1.49 1.77

  80 1.61 1.66 1.59 1.69 1.56 1.72 1.53 1.74 1.51 1.77

  85 1.62 1.67 1.60 1.70 1.57 1.72 1.55 1.75 1.52 1.77

  90 1.63 1.68 1.61 1.70 1.59 1.73 1.57 1.75 1.54 1.78

  95 1.64 1.69 1.62 1.71 1.60 1.73 1.58 1.75 1.56 1.78

100 1.65 1.69 1.63 1.72 1.61 1.74 1.59 1.76 1.57 1.78

(continued)
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a = 0.05

  n K

 1  2  3  4  5

 dL  dU  dL  dU  dL  dU  dL  dU  dL  dU

  15 0.81 1.07 0.70 1.25 0.59 1.46 0.49 1.70 0.39 1.96

  16 0.84 1.09 0.74 1.25 0.63 1.44 0.53 1.66 0.44 1.90

  17 0.87 1.10 0.77 1.25 0.67 1.43 0.57 1.63 0.48 1.85

  18 0.90 1.12 0.80 1.26 0.71 1.42 0.61 1.60 0.52 1.80

  19 0.93 1.13 0.83 1.26 0.74 1.41 0.65 1.58 0.56 1.77

  20 0.95 1.15 0.86 1.27 0.77 1.41 0.68 1.57 0.60 1.74

  21 0.97 1.16 0.89 1.27 0.80 1.41 0.72 1.55 0.63 1.71

  22 1.00 1.17 0.91 1.28 0.83 1.40 0.75 1.54 0.66 1.69

  23 1.02 1.19 0.94 1.29 0.86 1.40 0.77 1.53 0.70 1.67

  24 1.04 1.20 0.96 1.30 0.88 1.41 0.80 1.53 0.72 1.66

  25 1.05 1.21 0.98 1.30 0.90 1.41 0.83 1.52 0.75 1.65

  26 1.07 1.22 1.00 1.31 0.93 1.41 0.85 1.52 0.78 1.64

  27 1.09 1.23 1.02 1.32 0.95 1.41 0.88 1.51 0.81 1.63

  28 1.10 1.24 1.04 1.32 0.97 1.41 0.90 1.51 0.83 1.62

  29 1.12 1.25 1.05 1.33 0.99 1.42 0.92 1.51 0.85 1.61

  30 1.13 1.26 1.07 1.34 1.01 1.42 0.94 1.51 0.88 1.61

  31 1.15 1.27 1.08 1.34 1.02 1.42 0.96 1.51 0.90 1.60

  32 1.16 1.28 1.10 1.35 1.04 1.43 0.98 1.51 0.92 1.60

  33 1.17 1.29 1.11 1.36 1.05 1.43 1.00 1.51 0.94 1.59

  34 1.18 1.30 1.13 1.36 1.07 1.43 1.01 1.51 0.95 1.59

  35 1.19 1.31 1.14 1.37 1.08 1.44 1.03 1.51 0.97 1.59

  36 1.21 1.32 1.15 1.38 1.10 1.44 1.04 1.51 0.99 1.59

  37 1.22 1.32 1.16 1.38 1.11 1.45 1.06 1.51 1.00 1.59

  38 1.23 1.33 1.18 1.39 1.12 1.45 1.07 1.52 1.02 1.58

  39 1.24 1.34 1.19 1.39 1.14 1.45 1.09 1.52 1.03 1.58

  40 1.25 1.34 1.20 1.40 1.15 1.46 1.10 1.52 1.05 1.58

  45 1.29 1.38 1.24 1.42 1.20 1.48 1.16 1.53 1.11 1.58

  50 1.32 1.40 1.28 1.45 1.24 1.49 1.20 1.54 1.16 1.59

  55 1.36 1.43 1.32 1.47 1.28 1.51 1.25 1.55 1.21 1.59

  60 1.38 1.45 1.35 1.48 1.32 1.52 1.28 1.56 1.25 1.60

  65 1.41 1.47 1.38 1.50 1.35 1.53 1.31 1.57 1.28 1.61

  70 1.43 1.49 1.40 1.52 1.37 1.55 1.34 1.58 1.31 1.61

  75 1.45 1.50 1.42 1.53 1.39 1.56 1.37 1.59 1.34 1.62

  80 1.47 1.52 1.44 1.54 1.42 1.57 1.39 1.60 1.36 1.62

  85 1.48 1.53 1.46 1.55 1.43 1.58 1.41 1.60 1.39 1.63

  90 1.50 1.54 1.47 1.56 1.45 1.59 1.43 1.61 1.41 1.64

  95 1.51 1.55 1.49 1.57 1.47 1.60 1.45 1.62 1.42 1.64

100 1.52 1.56 1.50 1.58 1.48 1.60 1.46 1.63 1.44 1.65

Computed from TSP 4.5 based on R. W. Farebrother, “A Remark on Algorithms AS106, AS153, and AS155: The Distribution of a Linear 
Combination of Chi-Square Random Variables”, Journal of the Royal Statistical Society, Series C (Applied Statistics), 1984, 29, pp. 323–333.

Table 12 Cutoff Points for the Distribution of the Durbin-Watson Test Statistic (Continued )
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Table 13 Critical Values of Studentized Range Q 1a = 0.052
The Studentized Range Upper Quantiles Q(k, df; 0.05)

  df   k->   2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20

1 17.969 26.976 32.819 37.082 40.408 43.119 45.397 47.357 49.071 50.592 51.957 53.194 54.323 55.361 56.320 57.212 58.044 58.824 59.558

2 6.085 8.331 9.798 10.881 11.734 12.435 13.027 13.539 13.988 14.389 14.749 15.076 15.375 15.650 15.905 16.143 16.365 16.573 16.769

3 4.501 5.910 6.825 7.502 8.037 8.478 8.852 9.177 9.462 9.717 9.946 10.155 10.346 10.522 10.686 10.838 10.980 11.114 11.240

4 3.926 5.040 5.757 6.287 6.706 7.053 7.347 7.602 7.826 8.027 8.208 8.373 8.524 8.664 8.793 8.914 9.027 9.133 9.233

5 3.635 4.602 5.218 5.673 6.033 6.330 6.582 6.801 6.995 7.167 7.323 7.466 7.596 7.716 7.828 7.932 8.030 8.122 8.208

6 3.460 4.339 4.896 5.305 5.628 5.895 6.122 6.319 6.493 6.649 6.789 6.917 7.034 7.143 7.244 7.338 7.426 7.508 7.586

7 3.344 4.165 4.681 5.060 5.359 5.606 5.815 5.997 6.158 6.302 6.431 6.550 6.658 6.759 6.852 6.939 7.020 7.097 7.169

8 3.261 4.041 4.529 4.886 5.167 5.399 5.596 5.767 5.918 6.053 6.175 6.287 6.389 6.483 6.571 6.653 6.729 6.801 6.869

9 3.199 3.948 4.415 4.755 5.024 5.244 5.432 5.595 5.738 5.867 5.983 6.089 6.186 6.276 6.359 6.437 6.510 6.579 6.643

10 3.151 3.877 4.327 4.654 4.912 5.124 5.304 5.460 5.598 5.722 5.833 5.935 6.028 6.114 6.194 6.269 6.339 6.405 6.467

11 3.113 3.820 4.256 4.574 4.823 5.028 5.202 5.353 5.486 5.605 5.713 5.811 5.901 5.984 6.062 6.134 6.202 6.265 6.325

12 3.081 3.773 4.199 4.508 4.750 4.950 5.119 5.265 5.395 5.510 5.615 5.710 5.797 5.878 5.953 6.023 6.089 6.151 6.209

13 3.055 3.734 4.151 4.453 4.690 4.884 5.049 5.192 5.318 5.431 5.533 5.625 5.711 5.789 5.862 5.931 5.995 6.055 6.112

14 3.033 3.701 4.111 4.407 4.639 4.829 4.990 5.130 5.253 5.364 5.463 5.554 5.637 5.714 5.785 5.852 5.915 5.973 6.029

15 3.014 3.673 4.076 4.367 4.595 4.782 4.940 5.077 5.198 5.306 5.403 5.492 5.574 5.649 5.719 5.785 5.846 5.904 5.958

16 2.998 3.649 4.046 4.333 4.557 4.741 4.896 5.031 5.150 5.256 5.352 5.439 5.519 5.593 5.662 5.726 5.786 5.843 5.896

17 2.984 3.628 4.020 4.303 4.524 4.705 4.858 4.991 5.108 5.212 5.306 5.392 5.471 5.544 5.612 5.675 5.734 5.790 5.842

18 2.971 3.609 3.997 4.276 4.494 4.673 4.824 4.955 5.071 5.173 5.266 5.351 5.429 5.501 5.567 5.629 5.688 5.743 5.794

19 2.960 3.593 3.977 4.253 4.468 4.645 4.794 4.924 5.037 5.139 5.231 5.314 5.391 5.462 5.528 5.589 5.647 5.701 5.752

20 2.950 3.578 3.958 4.232 4.445 4.620 4.768 4.895 5.008 5.108 5.199 5.282 5.357 5.427 5.492 5.553 5.610 5.663 5.714

21 2.941 3.565 3.942 4.213 4.424 4.597 4.743 4.870 4.981 5.081 5.170 5.252 5.327 5.396 5.460 5.520 5.576 5.629 5.679

22 2.933 3.553 3.927 4.196 4.405 4.577 4.722 4.847 4.957 5.056 5.144 5.225 5.299 5.368 5.431 5.491 5.546 5.599 5.648

23 2.926 3.542 3.914 4.180 4.388 4.558 4.702 4.826 4.935 5.033 5.121 5.201 5.274 5.342 5.405 5.464 5.519 5.571 5.620

24 2.919 3.532 3.901 4.166 4.373 4.541 4.684 4.807 4.915 5.012 5.099 5.179 5.251 5.319 5.381 5.439 5.494 5.545 5.594

25 2.913 3.523 3.890 4.153 4.358 4.526 4.667 4.789 4.897 4.993 5.079 5.158 5.230 5.297 5.359 5.417 5.471 5.522 5.570

26 2.907 3.514 3.880 4.141 4.345 4.511 4.652 4.773 4.880 4.975 5.061 5.139 5.211 5.277 5.339 5.396 5.450 5.500 5.548

27 2.902 3.506 3.870 4.130 4.333 4.498 4.638 4.758 4.864 4.959 5.044 5.122 5.193 5.259 5.320 5.377 5.430 5.480 5.528

28 2.897 3.499 3.861 4.120 4.322 4.486 4.625 4.745 4.850 4.944 5.029 5.106 5.177 5.242 5.302 5.359 5.412 5.462 5.509

29 2.892 3.493 3.853 4.111 4.311 4.475 4.613 4.732 4.837 4.930 5.014 5.091 5.161 5.226 5.286 5.342 5.395 5.445 5.491

30 2.888 3.486 3.845 4.102 4.301 4.464 4.601 4.720 4.824 4.917 5.001 5.077 5.147 5.211 5.271 5.327 5.379 5.429 5.475

(continued)
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   df   k->   2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20

31 2.884 3.481 3.838 4.094 4.292 4.454 4.591 4.709 4.812 4.905 4.988 5.064 5.134 5.198 5.257 5.313 5.365 5.414 5.460

32 2.881 3.475 3.832 4.086 4.284 4.445 4.581 4.698 4.802 4.894 4.976 5.052 5.121 5.185 5.244 5.299 5.351 5.400 5.445

33 2.877 3.470 3.825 4.079 4.276 4.436 4.572 4.689 4.791 4.883 4.965 5.040 5.109 5.173 5.232 5.287 5.338 5.386 5.432

34 2.874 3.465 3.820 4.072 4.268 4.428 4.563 4.680 4.782 4.873 4.955 5.030 5.098 5.161 5.220 5.275 5.326 5.374 5.420

35 2.871 3.461 3.814 4.066 4.261 4.421 4.555 4.671 4.773 4.863 4.945 5.020 5.088 5.151 5.209 5.264 5.315 5.362 5.408

36 2.868 3.457 3.809 4.060 4.255 4.414 4.547 4.663 4.764 4.855 4.936 5.010 5.078 5.141 5.199 5.253 5.304 5.352 5.397

37 2.865 3.453 3.804 4.054 4.249 4.407 4.540 4.655 4.756 4.846 4.927 5.001 5.069 5.131 5.189 5.243 5.294 5.341 5.386

38 2.863 3.449 3.799 4.049 4.243 4.400 4.533 4.648 4.749 4.838 4.919 4.993 5.060 5.122 5.180 5.234 5.284 5.331 5.376

39 2.861 3.445 3.795 4.044 4.237 4.394 4.527 4.641 4.741 4.831 4.911 4.985 5.052 5.114 5.171 5.225 5.275 5.322 5.367

40 2.858 3.442 3.791 4.039 4.232 4.388 4.521 4.634 4.735 4.824 4.904 4.977 5.044 5.106 5.163 5.216 5.266 5.313 5.358

48 2.843 3.420 3.764 4.008 4.197 4.351 4.481 4.592 4.690 4.777 4.856 4.927 4.993 5.053 5.109 5.161 5.210 5.256 5.299

60 2.829 3.399 3.737 3.977 4.163 4.314 4.441 4.550 4.646 4.732 4.808 4.878 4.942 5.001 5.056 5.107 5.154 5.199 5.241

80 2.814 3.377 3.711 3.947 4.129 4.277 4.402 4.509 4.603 4.686 4.761 4.829 4.892 4.949 5.003 5.052 5.099 5.142 5.183

120 2.800 3.356 3.685 3.917 4.096 4.241 4.363 4.468 4.560 4.641 4.714 4.781 4.842 4.898 4.950 4.998 5.043 5.086 5.126

240 2.786 3.335 3.659 3.887 4.063 4.205 4.324 4.427 4.517 4.596 4.668 4.733 4.792 4.847 4.897 4.944 4.988 5.030 5.069

Inf 2.772 3.314 3.633 3.858 4.030 4.170 4.286 4.387 4.474 4.552 4.622 4.685 4.743 4.796 4.845 4.891 4.934 4.974 5.012

The Studentized Range Upper Quantiles Q(k, df; 0.01)

  df  k->  2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20

1 90.024 135.041 164.258 185.575 202.210 215.769 227.166 236.966 245.542 253.151 259.979 266.165 271.812 277.003 281.803 286.263 290.426 294.328 297.997

2 14.036 19.019 22.294 24.717 26.629 28.201 29.530 30.679 31.689 32.589 33.398 34.134 34.806 35.426 36.000 36.534 37.034 37.502 37.943

3 8.260 10.619 12.170 13.324 14.241 14.998 15.641 16.199 16.691 17.130 17.526 17.887 18.217 18.522 18.805 19.068 19.315 19.546 19.765

4 6.511 8.120 9.173 9.958 10.583 11.101 11.542 11.925 12.264 12.567 12.840 13.090 13.318 13.530 13.726 13.909 14.081 14.242 14.394

5 5.702 6.976 7.804 8.421 8.913 9.321 9.669 9.971 10.239 10.479 10.696 10.894 11.076 11.244 11.400 11.545 11.682 11.811 11.932

6 5.243 6.331 7.033 7.556 7.972 8.318 8.612 8.869 9.097 9.300 9.485 9.653 9.808 9.951 10.084 10.208 10.325 10.434 10.538

7 4.949 5.919 6.542 7.005 7.373 7.678 7.939 8.166 8.367 8.548 8.711 8.860 8.997 9.124 9.242 9.353 9.456 9.553 9.645

8 4.745 5.635 6.204 6.625 6.959 7.237 7.474 7.680 7.863 8.027 8.176 8.311 8.436 8.552 8.659 8.760 8.854 8.943 9.027

9 4.596 5.428 5.957 6.347 6.657 6.915 7.134 7.325 7.494 7.646 7.784 7.910 8.025 8.132 8.232 8.325 8.412 8.495 8.573

10 4.482 5.270 5.769 6.136 6.428 6.669 6.875 7.054 7.213 7.356 7.485 7.603 7.712 7.812 7.906 7.993 8.075 8.153 8.226

11 4.392 5.146 5.621 5.970 6.247 6.476 6.671 6.841 6.992 7.127 7.250 7.362 7.464 7.560 7.648 7.731 7.809 7.883 7.952

12 4.320 5.046 5.502 5.836 6.101 6.320 6.507 6.670 6.814 6.943 7.060 7.166 7.265 7.356 7.441 7.520 7.594 7.664 7.730

13 4.260 4.964 5.404 5.726 5.981 6.192 6.372 6.528 6.666 6.791 6.903 7.006 7.100 7.188 7.269 7.345 7.417 7.484 7.548

14 4.210 4.895 5.322 5.634 5.881 6.085 6.258 6.409 6.543 6.663 6.772 6.871 6.962 7.047 7.125 7.199 7.268 7.333 7.394

Table 13 Critical Values of Studentized Range Q 1a = 0.052 (Continued)
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15 4.167 4.836 5.252 5.556 5.796 5.994 6.162 6.309 6.438 6.555 6.660 6.756 6.845 6.927 7.003 7.074 7.141 7.204 7.264

16 4.131 4.786 5.192 5.489 5.722 5.915 6.079 6.222 6.348 6.461 6.564 6.658 6.744 6.823 6.897 6.967 7.032 7.093 7.151

17 4.099 4.742 5.140 5.430 5.659 5.847 6.007 6.147 6.270 6.380 6.480 6.572 6.656 6.733 6.806 6.873 6.937 6.997 7.053

18 4.071 4.703 5.094 5.379 5.603 5.787 5.944 6.081 6.201 6.309 6.407 6.496 6.579 6.655 6.725 6.791 6.854 6.912 6.967

19 4.046 4.669 5.054 5.334 5.553 5.735 5.889 6.022 6.141 6.246 6.342 6.430 6.510 6.585 6.654 6.719 6.780 6.837 6.891

20 4.024 4.639 5.018 5.293 5.510 5.688 5.839 5.970 6.086 6.190 6.285 6.370 6.449 6.523 6.591 6.654 6.714 6.770 6.823

21 4.004 4.612 4.986 5.257 5.470 5.646 5.794 5.924 6.038 6.140 6.233 6.317 6.395 6.467 6.534 6.596 6.655 6.710 6.762

22 3.986 4.588 4.957 5.225 5.435 5.608 5.754 5.882 5.994 6.095 6.186 6.269 6.346 6.417 6.482 6.544 6.602 6.656 6.707

23 3.970 4.566 4.931 5.195 5.403 5.573 5.718 5.844 5.955 6.054 6.144 6.226 6.301 6.371 6.436 6.497 6.553 6.607 6.658

24 3.955 4.546 4.907 5.168 5.373 5.542 5.685 5.809 5.919 6.017 6.105 6.186 6.261 6.330 6.394 6.453 6.510 6.562 6.612

25 3.942 4.527 4.885 5.144 5.347 5.513 5.655 5.778 5.886 5.983 6.070 6.150 6.224 6.292 6.355 6.414 6.469 6.522 6.571

26 3.930 4.510 4.865 5.121 5.322 5.487 5.627 5.749 5.856 5.951 6.038 6.117 6.190 6.257 6.319 6.378 6.432 6.484 6.533

27 3.918 4.495 4.847 5.101 5.300 5.463 5.602 5.722 5.828 5.923 6.008 6.087 6.158 6.225 6.287 6.344 6.399 6.450 6.498

28 3.908 4.481 4.830 5.082 5.279 5.441 5.578 5.697 5.802 5.896 5.981 6.058 6.129 6.195 6.256 6.314 6.367 6.418 6.465

29 3.898 4.467 4.814 5.064 5.260 5.420 5.556 5.674 5.778 5.871 5.955 6.032 6.103 6.168 6.228 6.285 6.338 6.388 6.435

30 3.889 4.455 4.799 5.048 5.242 5.401 5.536 5.653 5.756 5.848 5.932 6.008 6.078 6.142 6.202 6.258 6.311 6.361 6.407

31 3.881 4.443 4.786 5.032 5.225 5.383 5.517 5.633 5.736 5.827 5.910 5.985 6.055 6.119 6.178 6.234 6.286 6.335 6.381

32 3.873 4.433 4.773 5.018 5.210 5.367 5.500 5.615 5.716 5.807 5.889 5.964 6.033 6.096 6.155 6.211 6.262 6.311 6.357

33 3.865 4.423 4.761 5.005 5.195 5.351 5.483 5.598 5.698 5.789 5.870 5.944 6.013 6.076 6.134 6.189 6.240 6.289 6.334

34 3.859 4.413 4.750 4.992 5.181 5.336 5.468 5.581 5.682 5.771 5.852 5.926 5.994 6.056 6.114 6.169 6.220 6.268 6.313

35 3.852 4.404 4.739 4.980 5.169 5.323 5.453 5.566 5.666 5.755 5.835 5.908 5.976 6.038 6.096 6.150 6.200 6.248 6.293

36 3.846 4.396 4.729 4.969 5.156 5.310 5.439 5.552 5.651 5.739 5.819 5.892 5.959 6.021 6.078 6.132 6.182 6.229 6.274

37 3.840 4.388 4.720 4.959 5.145 5.298 5.427 5.538 5.637 5.725 5.804 5.876 5.943 6.004 6.061 6.115 6.165 6.212 6.256

38 3.835 4.381 4.711 4.949 5.134 5.286 5.414 5.526 5.623 5.711 5.790 5.862 5.928 5.989 6.046 6.099 6.148 6.195 6.239

39 3.830 4.374 4.703 4.940 5.124 5.275 5.403 5.513 5.611 5.698 5.776 5.848 5.914 5.974 6.031 6.084 6.133 6.179 6.223

40 3.825 4.367 4.695 4.931 5.114 5.265 5.392 5.502 5.599 5.685 5.764 5.835 5.900 5.961 6.017 6.069 6.118 6.165 6.208

48 3.793 4.324 4.644 4.874 5.052 5.198 5.322 5.428 5.522 5.606 5.681 5.750 5.814 5.872 5.926 5.977 6.024 6.069 6.111

60 3.762 4.282 4.594 4.818 4.991 5.133 5.253 5.356 5.447 5.528 5.601 5.667 5.728 5.784 5.837 5.886 5.931 5.974 6.015

80 3.732 4.241 4.545 4.763 4.931 5.069 5.185 5.284 5.372 5.451 5.521 5.585 5.644 5.698 5.749 5.796 5.840 5.881 5.920

120 3.702 4.200 4.497 4.709 4.872 5.005 5.118 5.214 5.299 5.375 5.443 5.505 5.561 5.614 5.662 5.708 5.750 5.790 5.827

240 3.672 4.160 4.450 4.655 4.814 4.943 5.052 5.145 5.227 5.300 5.366 5.426 5.480 5.530 5.577 5.621 5.661 5.699 5.735

Inf 3.643 4.120 4.403 4.603 4.757 4.882 4.987 5.078 5.157 5.227 5.290 5.348 5.400 5.448 5.493 5.535 5.574 5.611 5.645

Source: cse.niaes.affrc.go.jp/miwa/probcalc/s-range/srng_tbl.html
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Table 14 Cumulative Distribution Function of the Runs Test Statistic
For a given number n of observations, the table shows the probability, for a random time series, that the number of runs will not exceed K.

 n K

 2  3  4  5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20

  6 .100 .300 .700 .900 1.000

  8 .029 .114 .371 .629   .886 .971 1.000

10 .008 .040 .167 .357   .643 .833   .960 .992 1.000

12 .002 .013 .067 .175   .392 .608   .825 .933   .987 .998 1.000

14 .001 .004 .025 .078   .209 .383   .617 .791   .922 .975   .996 .999 1.000

16 .000 .001 .009 .032   .100 .214   .405 .595   .786 .900   .968 .991   .999 1.000 1.000

18 .000 .000 .003 .012   .044 .109   .238 .399   .601 .762   .891 .956   .988   .997 1.000 1.000 1.000

20 .000 .000 .001 .004   .019 .051   .128 .242   .414 .586   .758 .872   .949   .981   .996   .999 1.000 1.000 1.000

Reproduced with permission from F. Swed and C. Eisenhart, “Tables for testing randomness of grouping in a sequence of alternatives,” Annals of Mathematical Statistics 14 (1943).
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scatter plots and, 85
Spearman rank, 634–635
statistical independence and, 184

Counterfactual argument, 351
Covariance (Cov), 84, 181–182

computing using Excel, 87
continuous random variables, 229
statistical independence, 184

Critical value, 353
Cross-sectional data, 35
Cross tables, 29–30
Cumulative binomial probabilities, 

744–748
Cumulative distribution function, 

198–199, 202
of normal distribution, 208

Cumulative line graphs, 44
Cumulative probability function, 

150–151
Cyclical component, of time series, 

685

D
Data

cross-sectional, 35
interval, 26
measurement levels, 26–27
nominal, 26
ordinal, 26
presentation errors, 51–55
qualitative, 26
quantitative, 26
ratio, 27
time-series, 35–39

Data files descriptions, 470–471, 
548–550

Davies, O. L., 558
Decision making

sampling and, 22–23
in uncertain environment, 22–25

Decision rules, guidelines for  
choosing, 382–383

Degrees of freedom, 273, 440
Dependent samples, 329–332, 

387–390
Dependent variables, 47

lagged, as regressors, 567–570
Descriptive statistics, 25
Differences, of random variables, 

184, 230
Discrete numerical variables, 25
Discrete random variables, 147

expected value of, 152–153
expected value of functions, 155
jointly distributed, 176–188

probability distributions for, 
148–151

joint probability functions of, 178
properties of, 152–157
standard deviation of, 153–155
variance of, 153–155, 194



 Index 785

Distribution shape, 62–63. See also 
specific distributions

Diversifiable risk, 456–458
Dummy variables, 522–526, 554–565

experimental design models, 
558–563

public sector applications, 563–565
for regression models, 522–526, 

558–565
Durbin-Watson test, 584–586

cut-off points, 777–778

E
Efficient estimators, 288
Empirical rule, 76–77
Equality, 403–405

of variances between two nor-
mally distributed populations, 
403–405

Errors, 51–54, 495, 577–581
data presentation, 51–55
nonsampling, 24–25
reducing margin of, 295–296
sampling, 24, 293, 349
standard error, estimate, 490
Type I, 349–351, 407
Type II, 349–351, 369–373, 407

Error sum of squares, 427–428, 
432–433, 489, 652

Error variance, estimation of, 490
Estimated regression model, 424
Estimates, 285

confidence interval, 291
explanation of, 285
point, 286
standard error, 490

Estimation. See also Confidence 
intervals

of beta coefficients, 456–458
coefficient, 553–554
of error variance, 490
least squares, 469–470, 483
of model error variance, 437
of multiple regression coefficients, 

481–487
of population proportion, 313
of regressions with autocorrelated 

errors, 586–590
Estimators, 285

biased, 287
confidence interval, 291
consistent, 326
efficient, 288
examples of, 288
explanation of, 285
least squares, 469–470

least squares coefficient, 427–430, 
439

least squares derivation of, 
546–547

point, 285–289
of population mean, 725
unbiased, 286–287, 289

Events, 96–100
collectively exhaustive, 98
complements, 98–100
independent, 125–126
intersection of, 96–100, 144–145
mutually exclusive, 96–97, 117
union, 97–100, 144–145

Excel, 87. See also Minitab
confidence intervals using, 

301–302, 331–332
covariance and correlation using, 

183
jointly distributed discrete ran-

dom variables, 180
regression analysis using, 429
shape of a distribution, 62

Expected value
of continuous random variables, 

203–205
of discrete random variables, 

152–153
of functions of random variables, 

155, 181, 184
of sample mean, 250

Experimental design models, 
558–563

Exploratory data analysis (EDA), 46
Exponential distribution, 225–227
Exponential model transformations, 

518–520
Exponential smoothing, 697–707
Extreme points, 459, 461, 464

F
Failure to reject, 349–351
F distribution, 403, 771–774
Financial investment portfolios, 

232–236
Financial risk, beta measure of, 

456–458
Finite population correction factor, 

251, 309
Finite populations, confidence inter-

val estimation for, 309–313
First-order autoregressive models, 

708–709
First quartile, 64–65
Fisher, R. A., 558
Five-number summary, 65

Forecasting
from autoregressive models, 

709–712
regression models and,  

446–450
seasonal time series, 704–707
simple exponential smoothing 

and, 697–707
trends and, 686

F probability distribution
hypothesis test for popula-

tion slope coefficient using, 
443–445

Frequency distributions,  
28, 40

class width, 41
construction of, 41
cumulative, 42
inclusive and nonoverlapping 

classes, 41–42
interval width, 41
number of classes for, 41
for numerical data, 40–43
relative, 28, 42

F tests
for simple regression coefficient, 

444–445
t tests vs., 508–509

Functions, of random variables, 
155–157

G
Geometric mean, 63–64
Geometric mean rate of return, 63
Goodness-of-fit tests

explanations of, 603
population parameters unknown, 

609–613
specified probabilities, 603–608

Gosset, William Sealy, 297, 326
Graphical analysis, 458–464
Graphs

for categorical variables, 28–35
data presentation errors, 51–55
to describe relationships between 

variables, 47–49
distribution shape, 44–46
histograms, 44
of multiple regression model, 480
for numerical variables, 40–50
ogives, 44
scatter plots, 47–49
stem-and-leaf displays, 46–47
for time-series data, 35–40

Grouped data, measures of, 81–82
Group means, 671
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H
Heteroscedasticity

explanation of, 577–579
graphical techniques for detecting, 

578–579
test for, 579–580

Histograms, 44
misleading, 51–53

Holt-Winters exponential  
smoothing forecasting model, 
700–707

example of, 701–703
nonseasonal series, 701–703
seasonal series, 704–707

Hypergeometric distribution, 
173–175

Hypothesis
alternative, 351, 352, 356–359, 376
composite, 351, 356–359
null, 347–351, 376
one-sided composite alternative, 

351
simple, 351
two-sided composite alternative, 

351, 360–361
Hypothesis test decisions, 351
Hypothesis tests/testing, 346–347

assessing power of, 368–373
comments on, 406–408
concepts of, 347–351
confidence intervals, 438–445
control chart, 408
for correlation, 452–454
for difference between two normal 

population means, dependent 
samples, 387–390

for difference between two normal 
population means, independ-
ent samples, 391–398

for difference between two popu-
lation proportions, 399–402

of equality of variances between 
two normally distributed 
populations, 403–405

flow chart for selecting, 413–414
introduction to, 352–353
for mean of a normal distribution, 

population variance known, 
352–361, 369–371

for mean of normal distribution, 
population variance un-
known, 362–364

for one-way analysis of variance, 
651–653

of population proportion,  
366–367

for population slope coefficient us-
ing F distribution, 443–445

power of, 351
for regression coefficients,  

497–502, 505–509
for regression models, 438–445
for two-way analysis of variance, 

666–667
for variance of a normal distribu-

tion, 375–377
for zero population correlation, 

453–454

I
Income distribution, 63
Independent events, 117, 125–126
Independent random samples, non-

parametric tests for, 628–632
Independent samples, 333–339, 

391–398
Independent variables, 47

jointly distributed, 178
Indicator variables, 522–526. See also 

Dummy variables
Inference

about population regression, 495
model interpretation and, 554

Inferential statistics, 25
Integral calculus, 242–243
Interaction, as source of variability, 

670
Intercept, 419
Interquartile range (IQR), 69
Intersection of events, 96–97, 

99–100, 151
Interval data, 26
Intervals

acceptance, 260–262
control, 261–262
for frequency distribution, 44

Interval scales, 26
Investment portfolios

beta measure of financial risk, 
456–458

portfolio analysis, 232–236
returns on, 234–236

Irregular component of time series, 
685

moving averages to smooth, 
689–691

J
Jarque-Bera test for normality, 

611–613
Joint cumulative distribution func-

tion, 228–229

Jointly distributed continuous 
random variables, 176–188, 
228–236. See also Continuous 
random variables; Random 
variables

examples of, 230–231
financial investment portfolios, 

232–236
linear combinations of, 232

Jointly distributed discrete random 
variables, 176–190. See also 
Discrete random variables; 
Random variables

computer applications, 180
conditional mean and variance, 

180
correlation, 182–183
covariance, 182
examples of, 176–177, 179–180, 183
expected value of functions of, 181
independence of, 178
portfolio analysis, 185–188

Joint probability, 96, 114–115, 117, 
123–125

Joint probability distribution, 
177–178

Joint probability function, 177
properties of, 178

K
Knowledge, 25
Kruskal-Wallis test, 658–660
Kurtosis, 611, 613

L
Lagged dependent variables, 

567–570
autocorrelation errors in models 

with, 590–591
Law of large numbers, 254
Least squares algorithm, 514–515
Least squares coefficient estimators, 

427–430, 439
Least squares derivation of estima-

tors, 546–547
Least squares derived coefficient 

estimators, 428–429
Least squares estimation, sample 

multiple regression and, 483
Least squares estimators, derivation 

of, 469–470
Least squares procedure, 427–428, 

482–487
Least squares regression, 419–420
Least squares regression line, 419, 

446
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Leverage, 459
Linear combinations, of random 

variables, 232
Linear functions, of random vari-

ables, 180–181, 205
Linear models, 418–420
Linear regression equation,  

431–437
analysis of variance and, 433
coefficient of determination R2, 

433–434
Linear regression model, 421–426

assumptions, 422–423
examples using, 425–426
outcomes, 424
population, 423

Linear regression population equa-
tion model, 423

Linear relationships, 418–419
Linear sum of random variables, 

280
Line charts, 35–39
Logarithmic transformations, 

517–518
Lower confidence limit, 293
Lower tail test, 620

M
Mann-Whitney U statistic, 628–629
Mann-Whitney U test, 628–630
Marginal distributions, 229
Marginal probabilities, 123–125, 

179–180
Marginal probability distribution, 

177–178
Margin of error, 293, 299, 304

reducing, 295–296
Matched pairs, 387–388
Mathematical derivations, 546–548, 

682–683
Matrix plots, 486–487
Mean, 60–64

approximate, 81–82
of Bernoulli random variable, 160
of binomial distribution, 162, 

195–196
conditional, 180
of continuous random variables, 

204
geometric, 63–64
of jointly distributed random  

variables, 196
of linear functions of a random 

variable, 155–157, 194–195
measures of variability from, 

68–79

of normal distribution, popula-
tion variance known, 315–316, 
352–361, 369–371

of normal distribution, population 
variance unknown, 362–364

of Poisson probability distribu-
tion, 168

of sampling distribution of sample 
variances, 283

weighted, 80–83
Mean square regression (MSR), 505, 

506
Mean squares

between-groups, 651
within-groups, 651

Measurement levels, 26–27
Measures of central tendency, 59–68

geometric mean, 63–64
mean, median, mode, 60–62
shape of a distribution, 62–63

Median, 60–62, 63
Minimum variance unbiased  

estimator, 288
Minitab, 87. See also Excel

autoregressive models, 709–712
confidence intervals using, 337, 

338–339, 341
descriptive measures using, 87
Durbin-Watson test, 586
exponential model estimation, 519
hypothesis testing, 377, 389–390, 

396
lagged dependent variables, 569
matrix plots, 486–487
Monte Carlo sampling simula-

tions, 280–283
for probability distributions, 154, 

164–165
regression analysis using,  

429–430
Missing values, 27, 330–331
Mode, 60–62
Model error variance, estimation 

of, 437
Model specification, 529–531, 

552–553
Monte Carlo sampling simulations, 

254–260, 280–283
Minitab, 280–283

Most efficient estimator, 287–289
Moving averages

explanation of, 689–691
extraction of seasonal component 

through, 692–697
simple centered (2m 1 1)-point, 

691

Multicollinearity, 574–577
corrections for, 576–577
indicators for, 576

Multiple comparisons, 654–655
Multiple regression. See also 

Regression
analysis application procedure 

and, 529–537
applications of, 475–476
confidence intervals and  

hypothesis tests for indi-
vidual regression coefficients, 
493–502

estimation of coefficients and, 
481–487

explanatory power of multiple 
regression equation and, 
488–492

introduction to, 474
least squares procedure,  

482–487
objectives, 476
prediction and, 511–513
tests on regression coefficients, 

505–509
Multiple regression equation, 

488–492
Multiple regression model, 474

assumptions, 482
development of, 477–480,  

531–532
dummy variables for, 522–526
explanation of, 474–480
model specification, 474–476
objectives, 476–477
population, 479
residuals analysis and, 534–537
test on all coefficients of, 497
three-dimensional graphing of, 

480
transformations for nonlinear, 

514–520
Multiplication rule of probabilities, 

114–116
Mutually exclusive events, 96–97, 

117

N
Nominal data, 26
Nondiversifiable risk, 456
Nonlinear regression models

logarithmic transformations, 
517–518

quadratic transformations,  
515–517

transformations for, 514–520
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Nonparametic tests
for independent random samples, 

628–632
Kruskal-Wallis test, 658–660
Mann-Whitney U test, 628–630
normal approximation to the sign 

test, 623–624
for paired or matched samples, 

619–626
for randomness, 636–639
sign test, 619–621, 626
Spearman rank correlation, 

634–635
Wilcoxon rank sum test, 631–632
Wilcoxon signed rank test,  

622–623
Nonprobabilistic sampling meth-

ods, 734
Nonsampling errors, 24–25
Nonuniform variance, 577–578
Normal approximation

Mann-Whitney U test, 629
to sign test, 623–624
to Wilcoxon signed rank test, 

624–626
Normal distribution, 206–217

to approximate binomial distribu-
tion, 219–224

compared with binomial distribu-
tion, 221

confidence interval estimation for 
variance of, 306–309

confidence interval for mean of, 
291–296

cumulative distribution function 
of, 208

examples of, 211–214
explanation of, 206–207
probability density function for, 

207
properties of, 207
standard, 209–210
test for, 611–613
tests of mean of, population vari-

ance known, 352–361
tests of the variance of, 375–377

Normality, test for, 611
Normal probability plots, 215–217
Normal random variables, range 

probabilities for, 209
Null hypothesis, 347–351, 376.  

See also Hypothesis
p-value, 360–361, 376
rejection of, 406–407
sign test, 619–621
specifying, 406–407

testing regression coefficients,  
497

tests/testing goodness-of-fit tests, 
603–608

Number of combinations, 102
formula for determining, 102

Numerical variables, 25–26
graphs to describe, 40–50

O
Odds, 126
Ogives, 44
One-sided composite alternative 

hypothesis, 347, 351
One-way analysis of variance, 

647–656
framework for, 648
hypothesis test for, 651–653
multiple comparisons between 

subgroup means, 654–655
population model for, 655–656
sum of squares decomposition for, 

650–651
One-way analysis of variance  

tables, 652–653
Ordering, 103
Ordinal data, 26
Outcomes

basic, 95
for bivariate events, 122
random experiments and, 95

Outliers, 47, 62, 461
effect of, 462–464

Overall mean, 672, 725–726
Overinvolvement ratios, 126–129

P
Paired samples, Wilcoxon signed 

rank test for, 622–623
Parameters, 24, 60
Pareto, Vilfredo, 32
Pareto diagrams, 32–34
Pearson’s product-moment correla-

tion coefficient, 84–86
Percent explained variability, 435
Percentile, 64–67
Permutations, 102–104
Pie charts, 31–32
Point estimates, 286
Point estimators, properties of, 

285–289
Poisson, Simeon, 167
Poisson approximation to binomial 

distribution, 171–172
Poisson probability distribution, 

167–172

approximation to binomial distri-
bution, 171–172

assumptions of, 167
comparison to binomial distribu-

tion, 172
cumulative, table of, 759–767
examples of, 168–172
explanation of, 167
functions, mean, and variance, 168
individual, table of, 750–758
test for, 609–611

Pooled sample variance, 336
Population

defined, 23
sampling errors, 24
sampling from, 245–249

Population covariance, 84
Population mean

allocation overall, 724
comparison of several, 645–647
confidence interval estimation 

of difference between two, 
329–339

confidence interval for, 309–311
estimation of, 718–719, 730
guidelines for choosing decision 

rule for, 382
tests of difference between, de-

pendent samples, 387–390
tests of difference between, inde-

pendent samples, 391–398
Population model

linear regression, 423
for one-way analysis of variance, 

655–656
Population multiple regression 

model, 479
Population proportions

confidence interval estimation for, 
303–305, 312–313

estimation of, 313, 340–341, 
721–723, 730

guidelines for choosing decision 
rule for, 383

optimal allocation, 724
sample size for, 317–319
tests of, 366–367, 371–373
tests of difference between, 

399–402
Population regression parameters, 

495
Population regression slope

basis for inference about, 440
confidence interval, 440–443
tests of, 442

Populations, examples of, 245
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Population slope coefficient, hy-
pothesis test for, 443–445

Population total
confidence interval for, 309–311
estimation of, stratified random 

sample, 720–721
Population variance, 71–72

chi-square distribution of, 271–272
confidence intervals and, 293–294, 

335–339
independent samples and, 333–339
tests of difference with known, 

391–393
tests of difference with unknown, 

393–396
tests of mean of normal distribu-

tion with known, 333–334, 
352–361, 369–371

tests of mean of normal distribu-
tion with unknown, 335–339, 
362–364, 396–398

tests of normal distribution, 
375–377

Portfolio analysis, 186–188, 232–236
Portfolio market value, 185–188
Power, 350–351
Power function, 370–371
Prediction

multiple regression and, 511–513
regression models and, 446–450

Prediction intervals, 447–448
Predictor variables, bias from ex-

cluding significant, 571–573
Price-earnings ratios, 289
Probability, 93–94

addition rule of, 112–113
Bayes’ theorem, 132–138
bivariate, 122–132
classical, 101–102
complement rule, 111–112, 118–119
conditional, 113–114
examples, 105–106
joint, 114–115, 117, 123–125
marginal, 123–125, 179–180
multiplication rule of, 114–116
for normally distributed random 

variables, 212
overinvolvement ratios and, 

126–129
permutations and combinations, 

102–105
random experiments and, 94–95
of range using cumulative distri-

bution function, 199
relative frequency, 106
rules, 111–122

statistical independence and, 
116–119

subjective, 107–110
Probability density functions, 

199–200, 252
areas under, 200–201
for chi-square distribution, 272
for exponential distribution, 226
for normal distribution, 207
properties of, 199–200
for sample means, 252
for sample proportions, 267
of standard normal and Student’s 

t distribution, 298
Probability distribution function, 

149, 199
Probability distributions

Bernoulli distribution, 159–161
binomial distribution, 159–165
chi-square distribution, 271–272
for discrete random variables, 

148–151
exponential distribution, 225–227
hypergeometric distribution, 

173–175
Poisson probability distribution, 

167–172
Student’s t distribution, 326–327
uniform, 201

Probability functions
binomial distribution table, 

739–743
conditional, 178
joint probability function, 177, 178
marginal probability function, 177

Probability plots, normal, 215–217, 
535

Probability postulates
consequences of, 108–109
explanation of, 107–108

Probability value (p-value), 360–361
Problem definition, 25
Properties

of cumulative probability distribu-
tions, 151

of joint probability functions, 178
of probability distribution func-

tions, 150
Proportional allocation, 723
Proportion random variable, 223–224
Proportions, confidence interval 

estimation for, 303–305
Public sector research, 563
Public sector research and policy 

analysis, dummy variable 
regression in, 563–565

p-value, 354–359
for chi-square test for variance, 

376
for sign test, 620

Q
Quadratic transformations, 515–517
Qualitative data, 26
Quantitative data, 26
Quartiles, 64–65
Queuing problems, 169–171
Quota sampling, 734

R
Random experiments, 94

outcomes of, 94–100
Randomized block design, 661–662
Random samples/sampling, 23

independent, 333–339
nonparametric tests for independ-

ent, 628–632
simple, 23, 245–246

Random variables, 147–148
continuous (See Continuous ran-

dom variables)
correlation of, 229
differences between, 184
differences between pairs of, 230
linear combinations of, 232
linear functions of, 180–181, 205
linear sums and differences of, 184
mean and variance of linear func-

tions of, 155–157
proportion, 223–224
statistical independence and, 181, 

184
sums of, 229–230

Range
explanation of, 69
interquartile, 69

Ratio data, 27
Ratio of mean squares, 683
Ratios

overinvolvement, 126–129
price-earnings, 289

Regression. See also Least squares 
regression; Multiple regres-
sion; Simple regression

analysis of variance and, 432–433
autocorrelated errors and, 582–591
dummy variables and experimen-

tal design, 554–565
heteroscedasticity, 577–581
lagged valued of dependent vari-

ables, 567–570
least squares regression, 419–420
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Regression (continued)
linear regression model and, 

421–426
mean square, 490, 506
multicollinearity, 574–577
specification bias, 571–573

Regression coefficients
computer computation of, 429–430
confidence intervals for, 495–497
hypothesis tests for, 493–495
subsets of, tests on, 506–507
tests on, 505–507

Regression models. See also Multiple 
regression model; Nonlinear 
regression models

coefficient estimation, 553–554
dummy variables, 522–526, 554–

558
interpretation and inference, 554
linear, 418–426, 431–437
methodology for building,  

552–554
specification, 552–553
verification, 554

Regression sum of squares, 432, 433, 
490

Reject, 351
Relative efficiency, 288
Relative frequency distribution, 28, 

42
Relative frequency probability, 106
Reliability factor, 293
Repeated measurements, 329, 

331–332
Residuals, analysis of, 534–537
Returns, on financial portfolios, 

234–236
Risk, 233

diversifiable, 456–458
nondiversifiable, 456

Runs test, 636–639

S
Sample covariance, 84
Sample means

acceptance intervals, 260–262
central limit theorem, 254–260
expected value of, 250
explanation of, 249
sampling distributions of, 249–262
standard normal distribution for, 

251–253
Sample proportions

examples of, 267–268
explanation of, 265
sampling distributions of, 265–268

Sample sizes
determining, 340–341
determining, for stratified random 

sampling, 725–726
finite populations, 319–322
large populations, 315–319

Sample space, 95
Samples/sampling. See also 

 Random samples/sampling
cluster, 729–732
defined, 23
dependent, 329–332, 386–390
explanation of, 22–25
independent, 333–339, 386–390
Monte Carlo sampling simula-

tions, 280–283
nonprobabilistic methods, 734
from population, 245–249
simple random, 23, 245–246
stratified, 716–726
systematic, 23
two-phase, 732–734

Sample standard deviation, 271
Sample variances, 73

chi-square distribution, 271–272
explanation of, 271
sampling distributions of, 270–275, 

283
Sampling distributions

explanation of, 246–249
of least squares coefficient  

estimator, 439
of sample means, 249–262
of sample proportions, 265–268
of sample variances, 270–275,  

283
Sampling error, 24–25, 293, 349
Sampling without replacement, 

173–174
Sampling with replacement, 174
Sarbanes-Oxley Act (SOX),  

617–618
Scatter plot analysis, 459–464
Scatter plots, 47–49

for residuals analysis, 535–537
Seasonal component

extraction of, through moving 
averages, 692–697

of time series, 686–687
Seasonal index method, 704–707
Seasonal time series, forecasting, 

704–707
Second-order autoregressive  

models, 708
Second quartile, 64
Side-by-side bar chart, 30

Significance level, 349, 351
Sign test

explanation of, 619
normal approximation to,  

623–626
for paired or matched samples, 

619–623
p-value for, 620
for single population median, 626

Simple exponential smoothing
explanation of, 698
forecasting through, 698–700
Holt-Winters model and, 700–703

Simple hypothesis, 347, 351
Simple random samples/sampling, 

23, 245
beta measure of financial risk, 

456–458
correlation analysis and, 452–454
explanatory power of lin-

ear regression equation and, 
431–437

graphical analysis and, 458–464
least squares coefficient estimators 

and, 427–430
prediction and, 446–450
sample sizes, 320–322
statistical inference and, 438–445

Simple regression. See Regression
Simple regression coefficient, F test 

for, 444–445
Skewed distribution, 45–46
Skewness, 45, 91–92, 611, 613
Slope, 419

differences in, 525
Spearman rank correlation,  

634–635
cutoff points, 776

Specification bias, 571–573
SSE, 427–428, 432–433
SSR, 433–435
SST, 433–435
Stacked bar charts, 30
Standard deviation, 72–73, 74

of continuous random variables, 
204

of discrete random variable, 153–155
sample, 271

Standard error of the estimate, 490
Standardized normal random vari-

able, 251
Standardized residual, 461–464
Standard normal distribution, 209

cumulative distribution function 
table, 738

for sample means, 251–253
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Statistical independence, 116–119, 
181, 184

covariance, 184
Statistical inference, 438–445
Statistical significance, 407
Statistical thinking, 22
Statistics, 22, 60. See also Nonpara-

metic tests
defined, 24
descriptive, 25
inferential, 25

Stem-and-leaf displays, 46–47
Stock market crash of 2008, 94

beta coefficients limitations, 457
cautions concerning financial 

models, 236
Stratified random sampling

allocation of sample effort among 
strata and, 723–725

analysis of results from,  
718–720

determining sample sizes for, 
725–726

estimation of population mean, 
718–719

estimation of population propor-
tion, 721–723

estimation of population total, 
720–721

examples of, 719–720
explanation of, 716–717

Student’s t distribution, 326–327
confidence intervals and,  

297–302
hypothesis tests, 362–364
for two means with unknown 

population variances not as-
sumed to be equal, 344

upper critical values table, 770
Subgroup means, multiple  

comparisons between, 654
Subjective probability, 107–110
Sum of squares, 433, 489, 649
Sum of squares decomposition

coefficient of determination and, 
489–490

one-way analysis of variance, 
650–651

two-way analysis of variance, 665
Sums, of random variables, 184, 

229–230
Survey responses

missing values in, 330–331
sampling errors, 24

Symmetric distributions, 45
Systematic sampling, 23

T
Tables

for categorical variables, 28–29
cross tables, 29–30
to describe relationships between 

variables, 47–49
frequency distribution, 28–29

Test of association, 615–618
Tests. See Hypothesis tests/testing
Third quartile, 65
Time plots, autocorrelation and, 

582–583
Time series

autoregressive integrated moving 
average models, 713–714

autoregressive models, 708–712
components of, 685–689
explanation of, 684–685
exponential smoothing and, 

697–707
forecasting seasonal, 704–707
moving averages, 689–697

Time-series component analysis, 
688

Time-series data
explanation of, 684–685
graphs to describe, 35–40

Time-series plots, 35–39
misleading, 53–54

Time-series regression model, 
587–590

Total explained variability, 547–548
Total sum of squares, 433, 489, 682
Treatment variables, 559–560
Tree diagrams, 123–124
Trend component, of time series, 

685–686
t tests, vs. F tests, 508–509
Two-phase sampling, 732–734
Two-sided composite alternative 

hypothesis, 347, 351, 360–361
Two-tail test, 620
Two-way analysis of variance

examples of, 675–676
hypothesis tests for, 666
more than one observation per 

cell, 670–676
one observation per cell, 661–667
several observations per cell, 

670–676
sum of squares decomposition for, 

665
table format, 666–667
tables, 666–667

Two-way analysis of variance  
tables, 666–667

Type I errors, 349–351, 353, 407
Type II errors, 349–351, 369–370, 407

determining probability of, 
369–371

U
Unbiased estimator, 286–287
Uncertainty, decision making  

under, 22–25
Uniform distribution, 201, 204
Uniform probability distribution, 

198
Unions, 97–100, 151
Upper confidence limit, 293

V
Variability

between-groups, 649
interaction as source of, 670
total explained, 547–548
within-groups, 649

Variability, measures of, 68–79
Variables. See also Continuous ran-

dom variables
bias from excluding significant 

predictor, 571–573
blocking, 559–560, 661
categorical, 25, 28–34
classification of, 25–26
correlation analysis and, 452–454
defined, 25
dependent, 47
dummy, 522–526, 554–565
effect of dropping statistically 

significant, 532–534
independent, 47
indicator, 522–526
lagged dependent, 567–570
of linear functions of a random 

variable, 188
measures of relationships be-

tween, 84–89
numerical, 25–26, 40–49
relationships between, 418–419
tables and graphs to describe rela-

tionships between, 47–49
treatment, 559–560

Variance, 71–74. See also Analysis of 
variance (ANOVA)

of Bernoulli random variable,  
160

of binomial distribution, 162, 
195–196

conditional, 180
of continuous random variables, 

204
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Variance (continued)
of discrete random variables, 

153–155, 184, 194
for grouped data, 81–82
of jointly distributed random vari-

ables, 196
of linear functions of a random 

variable, 155–157, 194–195
nonuniform, 577–578
of normal distribution, confi-

dence interval estimation for, 
306–309

of normal distribution, tests for, 
375–377

of Poisson probability distribu-
tion, 168

sampling distributions of sample, 
270–275

between two normally distributed 
populations, tests of equality, 
403–405

Variation, coefficient of, 75
Venn diagrams

for addition rule, 112
for complement of event, 98
for intersection of events, 97, 100, 

144–145
for union of events, 96–98,  

144–145
Verifications, 194–196

W
Waiting line problems, 169–171
Weighted mean, 80–83
Width, 293
Wilcoxon rank sum statistic T, 631

Wilcoxon rank sum test, 631–632
cutoff points for statistic, 775

Wilcoxon signed rank test, 622–626
normal approximation to, 624–626

Within-groups mean square (MSW), 
682

Within-groups variability, 649

Y
y-intercept, 419

Z
Zero population correlation, 

453–454
z-score, 77–78
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